1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Chatterjee G, He R, Patkar N, Viswanatha D, Langerak AW. Molecular techniques in haematopathology: what and how? Histopathology 2025; 86:38-57. [PMID: 39403025 DOI: 10.1111/his.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Here we review the 'what and how' of molecular techniques used in the context of haematopathological diagnostics of both lymphoid and myeloid neoplasms. Keeping in mind that the required resources for molecular testing are not universally available, we will not only discuss novel and emerging techniques that allow more high-throughput and sophisticated analyses of lymphoid and myeloid neoplasms, but also the more classical, low-cost alternatives and even some workarounds for molecular testing approaches. In this review we also address other key aspects around molecular techniques for haematopatholgy diagnostics, including preanalytics, data interpretation, and data management, bioinformatics, and interlaboratory precision and performance evaluation.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Department, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Nikhil Patkar
- Hematopathology Department, ACTREC, Tata Memorial Centre, Mumbai, India
| | | | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Lacoste SA, Gagnon V, Béliveau F, Lavallée S, Collin V, Hébert J. Unveiling the Complexity of KMT2A Rearrangements in Acute Myeloid Leukemias with Optical Genome Mapping. Cancers (Basel) 2024; 16:4171. [PMID: 39766070 PMCID: PMC11674939 DOI: 10.3390/cancers16244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background:KMT2A rearrangements are major genetic entities in the classification of acute myeloid leukemias (AMLs), but their diverse and frequently cryptic nature makes their detection and characterization challenging. Karyotypic anomalies at the KMT2A locus and/or abnormal KMT2A Fluorescence in situ hybridization (FISH) results strongly indicate a KMT2A fusion, but the identification of the translocation partner gene often requires further investigation. KMT2A partial tandem duplications (PTDs), on the other hand, are undetectable by standard cytogenetics methods. Methods: We herein report the optical genome mapping (OGM) analysis of 38 AML samples: 12 cryptic/hard-to-characterize KMT2A fusions, 20 KMT2A-PTDs and 6 cases with no KMT2A anomaly. Results: In all the fusion cases, the rearrangement between 5'KMT2A and the 3'partner gene was identified as a translocation t(v;11q23.3)(v;118479068), and the analysis of co-occurring variants elucidated the formation of the rearrangement. The KMT2A variants detected in the KMT2A-PTD cases were surprisingly diverse. Combined with RNAseq data, OGM analysis identified 9 distinct in-frame KMT2A-PTD variants among the 20 cases analyzed. Conclusions: With the clinical development of menin inhibitors for the treatment of patients with KMT2A-rearranged acute leukemias, the characterization of these rearrangements is of utmost importance. Our results suggest that OGM is a promising tool for accurate genetic diagnosis in this context.
Collapse
Affiliation(s)
- Sandrine A. Lacoste
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Vanessa Gagnon
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - François Béliveau
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Sylvie Lavallée
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Vanessa Collin
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
| | - Josée Hébert
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
- Division of Hematology-Oncology and Cellular Therapy, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Ghabrial J, Stinnett V, Ribeiro E, Klausner M, Morsberger L, Long P, Middlezong W, Xian R, Gocke C, Lin MT, Rooper L, Baraban E, Argani P, Pallavajjala A, Murry JB, Gross JM, Zou YS. Diagnostic and Prognostic/Therapeutic Significance of Comprehensive Analysis of Bone and Soft Tissue Tumors Using Optical Genome Mapping and Next-Generation Sequencing. Mod Pathol 2024; 38:100684. [PMID: 39675429 DOI: 10.1016/j.modpat.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Detecting somatic structural variants (SVs), copy number variants (CNVs), and mutations in bone and soft tissue tumors is essential for accurately diagnosing, treating, and prognosticating outcomes. Optical genome mapping (OGM) holds promise to yield useful data on SVs and CNVs but requires fresh or snap-frozen tissues. This study aimed to evaluate the clinical utility of data from OGM compared with current standard-of-care cytogenetic testing. We evaluated 60 consecutive specimens from bone and soft tissue tumors using OGM and karyotyping, fluorescence in situ hybridization, gene fusion assays, and deep next-generation sequencing. OGM accurately identified diagnostic SVs/CNVs previously detected by karyotyping and fluorescence in situ hybridization (specificity = 100%). OGM identified diagnostic and pathogenic SVs/CNVs (∼23% of cases) undetected by karyotyping (cryptic/submicroscopic). OGM allowed the detection and further characterization of complex structural rearrangements including chromoanagenesis (27% of cases) and complex 3- to 6-way translocations (15% of cases). In addition to identifying 321 SVs and CNVs among cases with chromoanagenesis events, OGM identified approximately 9 SVs and 12 CNVs per sample. A combination of OGM and deep next-generation sequencing data identified diagnostic, disease-associated, and pathogenic SVs, CNVs, and mutations in ∼98% of the cases. Our cohort contained the most extensive collection of bone and soft tissue tumors profiled by OGM. OGM had excellent concordance with standard-of-care cytogenetic testing, detecting and assigning high-resolution genome-wide genomic abnormalities with higher sensitivity than routine testing. This is the first and largest study to provide insights into the clinical utility of combined OGM and deep sequencing for the pathologic diagnosis and potential prognostication of bone and soft tissue tumors in routine clinical practice.
Collapse
Affiliation(s)
- Jen Ghabrial
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Stinnett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Efrain Ribeiro
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melanie Klausner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patty Long
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Middlezong
- Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaclyn B Murry
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ying S Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Aakash F, Gisriel SD, Zeidan AM, Bennett JM, Bejar R, Bewersdorf JP, Borate UM, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, DeZern AE, Efficace F, Fenaux P, Figueroa ME, Garcia-Manero G, Gore SD, Greenberg PL, Griffiths EA, Halene S, Hourigan CS, Kim TK, Kim N, Komrokji RS, Kutchroo VK, List AF, Little RF, Majeti R, Nazha A, Nimer SD, Odenike O, Padron E, Patnaik MM, Platzbecker U, Della Porta MG, Roboz GJ, Sallman DA, Santini V, Sanz G, Savona MR, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Wei AH, Xie Z, Xu ML, Hasserjian RP, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes-Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Mod Pathol 2024; 37:100615. [PMID: 39322118 DOI: 10.1016/j.modpat.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, 2 classification systems (the 5th edition of the World Health Organization Classification of Haematolymphoid tTumours and the International Consensus Classification) further subcharacterized MDS into morphologically and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.
Collapse
Affiliation(s)
- Fnu Aakash
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Savanah D Gisriel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - John M Bennett
- James P. Wilmot Cancer Center, Division of Hematopathology, University of Rochester Medical Center, Rochester, New York
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, California
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Uma M Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew M Brunner
- Division of Hematology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Rena Buckstein
- Division of Medical Oncology/Hematology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jane E Churpek
- Division of Haematology, Oncology, and Palliative Care, Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Naval G Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Fabio Efficace
- Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA), Rome, Italy
| | - Pierre Fenaux
- Service d'hématologie, Hôpital Saint-Louis (Assistance Publique Hôpitaux de Paris), Université de Paris-Cité, Paris, France
| | - Maria E Figueroa
- Biochemistry & Molecular Biology, Sylvester Comprehensive Cancer Center. University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven D Gore
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Peter L Greenberg
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, District of Columbia
| | - Tae Kon Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Rami S Komrokji
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Alan F List
- Chief Scientific Officer, Stelexis Therapeutics, New York, New York
| | - Richard F Little
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Aziz Nazha
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen D Nimer
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Olatoyosi Odenike
- Leukemia Program, Section of Hematology/Oncology, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Uwe Platzbecker
- Department of Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gail J Roboz
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mikkael A Sekeres
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Maximilian Stahl
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew H Wei
- Department of Haematology, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, Australia
| | - Zhuoer Xie
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Zhang L, Abro B, Campbell A, Ding Y. TP53 mutations in myeloid neoplasms: implications for accurate laboratory detection, diagnosis, and treatment. Lab Med 2024; 55:686-699. [PMID: 39001691 PMCID: PMC11532620 DOI: 10.1093/labmed/lmae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Genetic alterations that affect the function of p53 tumor suppressor have been extensively investigated in myeloid neoplasms, revealing their significant impact on disease progression, treatment response, and patient outcomes. The identification and characterization of TP53 mutations play pivotal roles in subclassifying myeloid neoplasms and guiding treatment decisions. Starting with the presentation of a typical case, this review highlights the complicated nature of genetic alterations involving TP53 and provides a comprehensive analysis of TP53 mutations and other alterations in myeloid neoplasms. Currently available methods used in clinical laboratories to identify TP53 mutations are discussed, focusing on the importance of establishing a robust testing protocol within clinical laboratories to ensure the delivery of accurate and reliable results. The treatment implications of TP53 mutations in myeloid neoplasms and clinical trial options are reviewed. Ultimately, we hope that this review provides valuable insights into the patterns of TP53 alterations in myeloid neoplasms and offers guidance to establish practical laboratory testing protocols to support the best practices of precision oncology.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, US
| | - Brooj Abro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, US
| | - Andrew Campbell
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, PA, US
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, PA, US
| |
Collapse
|
7
|
Lu S, Liu K, Wang D, Ye Y, Jiang Z, Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci 2024; 115:3543-3551. [PMID: 39180374 PMCID: PMC11531954 DOI: 10.1111/cas.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanChina
| | - Di Wang
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Yuan Ye
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhiping Jiang
- Department of Hematology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Hematology Oncology Clinical Medical Research CenterChangshaHunanChina
| | - Yunhua Gao
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| |
Collapse
|
8
|
Tang Z, Wang W, Toruner GA, Hu S, Fang H, Xu J, You MJ, Medeiros LJ, Khoury JD, Tang G. Optical Genome Mapping for Detection of BCR::ABL1-Another Tool in Our Toolbox. Genes (Basel) 2024; 15:1357. [PMID: 39596557 PMCID: PMC11593946 DOI: 10.3390/genes15111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:BCR::ABL1 fusion is mostly derived from a reciprocal translocation t(9;22)(q34.1;q11.2) and is rarely caused by insertion. Various methods have been used for the detection of t(9;22)/BCR::ABL1, such as G-banded chromosomal analysis, fluorescence in situ hybridization (FISH), quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and optical genome mapping (OGM). Understanding the strengths and limitations of each method is essential for the selection of appropriate method(s) of disease diagnosis and/or during the follow-up. Methods: We compared the results of OGM, chromosomal analysis, FISH, and/or RT-PCR in 12 cases with BCR::ABL1. Results:BCR:ABL1 was detected by FISH and RT-PCR in all 12 cases. One case with ins(22;9)/BCR::ABL1 was cryptic by chromosomal analysis and nearly missed by OGM. Atypical FISH signal patterns were observed in five cases, suggesting additional chromosomal aberrations involving chromosomes 9 and/or 22. RT-PCR identified the transcript isoforms p210 and p190 in seven and five cases, respectively. Chromosomal analysis revealed additional chromosomal aberrations in seven cases. OGM identified extra cytogenomic abnormalities in 10 cases, including chromoanagenesis and IKZF1 deletion, which were only detected by OGM. Conclusions: FISH offers rapid and definitive detection of BCR::ABL1 fusion, while OGM provides a comprehensive cytogenomic analysis. In scenarios where OGM is feasible, chromosomal analysis and RT-PCR may not offer additional diagnostic value.
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| |
Collapse
|
9
|
Loghavi S, Wei Q, Ravandi F, Quesada AE, Routbort MJ, Hu S, Toruner GA, Wang SA, Wang W, Miranda RN, Li S, Xu J, DiNardo CD, Daver N, Kadia TM, Issa GC, Kantarjian HM, Medeiros LJ, Tang G. Optical genome mapping improves the accuracy of classification, risk stratification, and personalized treatment strategies for patients with acute myeloid leukemia. Am J Hematol 2024; 99:1959-1968. [PMID: 39016111 DOI: 10.1002/ajh.27435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Cytogenomic characterization is crucial for the classification and risk stratification of acute myeloid leukemia (AML), thereby facilitating therapeutic decision-making. We examined the clinical utility of optical genome mapping (OGM) in 159 AML patients (103 newly diagnosed and 56 refractory/relapsed), all of whom also underwent chromosomal banding analysis (CBA), fluorescence in situ hybridization, and targeted next-generation sequencing. OGM detected nearly all clinically relevant cytogenetic abnormalities that SCG identified with >99% sensitivity, provided the clonal burden was above 20%. OGM identified additional cytogenomic aberrations and/or provided information on fusion genes in 77 (48%) patients, including eight patients with normal karyotypes and four with failed karyotyping. The most common additional alterations identified by OGM included chromoanagenesis (n = 23), KMT2A partial tandem duplication (n = 11), rearrangements involving MECOM (n = 7), NUP98 (n = 2), KMT2A (n = 2), JAK2 (n = 2), and other gene fusions in 17 patients, with 10 showing novel fusion gene partners. OGM also pinpointed fusion genes in 17 (11%) patients where chromosomal rearrangements were concurrently detected by OGM and CBA. Overall, 24 (15%) aberrations were identified exclusively by OGM and had the potential to alter AML classification, risk stratification, and/or clinical trial eligibility. OGM emerges as a powerful tool for identifying fusion genes and detecting subtle or cryptic cytogenomic aberrations that may otherwise remain undetectable by CBA.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Wei
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Xiao B, Luo X, Liu Y, Ye H, Liu H, Fan Y, Yu Y. Combining optical genome mapping and RNA-seq for structural variants detection and interpretation in unsolved neurodevelopmental disorders. Genome Med 2024; 16:113. [PMID: 39300495 DOI: 10.1186/s13073-024-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). METHODS This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. RESULTS OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases-two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5'UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5' and 3' non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. CONCLUSIONS SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yi Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Hui Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Lestringant V, Guermouche-Flament H, Jimenez-Pocquet M, Gaillard JB, Penther D. Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization. Curr Res Transl Med 2024; 72:103440. [PMID: 38447270 DOI: 10.1016/j.retram.2024.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Genomic characterization is an essential part of the clinical management of hematological malignancies for diagnostic, prognostic and therapeutic purposes. Although CBA and FISH are still the gold standard in hematology for the detection of CNA and SV, some alternative technologies are intended to complement their deficiencies or even replace them in the more or less near future. In this article, we provide a technological overview of these alternatives. CMA is the historical and well established technique for the high-resolution detection of CNA. For SV detection, there are emerging techniques based on the study of chromatin conformation and more established ones such as RTMLPA for the detection of fusion transcripts and RNA-seq to reveal the molecular consequences of SV. Comprehensive techniques that detect both CNA and SV are the most interesting because they provide all the information in a single examination. Among these, OGM is a promising emerging higher-solution technique that offers a complete solution at a contained cost, at the expense of a relatively low throughput per machine. WGS remains the most adaptable solution, with long-read approaches enabling very high-resolution detection of CAs, but requiring a heavy bioinformatics installation and at a still high cost. However, the development of high-resolution genome-wide detection techniques for CAs allows for a much better description of chromoanagenesis. Therefore, we have included in this review an update on the various existing mechanisms and their consequences and implications, especially prognostic, in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
12
|
Shim Y, Koo YK, Shin S, Lee ST, Lee KA, Choi JR. Comparison of Optical Genome Mapping With Conventional Diagnostic Methods for Structural Variant Detection in Hematologic Malignancies. Ann Lab Med 2024; 44:324-334. [PMID: 38433573 PMCID: PMC10961627 DOI: 10.3343/alm.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Background Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.
Collapse
Affiliation(s)
- Yeeun Shim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- MDxK (Molecular Diagnostics Korea), Inc., Gwacheon, Korea
| | - Yu-Kyung Koo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Dxome Co., Ltd., Seongnam, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Dxome Co., Ltd., Seongnam, Korea
| |
Collapse
|
13
|
Vormittag-Nocito E, Sukhanova M, Godley LA. The impact of next-generation sequencing for diagnosis and disease understanding of myeloid malignancies. Expert Rev Mol Diagn 2024; 24:591-600. [PMID: 39054632 DOI: 10.1080/14737159.2024.2383445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care. AREAS COVERED In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays. The authors explain why distinguishing somatic from germline alleles is critical for optimal management. Finally, they introduce emerging technologies, such as long-read, whole exome/genome, and single-cell sequencing, which are reserved for research purposes currently but will become clinical tests soon. EXPERT OPINION The authors describe challenges to the adoption of comprehensive genomic tests for those in resource-constrained environments and for inclusion into clinical trials. In the future, all aspects of patient care will likely be influenced by the adaptation of artificial intelligence and mathematical modeling, fueled by rapid advances in telecommunications.
Collapse
Affiliation(s)
- Erica Vormittag-Nocito
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madina Sukhanova
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Zou YS, Klausner M, Ghabrial J, Stinnett V, Long P, Morsberger L, Murry JB, Beierl K, Gocke CD, Xian RR, Toomer KH, Ye JC, Orlowski RZ, Huff CA, Ali SA, Imus PH, Gocke CB, Tang G. A comprehensive approach to evaluate genetic abnormalities in multiple myeloma using optical genome mapping. Blood Cancer J 2024; 14:78. [PMID: 38702349 PMCID: PMC11068911 DOI: 10.1038/s41408-024-01059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Affiliation(s)
- Ying S Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Melanie Klausner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jen Ghabrial
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria Stinnett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patty Long
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaclyn B Murry
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katie Beierl
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rena R Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin H Toomer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Christine Ye
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Carol Ann Huff
- Department of Oncology, The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Syed Abbas Ali
- Department of Oncology, The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip H Imus
- Department of Oncology, The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian B Gocke
- Department of Oncology, The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Iriondo J, Gómez A, Zubicaray J, Garcia-Martinez J, Abad L, Matesanz C, Giménez R, Galán A, Sanz A, Sebastián E, González de Pablo J, de la Cruz A, Ramírez M, Sevilla J. Optical Genome Mapping as a New Tool to Overcome Conventional Cytogenetics Limitations in Patients with Bone Marrow Failure. Genes (Basel) 2024; 15:559. [PMID: 38790188 PMCID: PMC11121707 DOI: 10.3390/genes15050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.
Collapse
Affiliation(s)
- June Iriondo
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Ana Gómez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Josune Zubicaray
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Jorge Garcia-Martinez
- Pediatric Onco-Hematology Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- Health Research Institute at Hospital de La Princesa (IIS-Princesa), 28006 Madrid, Spain
| | - Lorea Abad
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Carmen Matesanz
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Reyes Giménez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Almudena Galán
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Alejandro Sanz
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Elena Sebastián
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Jesús González de Pablo
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Ana de la Cruz
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Manuel Ramírez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
- Pediatric Onco-Hematology Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- Health Research Institute at Hospital de La Princesa (IIS-Princesa), 28006 Madrid, Spain
| | - Julián Sevilla
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| |
Collapse
|
17
|
Zhang L, Deeb G, Deeb KK, Vale C, Peker Barclift D, Papadantonakis N. Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers (Basel) 2024; 16:1503. [PMID: 38672585 PMCID: PMC11048433 DOI: 10.3390/cancers16081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic Neoplasms (MDS) have been traditionally studied through the assessment of blood counts, cytogenetics, and morphology. In recent years, the introduction of molecular assays has improved our ability to diagnose MDS. The role of Measurable (minimal) Residual Disease (MRD) in MDS is evolving, and molecular and flow cytometry techniques have been used in several studies. In this review, we will highlight the evolving concept of MRD in MDS, outline the various techniques utilized, and provide an overview of the studies reporting MRD and the correlation with outcomes.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin K. Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin Vale
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Levy B, Kanagal-Shamanna R, Sahajpal NS, Neveling K, Rack K, Dewaele B, Olde Weghuis D, Stevens-Kroef M, Puiggros A, Mallo M, Clifford B, Mantere T, Hoischen A, Espinet B, Kolhe R, Solé F, Raca G, Smith AC. A framework for the clinical implementation of optical genome mapping in hematologic malignancies. Am J Hematol 2024; 99:642-661. [PMID: 38164980 DOI: 10.1002/ajh.27175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Olde Weghuis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Mallo
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Francesc Solé
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Quesada AE, Hu S, Li S, Toruner GA, Wei Q, Loghavi S, Ok CY, Jain P, Thakral B, Nwogbo OV, Kim D, Iyer SP, You MJ, Medeiros LJ, Tang G. Optical genomic mapping is a helpful tool for detecting CCND1 rearrangements in CD5-negative small B-cell lymphoma: Two cases of leukemic non-nodal mantle cell lymphoma. Hum Pathol 2024; 144:71-76. [PMID: 38301962 DOI: 10.1016/j.humpath.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Optical genome mapping (OGM) is a new DNA-based technology which provides comprehensive examination of the entire genome. We report two patients who presented with splenomegaly and leukocytosis with lymphocytosis including villous lymphocytes. Neither patient had lymphadenopathy. Bone marrow evaluation showed involvement by small B-cell lymphoma in a sinusoidal and interstitial distribution, and immunophenotypic analysis showed that the neoplastic cells were positive for B-cell markers and cyclin D1 but were negative for SOX11 and CD5. Initially, the clinicopathologic features in both patients were thought to be suspicious for hairy cell leukemia variant or splenic marginal zone lymphoma. However, OGM detected CCND1 rearrangement: t(2;11)/IGK::CCND1 in one case and t(11;14)/IGH::CCND1 in the other case. These cases illustrate the valuable role OGM can play in establishing the diagnosis of MCL. Case 1 also contributes to the paucity of literature on the rare occurrence of IGK::CCND1 in MCL.
Collapse
Affiliation(s)
- Andres E Quesada
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Shimin Hu
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qing Wei
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - O Valentine Nwogbo
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Do Kim
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Finlay D, Murad R, Hong K, Lee J, Pang AWC, Lai CY, Clifford B, Burian C, Mason J, Hastie AR, Yin J, Vuori K. Detection of Genomic Structural Variations Associated with Drug Sensitivity and Resistance in Acute Leukemia. Cancers (Basel) 2024; 16:418. [PMID: 38254907 PMCID: PMC10814465 DOI: 10.3390/cancers16020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Acute leukemia is a particularly problematic collection of hematological cancers, and, while somewhat rare, the survival rate of patients is typically abysmal without bone marrow transplantation. Furthermore, traditional chemotherapies used as standard-of-care for patients cause significant side effects. Understanding the evolution of leukemia to identify novel targets and, therefore, drug treatment regimens is a significant medical need. Genomic rearrangements and other structural variations (SVs) have long been known to be causative and pathogenic in multiple types of cancer, including leukemia. These SVs may be involved in cancer initiation, progression, clonal evolution, and drug resistance, and a better understanding of SVs from individual patients may help guide therapeutic options. Here, we show the utilization of optical genome mapping (OGM) to detect known and novel SVs in the samples of patients with leukemia. Importantly, this technology provides an unprecedented level of granularity and quantitation unavailable to other current techniques and allows for the unbiased detection of novel SVs, which may be relevant to disease pathogenesis and/or drug resistance. Coupled with the chemosensitivities of these samples to FDA-approved oncology drugs, we show how an impartial integrative analysis of these diverse datasets can be used to associate the detected genomic rearrangements with multiple drug sensitivity profiles. Indeed, an insertion in the gene MUSK is shown to be associated with increased sensitivity to the clinically relevant agent Idarubicin, while partial tandem duplication events in the KMT2A gene are related to the efficacy of another frontline treatment, Cytarabine.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Rabi Murad
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Karl Hong
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | - Joyce Lee
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | - Chi-Yu Lai
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | | | - James Mason
- Scripps MD Anderson, La Jolla, CA 92037, USA
| | | | - Jun Yin
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| |
Collapse
|
23
|
Paulraj P, Barrie E, Jackson‐Cook C. Optical genome mapping reveals balanced and unbalanced genetic changes associated with tumor-forming potential in an early-stage prostate cancer epithelial subline (M2205). Mol Genet Genomic Med 2024; 12:e2307. [PMID: 37902189 PMCID: PMC10767587 DOI: 10.1002/mgg3.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Identifying cytogenetic changes in tumors can aid in diagnosis/prognosis and disease management. Complete cytogenetic characterization has historically required a multimethod/time-consuming approach. Optical genome mapping (OGM) offers a potential solution to this challenge by detecting both balanced and unbalanced abnormalities in a single assay. METHODS Genetic changes acquired with tumor-forming potential in a prostate xenograft subline [M2205] (derived from a Black male) that were detected using cytogenetic versus OGM analyses were compared to assess the utility of OGM for analyzing solid tumors. RESULTS Cytogenetic/OGM concordance was noted for (a) copy number gains (16, 1p, 3q, 5q, 7p, 8q, 9q, 11p, 11q, 15q, 20q), (b) copy number losses (Y, 3p, 4p, 6p, 7p, 9p, 11q), and (c) structural changes, including multibreak rearrangements. Discordance was noted for two structural findings, both of which had breakpoints localized to repetitive sequences. The OGM studies identified new findings and confirmed/further characterized 8q24 structural abnormalities. It also detected genes gained/disrupted in the 8q24 region (e.g., MYC, DEPTOR, and EXT1); but recognizing a jumping translocation required cytogenetic analyses. CONCLUSION These results support using OGM as a tool to analyze solid tumors in clinical/research settings. Moreover, this OGM analysis expanded the characterization of cytogenetic changes present in the M2205 subline, including alterations associated with tumors from Black males diagnosed with prostate cancer.
Collapse
Affiliation(s)
- Prabakaran Paulraj
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- NeogenomicsPhoenixArizonaUSA
| | - Elizabeth Barrie
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Colleen Jackson‐Cook
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Human & Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
24
|
Ye JC, Tang G. Optical Genome Mapping: A Machine-Based Platform in Cytogenomics. Methods Mol Biol 2024; 2825:113-124. [PMID: 38913305 DOI: 10.1007/978-1-0716-3946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Pang AWC, Kosco K, Sahajpal NS, Sridhar A, Hauenstein J, Clifford B, Estabrook J, Chitsazan AD, Sahoo T, Iqbal A, Kolhe R, Raca G, Hastie AR, Chaubey A. Analytic Validation of Optical Genome Mapping in Hematological Malignancies. Biomedicines 2023; 11:3263. [PMID: 38137484 PMCID: PMC10741484 DOI: 10.3390/biomedicines11123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.
Collapse
Affiliation(s)
| | | | - Nikhil S. Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | - Anwar Iqbal
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (A.W.C.P.)
- Bionano Laboratories, San Diego, CA 92121, USA
| | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (A.W.C.P.)
- Bionano Laboratories, San Diego, CA 92121, USA
| |
Collapse
|
26
|
Vanjari N, Tang G, Toruner GA, Wang W, Thakral B, Zhao M, Dave BJ, Khoury JD, Medeiros LJ, Tang Z. Optical Genome Mapping Helps to Identify BCR::JAK2 Rearrangement Arising from Cryptic Complex Chromosomal Aberrations: A Case Report and Literature Review. Genes (Basel) 2023; 14:2188. [PMID: 38137010 PMCID: PMC10742890 DOI: 10.3390/genes14122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
We report a case of myeloproliferative neoplasm, not otherwise specified (MPN-NOS)-transformed AML with BCR::JAK2 rearrangement. Chromosomal analysis indicated a simple abnormal karyotype 46,XY,t(7;17)(q21;q24),t(9;22)(p24;q11.2). Fluorescence in situ hybridization (FISH) using a BCR/ABL1/ASS1 probe set suggested a possible BCR rearrangement and a reflex JAK2 breakapart probe indicated JAK2 rearrangement, most likely partnered with BCR. Optical genome mapping (OGM) analysis confirmed BCR::JAK2 derived through an inv(9)(p24p13) after a t(9;22)(p13;q11.2) in this case. Due to the complexity of chromosomal aberrations, disruption and/or rearrangement of other genes such as KIF24::BCR, JAK2::KIF24/UBAP1, and CDK6:SOX9 were also identified by OGM. Although the functionality and clinical importance of these novel rearrangements were unknown, disruption of these genes might be associated with a poorer response to chemotherapy and disease progression. We also reviewed all cases with BCR::JAK2 rearrangement reported in the literature. In conclusion, a suspected t(9;22)/BCR::JAK2 rearrangement warrants further characterization with genomic assays such as OGM, whole chromosome sequencing, and RNA sequencing to explore other gene disruptions and/or rearrangements.
Collapse
Affiliation(s)
- Neelam Vanjari
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA; (N.V.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
| | - Ming Zhao
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA; (N.V.)
| | - Bhavana J. Dave
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA (B.T.); (L.J.M.)
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Rengifo LY, Smits S, Boeckx N, Michaux L, Vandenberghe P, Dewaele B. Shallow whole-genome sequencing of bone marrow aspirates in myelodysplastic neoplasms: A retrospective comparison with cytogenetics. Genes Chromosomes Cancer 2023; 62:663-671. [PMID: 37293982 DOI: 10.1002/gcc.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Copy number alterations (CNA) are powerful prognostic markers in myelodysplastic neoplasms (MDS) and are routinely analyzed by conventional cytogenetic analysis (CCA) on bone marrow (BM). Although CCA is still the gold standard, it requires extensive hands-on time and highly trained staff for the analysis, making it a laborious technique. To reduce turn-around-time per case, shallow whole genome sequencing (sWGS) technologies offer new perspectives for the diagnostic work-up of this disorder. We compared sWGS with CCA for the detection of CNAs in 33 retrospective BM samples of patients with MDS. Using sWGS, CNAs were detected in all cases and additionally allowed the analysis of three cases for which CCA failed. The prognostic stratification (IPSS-R score) of 27 out of 30 patients was the same with both techniques. In the remaining cases, discrepancies were caused by the presence of balanced translocations escaping sWGS detection in two cases, a subclonal aberration reported with CCA that could not be confirmed by FISH or sWGS, and the presence of an isodicentric chromosome idic(17)(p11) missed by CCA. Since sWGS can almost entirely be automated, our findings indicate that sWGS is valuable in a routine setting validating it as a cost-efficient tool.
Collapse
Affiliation(s)
| | - Sanne Smits
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Gurney M, Greipp PT, Gliem T, Knudson R, Al-Kali A, Gangat N, Lasho T, Mangaonkar AA, Finke CM, Patnaik MM. TET2 somatic copy number alterations and allelic imbalances in chronic myelomonocytic leukemia. Leuk Res 2023; 134:107391. [PMID: 37769597 DOI: 10.1016/j.leukres.2023.107391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Mark Gurney
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA; Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Troy Gliem
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Ryan Knudson
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Terra Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
29
|
Wagner-Ballon O, Kosmider O. [MDS & CMML: Diagnostic and classification]. Bull Cancer 2023; 110:1106-1115. [PMID: 37453834 DOI: 10.1016/j.bulcan.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 07/18/2023]
Abstract
In 2023, a diagnosis process of myelodysplastic syndrome (MDS) or chronic myelomonocytic leukemia (CMML) is mainly based on morphological results obtained on bone marrow and blood smears which could be completed by cytogenetical analyses. Due to recent finding, flow cytometry data are recognized as useful for the diagnosis of CMML especially. Actual classifications and prognostic scoring systems have changed and nowadays include results of high-throughput sequencing approaches in addition to cytogenetical results. All together, these data allow the medical world to correctly evaluate the prognosis of these patients and to provide some information for targeted therapies. This chapter will provide the most important modifications recently published in the field of diagnosis and prognosis of MDS and CMML.
Collapse
Affiliation(s)
- Orianne Wagner-Ballon
- Université Paris Est Créteil, Inserm, IMRB, 94010 Créteil, France; AP-HP, hôpital Henri-Mondor, département d'hématologie et immunologie, 94010 Créteil, France
| | | |
Collapse
|
30
|
Auger N, Douet-Guilbert N, Quessada J, Theisen O, Lafage-Pochitaloff M, Troadec MB. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr Res Transl Med 2023; 71:103409. [PMID: 38091642 DOI: 10.1016/j.retram.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/26/2023]
Abstract
Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.
Collapse
Affiliation(s)
- Nathalie Auger
- Gustave Roussy, Génétique des tumeurs, 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, CHU Timone Aix Marseille University, Marseille, France
| | - Olivier Theisen
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France.
| |
Collapse
|
31
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Garcia-Manero G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:1307-1325. [PMID: 37288607 DOI: 10.1002/ajh.26984] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
DISEASE OVERVIEW The myelodysplastic syndromes (MDS) are a very heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and increased risk of transformation to acute myelogenous leukemia (AML). MDS occurs more frequently in older males and in individuals with prior exposure to cytotoxic therapy. DIAGNOSIS Diagnosis of MDS is based on morphological evidence of dysplasia upon visual examination of a bone marrow aspirate and biopsy. Information obtained from additional studies such as karyotype, flow cytometry, and molecular genetics is usually complementary and may help refine diagnosis. A new WHO classification of MDS was proposed in 2022. Under this classification, MDS is now termed myelodysplastic neoplasms. RISK-STRATIFICATION Prognosis of patients with MDS can be calculated using a number of scoring systems. All these scoring systems include analysis of peripheral cytopenias, percentage of blasts in the bone marrow, and cytogenetic characteristics. The most commonly accepted system is the Revised International Prognostic Scoring System (IPSS-R). Recently, genomic data has been incorporated resulting in the new IPSS-M classification. RISK-ADAPTED THERAPY Therapy is selected based on risk, transfusion needs, percent of bone marrow blasts, cytogenetic and mutational profiles, comorbidities, potential for allogeneic stem cell transplantation (alloSCT), and prior exposure to hypomethylating agents (HMA). Goals of therapy are different in lower risk patients than in higher risk and in those with HMA failure. In lower risk, the goal is to decrease transfusion needs and transformation to higher risk disease or AML, as well as to improve survival. In higher risk, the goal is to prolong survival. In 2020, two agents were approved in the US for patients with MDS: luspatercept and oral decitabine/cedazuridine. In addition, currently other available therapies include growth factors, lenalidomide, HMAs, intensive chemotherapy, and alloSCT. A number of phase 3 combinations studies have been completed or are ongoing at the time of this report. At the present time there are no approved interventions for patients with progressive or refractory disease particularly after HMA based therapy. In 2021, several reports indicated improved outcomes with alloSCT in MDS as well as early results from clinical trials using targeted intervention.
Collapse
Affiliation(s)
- Guillermo Garcia-Manero
- Section of MDS, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
33
|
Brandes D, Yasin L, Nebral K, Ebler J, Schinnerl D, Picard D, Bergmann AK, Alam J, Köhrer S, Haas OA, Attarbaschi A, Marschall T, Stanulla M, Borkhardt A, Brozou T, Fischer U, Wagener R. Optical Genome Mapping Identifies Novel Recurrent Structural Alterations in Childhood ETV6::RUNX1+ and High Hyperdiploid Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e925. [PMID: 37469802 PMCID: PMC10353714 DOI: 10.1097/hs9.0000000000000925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.
Collapse
Affiliation(s)
- Danielle Brandes
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- Dusseldorf School of Oncology (DSO), Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
| | - Layal Yasin
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Karin Nebral
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Dagmar Schinnerl
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Daniel Picard
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Anke K. Bergmann
- Institute of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jubayer Alam
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Stefan Köhrer
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A. Haas
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Andishe Attarbaschi
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Arndt Borkhardt
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Triantafyllia Brozou
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Ute Fischer
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Rabea Wagener
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| |
Collapse
|
34
|
Marks JA, Wang X, Fenu EM, Bagg A, Lai C. TP53 in AML and MDS: The new (old) kid on the block. Blood Rev 2023; 60:101055. [PMID: 36841672 DOI: 10.1016/j.blre.2023.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
MDS and AML are clonal hematopoietic stem cell disorders of increasing incidence, having a variable prognosis based, among others, on co-occurring molecular abnormalities. TP53 mutations are frequently detected in these myeloid neoplasms and portend a poor prognosis with known therapeutic resistance. This article provides a timely review of the complexity of TP53 alterations, providing updates in diagnosis and prognosis based on new 2022 International Consensus Classification (ICC) and World Health Organization (WHO) guidelines. The article addresses optimal testing strategies and reviews current and arising therapeutic approaches. While the treatment landscape for this molecular subgroup is under active development, further exploration is needed to optimize the care of this group of patients with unmet needs.
Collapse
Affiliation(s)
- Jennifer A Marks
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA.
| | - Xin Wang
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA; Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Elena M Fenu
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Catherine Lai
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Sahajpal NS, Mondal AK, Singh H, Vashisht A, Ananth S, Saul D, Hastie AR, Hilton B, DuPont BR, Savage NM, Kota V, Chaubey A, Cortes JE, Kolhe R. Clinical Utility of Optical Genome Mapping and 523-Gene Next Generation Sequencing Panel for Comprehensive Evaluation of Myeloid Cancers. Cancers (Basel) 2023; 15:3214. [PMID: 37370824 DOI: 10.3390/cancers15123214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The standard-of-care (SOC) for genomic testing of myeloid cancers primarily relies on karyotyping/fluorescent in situ hybridization (FISH) (cytogenetic analysis) and targeted gene panels (usually ≤54 genes) that harbor hotspot pathogenic variants (molecular genetic analysis). Despite this combinatorial approach, ~50% of myeloid cancer genomes remain cytogenetically normal, and the limited sequencing variant profiles obtained from targeted panels are unable to resolve the molecular etiology of many myeloid tumors. In this study, we evaluated the performance and clinical utility of combinatorial use of optical genome mapping (OGM) and a 523-gene next-generation sequencing (NGS) panel for comprehensive genomic profiling of 30 myeloid tumors and compared it to SOC cytogenetic methods (karyotyping and FISH) and a 54-gene NGS panel. OGM and the 523-gene NGS panel had an analytical concordance of 100% with karyotyping, FISH, and the 54-gene panel, respectively. Importantly, the IPSS-R cytogenetic risk group changed from very good/good to very poor in 22% of MDS (2/9) cases based on comprehensive profiling (karyotyping, FISH, and 54-gene panel vs. OGM and 523-gene panel), while additionally identifying six compound heterozygous events of potential clinical relevance in six cases (6/30, 20%). This cost-effective approach of using OGM and a 523-gene NGS panel for comprehensive genomic profiling of myeloid cancers demonstrated increased yield of actionable targets that can potentially result in improved clinical outcomes.
Collapse
Affiliation(s)
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sudha Ananth
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Daniel Saul
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | | | | | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vamsi Kota
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Jorge E Cortes
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
36
|
Díaz-González Á, Mora E, Avetisyan G, Furió S, De la Puerta R, Gil JV, Liquori A, Villamón E, García-Hernández C, Santiago M, García-Ruiz C, Llop M, Ferrer-Lores B, Barragán E, García-Palomares S, Mayordomo E, Luna I, Vicente A, Cordón L, Senent L, Álvarez-Larrán A, Cervera J, De la Rubia J, Hernández-Boluda JC, Such E. Cytogenetic Assessment and Risk Stratification in Myelofibrosis with Optical Genome Mapping. Cancers (Basel) 2023; 15:3039. [PMID: 37297002 PMCID: PMC10252182 DOI: 10.3390/cancers15113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Cytogenetic assessment in myelofibrosis is essential for risk stratification and patient management. However, an informative karyotype is unavailable in a significant proportion of patients. Optical genome mapping (OGM) is a promising technique that allows for a high-resolution assessment of chromosomal aberrations (structural variants, copy number variants, and loss of heterozygosity) in a single workflow. In this study, peripheral blood samples from a series of 21 myelofibrosis patients were analyzed via OGM. We assessed the clinical impact of the application of OGM for disease risk stratification using the DIPSS-plus, GIPSS, and MIPSS70+v2 prognostic scores compared with the standard-of-care approach. OGM, in combination with NGS, allowed for risk classification in all cases, compared to only 52% when conventional techniques were used. Cases with unsuccessful karyotypes (n = 10) using conventional techniques were fully characterized using OGM. In total, 19 additional cryptic aberrations were identified in 9 out of 21 patients (43%). No alterations were found via OGM in 4/21 patients with previously normal karyotypes. OGM upgraded the risk category for three patients with available karyotypes. This is the first study using OGM in myelofibrosis. Our data support that OGM is a valuable tool that can greatly contribute to improve disease risk stratification in myelofibrosis patients.
Collapse
Affiliation(s)
- Álvaro Díaz-González
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
| | - Elvira Mora
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gayane Avetisyan
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
| | - Santiago Furió
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | | | - José Vicente Gil
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Villamón
- Department of Hematology, Hospital Clínico Universitario–INCLIVA, 46010 Valencia, Spain
| | | | - Marta Santiago
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Cristian García-Ruiz
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
| | - Marta Llop
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Blanca Ferrer-Lores
- Department of Hematology, Hospital Clínico Universitario–INCLIVA, 46010 Valencia, Spain
| | - Eva Barragán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Silvia García-Palomares
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
| | - Empar Mayordomo
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Irene Luna
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Ana Vicente
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Lourdes Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Leonor Senent
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - José Cervera
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Javier De la Rubia
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- School of Medicine and Dentistry, Catholic University of Valencia, 46001 Valencia, Spain
| | | | - Esperanza Such
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (Á.D.-G.)
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
37
|
Coccaro N, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Minervini CF, Minervini A, Conserva MR, Redavid I, Parciante E, Macchia MG, Specchia G, Musto P, Albano F. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. Diagnostics (Basel) 2023; 13:diagnostics13111841. [PMID: 37296693 DOI: 10.3390/diagnostics13111841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Giovanna Macchia
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
38
|
Oshikawa G, Sasaki K. Optimizing Treatment Options for Newly Diagnosed Acute Myeloid Leukemia in Older Patients with Comorbidities. Cancers (Basel) 2023; 15:2399. [PMID: 37190327 PMCID: PMC10136601 DOI: 10.3390/cancers15082399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Traditionally, the goal of AML therapy has been to induce remission through intensive chemotherapy, maintain long-term remission using consolidation therapy, and achieve higher rates of a cure by allogeneic transplantation in patients with a poor prognosis. However, for the elderly patients and those with comorbidities, the toxicity often surpasses the therapeutic benefits of intensive chemotherapy. Consequently, low-intensity therapies, such as the combination of a hypomethylating agent with venetoclax, have emerged as promising treatment options for elderly patients. Given the rise of low-intensity therapies as the leading treatment option for the elderly, it is increasingly important to consider patients' age and comorbidities when selecting a treatment option. The recently proposed comorbidity-based risk stratification for AML allows prognosis stratification not only in patients undergoing intensive chemotherapy, but also in those receiving low-intensity chemotherapy. Optimizing treatment intensity based on such risk stratification is anticipated to balance treatment efficacy and safety, and will ultimately improve the life expectancy for patients with AML.
Collapse
Affiliation(s)
- Gaku Oshikawa
- Department of Hematology, Japanese Red Cross Musashino Hospital, 1-26-1 Kyonan-cho Musashino-shi, Tokyo 180-8610, Japan
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA
| |
Collapse
|
39
|
Barone P, Patel S. Myelodysplastic syndrome: Approach to diagnosis in the era of personalized medicine. Semin Diagn Pathol 2023; 40:172-181. [PMID: 37121781 DOI: 10.1053/j.semdp.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Paul Barone
- NewYork-Presbyterian Hospital, Weill Cornell Campus, United States of America.
| | - Sanjay Patel
- Weill Cornell Medicine, United States of America
| |
Collapse
|
40
|
Levy B, Baughn LB, Akkari Y, Chartrand S, LaBarge B, Claxton D, Lennon PA, Cujar C, Kolhe R, Kroeger K, Pitel B, Sahajpal N, Sathanoori M, Vlad G, Zhang L, Fang M, Kanagal-Shamanna R, Broach JR. Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Adv 2023; 7:1297-1307. [PMID: 36417763 PMCID: PMC10119592 DOI: 10.1182/bloodadvances.2022007583] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022] Open
Abstract
Detection of hallmark genomic aberrations in acute myeloid leukemia (AML) is essential for diagnostic subtyping, prognosis, and patient management. However, cytogenetic/cytogenomic techniques used to identify those aberrations, such as karyotyping, fluorescence in situ hybridization (FISH), or chromosomal microarray analysis (CMA), are limited by the need for skilled personnel as well as significant time, cost, and labor. Optical genome mapping (OGM) provides a single, cost-effective assay with a significantly higher resolution than karyotyping and with a comprehensive genome-wide analysis comparable with CMA and the added unique ability to detect balanced structural variants (SVs). Here, we report in a real-world setting the performance of OGM in a cohort of 100 AML cases that were previously characterized by karyotype alone or karyotype and FISH or CMA. OGM identified all clinically relevant SVs and copy number variants (CNVs) reported by these standard cytogenetic methods when representative clones were present in >5% allelic fraction. Importantly, OGM identified clinically relevant information in 13% of cases that had been missed by the routine methods. Three cases reported with normal karyotypes were shown to have cryptic translocations involving gene fusions. In 4% of cases, OGM findings would have altered recommended clinical management, and in an additional 8% of cases, OGM would have rendered the cases potentially eligible for clinical trials. The results from this multi-institutional study indicate that OGM effectively recovers clinically relevant SVs and CNVs found by standard-of-care methods and reveals additional SVs that are not reported. Furthermore, OGM minimizes the need for labor-intensive multiple cytogenetic tests while concomitantly maximizing diagnostic detection through a standardized workflow.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Linda B. Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Yassmine Akkari
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Scott Chartrand
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA
| | - Brandon LaBarge
- Department of Otolaryngology, Penn State College of Medicine, Hershey, PA
| | - David Claxton
- Department of Hematology and Oncology, Department of Medicine, Penn State College of Medicine, Hershey, PA
| | | | - Claudia Cujar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Kate Kroeger
- Cytogenetics Laboratory, Seattle Cancer Care Alliance, Seattle, WA
| | - Beth Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA
| | | | - George Vlad
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA
| | - Min Fang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James R. Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
41
|
Soler G, Ouedraogo ZG, Goumy C, Lebecque B, Aspas Requena G, Ravinet A, Kanold J, Véronèse L, Tchirkov A. Optical Genome Mapping in Routine Cytogenetic Diagnosis of Acute Leukemia. Cancers (Basel) 2023; 15:cancers15072131. [PMID: 37046792 PMCID: PMC10093111 DOI: 10.3390/cancers15072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Cytogenetic aberrations are found in 65% of adults and 75% of children with acute leukemia. Specific aberrations are used as markers for the prognostic stratification of patients. The current standard cytogenetic procedure for acute leukemias is karyotyping in combination with FISH and RT-PCR. Optical genome mapping (OGM) is a new technology providing a precise identification of chromosomal abnormalities in a single approach. In our prospective study, the results obtained using OGM and standard techniques were compared in 29 cases of acute myeloid (AML) or lymphoblastic leukemia (ALL). OGM detected 73% (53/73) of abnormalities identified by standard methods. In AML cases, two single clones and three subclones were missed by OGM, but the assignment of patients to cytogenetic risk groups was concordant in all patients. OGM identified additional abnormalities in six cases, including one cryptic structural variant of clinical interest and two subclones. In B-ALL cases, OGM correctly detected all relevant aberrations and revealed additional potentially targetable alterations. In T-ALL cases, OGM characterized a complex karyotype in one case and identified additional abnormalities in two others. In conclusion, OGM is an attractive alternative to current multiple cytogenetic testing in acute leukemia that simplifies the procedure and reduces costs.
Collapse
Affiliation(s)
- Gwendoline Soler
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
| | - Zangbéwendé Guy Ouedraogo
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | | | - Gaspar Aspas Requena
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Aurélie Ravinet
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Justyna Kanold
- Service d'Hématologie et d'Oncologie Pédiatrique et Unité CRECHE (Centre de REcherche Clinique CHez l'Enfant), CHU Estaing, 63100 Clermont-Ferrand, France
| | - Lauren Véronèse
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Andrei Tchirkov
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
Vieler LM, Nilius-Eliliwi V, Schroers R, Vangala DB, Nguyen HP, Gerding WM. Optical Genome Mapping Reveals and Characterizes Recurrent Aberrations and New Fusion Genes in Adult ALL. Genes (Basel) 2023; 14:genes14030686. [PMID: 36980958 PMCID: PMC10048194 DOI: 10.3390/genes14030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Background: In acute lymphoblastic leukemia (ALL) the genetic characterization remains challenging. Due to the genetic heterogeneity of mutations in adult patients, only a small proportion of aberrations can be analyzed with standard routine diagnostics. Optical genome mapping (OGM) has recently opened up new possibilities for the characterization of structural variants on a genome-wide level, thus enabling simultaneous analysis for a broad spectrum of genetic aberrations. (2) Methods: 11 adult ALL patients were examined using OGM. (3) Results: Genetic results obtained by karyotyping and FISH were confirmed by OGM for all patients. Karyotype was redefined, and additional genetic information was obtained in 82% (9/11) of samples by OGM, previously not diagnosed by standard of care. Besides gross-structural chromosome rearrangements, e.g., ring chromosome 9 and putative isodicentric chromosome 8q, deletions in CDKN2A/2B were detected in 7/11 patients, defining an approx. 20 kb minimum region of overlap, including an alternative exon 1 of the CDKN2A gene. The results further confirm recurrent ALL aberrations (e.g., PAX5, ETV6, VPREB1, IKZF1). (4) Conclusions: Genome-wide OGM analysis enables a broad genetic characterization in adult ALL patients in one single workup compared to standard clinical testing, facilitating a detailed genetic diagnosis, risk-stratification, and target-directed treatment strategies.
Collapse
Affiliation(s)
- Lisa-Marie Vieler
- Department of Human Genetics, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Verena Nilius-Eliliwi
- Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Roland Schroers
- Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Deepak Ben Vangala
- Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
- Correspondence:
| | - Wanda Maria Gerding
- Department of Human Genetics, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
43
|
Optical Genome Mapping for Cytogenetic Diagnostics in AML. Cancers (Basel) 2023; 15:cancers15061684. [PMID: 36980569 PMCID: PMC10046241 DOI: 10.3390/cancers15061684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The classification and risk stratification of acute myeloid leukemia (AML) is based on reliable genetic diagnostics. A broad and expanding variety of relevant aberrations are structural variants beyond single-nucleotide variants. Optical Genome Mapping is an unbiased, genome-wide, amplification-free method for the detection of structural variants. In this review, the current knowledge of Optical Genome Mapping (OGM) with regard to diagnostics in hematological malignancies in general, and AML in specific, is summarized. Furthermore, this review focuses on the ability of OGM to expand the use of cytogenetic diagnostics in AML and perhaps even replace older techniques such as chromosomal-banding analysis, fluorescence in situ hybridization, or copy number variation microarrays. Finally, OGM is compared to amplification-based techniques and a brief outlook for future directions is given.
Collapse
|
44
|
Optical Genome Mapping as an Alternative to FISH-Based Cytogenetic Assessment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:cancers15041294. [PMID: 36831635 PMCID: PMC9953986 DOI: 10.3390/cancers15041294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The fluorescence in situ hybridization (FISH) technique plays an important role in the risk stratification and clinical management of patients with chronic lymphocytic leukemia (CLL). For genome-wide analysis, FISH needs to be complemented with other cytogenetic methods, including karyotyping and/or chromosomal microarrays. However, this is often not feasible in a diagnostic setup. Optical genome mapping (OGM) is a novel technique for high-resolution genome-wide detection of structural variants (SVs), and previous studies have indicated that OGM could serve as a generic cytogenetic tool for hematological malignancies. Herein, we report the results from our study evaluating the concordance of OGM and standard-of-care FISH in 18 CLL samples. The results were fully concordant between these two techniques in the blinded comparison. Using in silico dilution series, the lowest limit of detection with OGM was determined to range between 3 and 9% variant allele fractions. Genome-wide analysis by OGM revealed additional (>1 Mb) aberrations in 78% of the samples, including both unbalanced and balanced SVs. Importantly, OGM also enabled the detection of clinically relevant complex karyotypes, undetectable by FISH, in three samples. Overall, this study demonstrates the potential of OGM as a first-tier cytogenetic test for CLL and as a powerful tool for genome-wide SV analysis.
Collapse
|
45
|
Tang Z, Wang W, Yang S, El Achi H, Fang H, Nahmod KA, Toruner GA, Xu J, Thakral B, Ayoub E, Issa GC, Yin CC, You MJ, Miranda RN, Khoury JD, Medeiros LJ, Tang G. 3q26.2/ MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers (Basel) 2023; 15:458. [PMID: 36672407 PMCID: PMC9856433 DOI: 10.3390/cancers15020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
MECOM rearrangement (MECOM-R) resulting from 3q26.2 aberrations is often associated with myeloid neoplasms and inferior prognosis in affected patients. Uncommonly, certain 3q26.2/MECOM-R can be subtle/cryptic and consequently overlooked by karyotyping. We identified 17 acute myeloid leukemia (AML) patients (male/female: 13/4 with a median age of 67 years, range 42 to 85 years) with a pericentric inv(3) leading to MECOM-R, with breakpoints at 3p23 (n = 11), 3p25 (n = 3), 3p21 (n = 2) and 3p13 (n = 1) on 3p and 3q26.2 on 3q. These pericentric inv(3)s were overlooked by karyotyping initially in 16 of 17 cases and later detected by metaphase FISH analysis. Similar to the patients with classic/paracentric inv(3)(q21q26.2), patients with pericentric inv(3) exhibited frequent cytopenia, morphological dysplasia (especially megakaryocytes), -7/del(7q), frequent NRAS (n = 6), RUNX1 (n = 5) and FLT-3 (n = 4) mutations and dismal outcomes (median overall survival: 14 months). However, patients with pericentric inv(3) more frequently had AML with thrombocytopenia (n = 15, 88%), relative monocytosis in peripheral blood (n = 15, 88%), decreased megakaryocytes (n = 11, 65%), and lower SF3B1 mutation. We conclude that AML with pericentric inv(3) shares some similarities with AML associated with classic/paracentric inv(3)/GATA2::MECOM but also shows certain unique features. Pericentric inv(3)s are often subtle/cryptic by chromosomal analysis. A reflex FISH analysis for MECOM-R is recommended in myeloid neoplasms showing -7/del(7q).
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Su Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hanadi El Achi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Amelia Nahmod
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Vangala DB, Nilius-Eliliwi V, Gerding WM, Schroers R, Nguyen HP. Optical Genome Mapping in MDS and AML as tool for structural variant profiling-comment and data update on Yang et al.: "High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance". Leukemia 2023; 37:248-249. [PMID: 36434063 PMCID: PMC9883160 DOI: 10.1038/s41375-022-01763-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Deepak B Vangala
- Dept. of Medicine, Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus, Ruhr-University, Bochum, Germany.
| | - Verena Nilius-Eliliwi
- Dept. of Medicine, Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus, Ruhr-University, Bochum, Germany
| | | | - Roland Schroers
- Dept. of Medicine, Center for Hemato-Oncological Diseases, University Hospital Knappschaftskrankenhaus, Ruhr-University, Bochum, Germany
| | | |
Collapse
|
47
|
Gao H, Xu H, Wang C, Cui L, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Zhang R, Li Z, Wang T. Optical Genome Mapping for Comprehensive Assessment of Chromosomal Aberrations and Discovery of New Fusion Genes in Pediatric B-Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:35. [PMID: 36612032 PMCID: PMC9817688 DOI: 10.3390/cancers15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the potential added value of Optical Genomic Mapping (OGM) for identifying chromosomal aberrations. METHODS We utilized Optical Genomic Mapping (OGM) to determine chromosomal aberrations in 46 children with B-cell Acute lymphoblastic leukemia ALL (B-ALL) and compared the results of OGM with conventional technologies. Partial detection results were verified by WGS and PCR. RESULTS OGM showed a good concordance with conventional cytogenetic techniques in identifying the reproducible and pathologically significant genomic SVs. Two new fusion genes (LMNB1::PPP2R2B and TMEM272::KDM4B) were identified by OGM and verified by WGS and RT-PCR for the first time. OGM has a greater ability to detect complex chromosomal aberrations, refine complicated karyotypes, and identify more SVs. Several novel fusion genes and single-gene alterations, associated with definite or potential pathologic significance that had not been detected by traditional methods, were also identified. CONCLUSION OGM addresses some of the limitations associated with conventional cytogenomic testing. This all-in-one process allows the detection of most major genomic risk markers in one test, which may have important meanings for the development of leukemia pathogenesis and targeted drugs.
Collapse
Affiliation(s)
- Huixia Gao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chanjuan Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Lei Cui
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaotong Huang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Weijing Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhixia Yue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Shuo Tian
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianlin Xue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianyu Xing
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Jun Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ying Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ruidong Zhang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhigang Li
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Tianyou Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| |
Collapse
|
48
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
49
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
50
|
Xie Z, Chen EC, Stahl M, Zeidan AM. Prognostication in myelodysplastic syndromes (neoplasms): Molecular risk stratification finally coming of age. Blood Rev 2022; 59:101033. [PMID: 36357283 DOI: 10.1016/j.blre.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Accurate risk prognostication is central to the management of myelodysplastic syndromes, given the widely heterogeneous clinical outcomes of these bone marrow failure disorders. Over the past decade, the rapidly expanding compendium of molecular lesions in myelodysplastic syndrome (MDS) has offered unprecedented insight into MDS pathobiology. Recently, molecular prognostic models such as the Molecular International Prognostic Scoring System (IPSS-M) have leveraged the wellspring of genetic data to improve upon traditional risk models such as the Revised IPSS (IPSS-R), but also added substantial complexity. In this review, we highlight early MDS prognostic models, the significant advancements in MDS genomics since then, and the recent advent of molecular based prognostic models. We conclude by discussing important opportunities and challenges in the management of MDS as we arrive at the molecular frontier.
Collapse
|