1
|
Xiong ZY, Shen YJ, Zhang SZ, Zhu HH. A review of immunotargeted therapy for Philadelphia chromosome positive acute lymphoblastic leukaemia: making progress in chemotherapy-free regimens. Hematology 2024; 29:2335856. [PMID: 38581291 DOI: 10.1080/16078454.2024.2335856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.
Collapse
Affiliation(s)
- Zhen-Yu Xiong
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Yao-Jia Shen
- Department of Hematology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shi-Zhong Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Hong-Hu Zhu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Chinese Institutes for Medical Research, Beijing, People's Republic of China
| |
Collapse
|
2
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
3
|
Li Y, Seet CS, Mack R, Joshi K, Runde AP, Hagen PA, Barton K, Breslin P, Kini A, Ji HL, Zhang J. Distinct roles of hematopoietic cytokines in the regulation of leukemia stem cells in murine MLL-AF9 leukemia. Stem Cell Reports 2024; 19:100-111. [PMID: 38101400 PMCID: PMC10828676 DOI: 10.1016/j.stemcr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.
Collapse
Affiliation(s)
- Yanchun Li
- Blood Disease Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710126, P.R. China
| | - Christopher S Seet
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Austin P Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Biology, Molecular/Cellular Physiology, and Cancer Biology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ameet Kini
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA; Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA.
| |
Collapse
|
4
|
Potdar S, Ianevski F, Ianevski A, Tanoli Z, Wennerberg K, Seashore-Ludlow B, Kallioniemi O, Östling P, Aittokallio T, Saarela J. Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data. Nucleic Acids Res 2023:7161532. [PMID: 37178002 DOI: 10.1093/nar/gkad390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
Functional precision medicine (fPM) offers an exciting, simplified approach to finding the right applications for existing molecules and enhancing therapeutic potential. Integrative and robust tools ensuring high accuracy and reliability of the results are critical. In response to this need, we previously developed Breeze, a drug screening data analysis pipeline, designed to facilitate quality control, dose-response curve fitting, and data visualization in a user-friendly manner. Here, we describe the latest version of Breeze (release 2.0), which implements an array of advanced data exploration capabilities, providing users with comprehensive post-analysis and interactive visualization options that are essential for minimizing false positive/negative outcomes and ensuring accurate interpretation of drug sensitivity and resistance data. The Breeze 2.0 web-tool also enables integrative analysis and cross-comparison of user-uploaded data with publicly available drug response datasets. The updated version incorporates new drug quantification metrics, supports analysis of both multi-dose and single-dose drug screening data and introduces a redesigned, intuitive user interface. With these enhancements, Breeze 2.0 is anticipated to substantially broaden its potential applications in diverse domains of fPM.
Collapse
Affiliation(s)
- Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Filipp Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Brinton Seashore-Ludlow
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Olli Kallioniemi
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Östling
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| |
Collapse
|
5
|
Liu L, Qiang X. Hsa_circ_0044907 promotes acute myeloid leukemia progression through upregulating oncogene KIT via sequestering miR-186-5p. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:960-970. [PMID: 36004511 DOI: 10.1080/16078454.2022.2113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been reported that circular RNA hsa_circ_0044907 (circ_0044907) expression is overtly elevated in acute myeloid leukemia (AML) patient-derived BMMCs. However, the effect of circ_0044907 on AML progression remains un-clarified. METHODS Expression of circ_0044907 in BM and AML cells were detected with real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Cell viability, proliferation, apoptosis, and cycle progression were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), and flow cytometry assays. The regulatory mechanism of circ_0044907 was predicted by bioinformatics analysis and validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. In vivo experiments were carried out to verify the function of circ_0044907. RESULTS Circ_0044907 was overexpressed in AML patient-derived BM and AML cells. Furthermore, circ_0044907 could distinguish AML patients from healthy controls, and high circ_0044907 expression in BM had a poor prognosis for AML patients, implying that circ_0044907 served as a diagnostic and prognostic indicator for AML. Functionally, circ_0044907 silencing reduced cell viability, restrained cell proliferation, arrested cell cycle progression, and induced cell apoptosis in AML cells in vitro. Furthermore, circ_0044907 knockdown decreased AML cell growth in xenograft mouse models. Mechanically, circ_0044907 sponged miR-186-5p to block the inhibiting effect of miR-186-5p on KIT. Silenced miR-186-5p expression weakened circ_0044907 knockdown mediated suppression on AML cell viability, proliferation, and cycle progression. Also, forced KIT expression weakened miR-186-5p upregulation mediated inhibition on AML cell viability, proliferation, and cycle progression. CONCLUSION Circ_0044907 absorbed miR-186-5p to block the inhibiting impact of miR-186-5p on KIT, thus promoting AML progression.
Collapse
Affiliation(s)
- Ling Liu
- Department of Laboratory, Liangjiang New Area First People's Hospital, Chongqing, People's Republic of China
| | - Xing Qiang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Katagiri S, Chi S, Minami Y, Fukushima K, Shibayama H, Hosono N, Yamauchi T, Morishita T, Kondo T, Yanada M, Yamamoto K, Kuroda J, Usuki K, Akahane D, Gotoh A. Mutated KIT Tyrosine Kinase as a Novel Molecular Target in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23094694. [PMID: 35563085 PMCID: PMC9103326 DOI: 10.3390/ijms23094694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Naoko Hosono
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takanobu Morishita
- Division of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya-shi, Aichi 453-8511, Japan;
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, 2-1 S4 W25 Chuo-ku, Sapporo, Hokkaido 064-0804, Japan;
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan;
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| |
Collapse
|
7
|
Malani D, Kumar A, Brück O, Kontro M, Yadav B, Hellesøy M, Kuusanmäki H, Dufva O, Kankainen M, Eldfors S, Potdar S, Saarela J, Turunen L, Parsons A, Västrik I, Kivinen K, Saarela J, Räty R, Lehto M, Wolf M, Gjertsen BT, Mustjoki S, Aittokallio T, Wennerberg K, Heckman CA, Kallioniemi O, Porkka K. Implementing a Functional Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discov 2022; 12:388-401. [PMID: 34789538 PMCID: PMC9762335 DOI: 10.1158/2159-8290.cd-21-0410] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Disha Malani
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland
| | - Monica Hellesøy
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alun Parsons
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Imre Västrik
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Katja Kivinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Centre for Molecular Medicine Norway, NCMM, University of Oslo, Oslo, Norway
| | - Riikka Räty
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland
| | - Minna Lehto
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Bjorn Tore Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Institute for Cancer Research, Oslo University Hospital, and Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden.,Corresponding Authors: Kimmo Porkka, Helsinki University Hospital Comprehensive Cancer Center and Hematology Research Unit Helsinki, University of Helsinki, P.O. Box 372, FIN-00029 HUCH, Helsinki, Finland. Phone: 358-50-427-0192; Fax: 358-9-471-72351; E-mail: ; and Olli Kallioniemi, Molecular Precision Medicine, Department of Oncology and Pathology, Karolinska Institutet, Box 1031, Solna 171 21, Sweden. Phone: 46-70-7753642; E-mail:
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.,Corresponding Authors: Kimmo Porkka, Helsinki University Hospital Comprehensive Cancer Center and Hematology Research Unit Helsinki, University of Helsinki, P.O. Box 372, FIN-00029 HUCH, Helsinki, Finland. Phone: 358-50-427-0192; Fax: 358-9-471-72351; E-mail: ; and Olli Kallioniemi, Molecular Precision Medicine, Department of Oncology and Pathology, Karolinska Institutet, Box 1031, Solna 171 21, Sweden. Phone: 46-70-7753642; E-mail:
| |
Collapse
|
8
|
FLT3-ITD allelic ratio and HLF expression predict FLT3 inhibitor efficacy in adult AML. Sci Rep 2021; 11:23565. [PMID: 34876631 PMCID: PMC8651734 DOI: 10.1038/s41598-021-03010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
FLT3 internal tandem duplication (FLT3-ITD) is a frequent mutation in acute myeloid leukemia (AML) and remains a strong prognostic factor due to high rate of disease recurrence. Several FLT3-targeted agents have been developed, but determinants of variable responses to these agents remain understudied. Here, we investigated the role FLT3-ITD allelic ratio (ITD-AR), ITD length, and associated gene expression signatures on FLT3 inhibitor response in adult AML. We performed fragment analysis, ex vivo drug testing, and next generation sequencing (RNA, exome) to 119 samples from 87 AML patients and 13 healthy bone marrow controls. We found that ex vivo response to FLT3 inhibitors is significantly associated with ITD-AR, but not with ITD length. Interestingly, we found that the HLF gene is overexpressed in FLT3-ITD+ AML and associated with ITD-AR. The retrospective analysis of AML patients treated with FLT3 inhibitor sorafenib showed that patients with high HLF expression and ITD-AR had better clinical response to therapy compared to those with low ITD-AR and HLF expression. Thus, our findings suggest that FLT3 ITD-AR together with increased HLF expression play a role in variable FLT3 inhibitor responses observed in FLT3-ITD+ AML patients.
Collapse
|