1
|
Martinsons C, Behar-Cohen F, Bergen T, Blattner P, Herf M, Gronfier C, Houser K, Jost S, Tengelin MN, Obein G, Schlangen L, Simonot L, Spitschan M, Torriglia A, Zeitzer J. Reconsidering the spectral distribution of light: Do people perceive watts or photons? LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2024; 56:886-899. [PMID: 39404668 PMCID: PMC7616565 DOI: 10.1177/14771535241246060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The spectral distribution is a fundamental property of non-monochromatic optical radiation. It is commonly used in research and practical applications when studying how light interacts with matter and living organisms, including humans. In the field of lighting, mis-conceptions about the spectral distribution of light are responsible for unfounded claims, which pervade the scientific and technical communities. Starting from the definition of the spectral distribution, this paper describes the ambiguities and errors associated with a purely graphical analysis of the spectral distribution. It also emphasizes the importance of considering the particle nature of light in research involving both visual and non-visual effects, which implies using the spectral distribution expressed in the photon system of units, a system that has been seldom used in lighting research for historical reasons. The authors encourage lighting engineers and researchers to determine which system is best suited to their work and then proceed with the correct use of spectral distributions and of spectral weighting functions for applications involving optical radiation.
Collapse
Affiliation(s)
- C Martinsons
- Centre Scientifique et Technique du Bâtiment, Saint Martin d'Hères, France
| | - F Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Ophtalmopôle, Paris, France
- Hôpital Foch, Suresnes, France
| | - T Bergen
- Australian Photometry and Radiometry Laboratory, Melbourne, VIC, Australia
| | - P Blattner
- Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
| | - M Herf
- F.lux Software LLC, Los Angeles, CA, USA
| | - C Gronfier
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université de Lyon, Lyon, France
| | - K Houser
- Oregon State University, Corvallis, OR, USA
| | - S Jost
- ENTPE, Ecole Centrale de Lyon, LTDS, CNRS UMR5513, Vaulx-en-Velin, France
| | | | - G Obein
- Laboratoire National de Métrologie et d'Essais, Paris, France
| | - L Schlangen
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - L Simonot
- Institut Pprime, CNRS UPR3346, Université de Poitiers, Chasseneuil Futuroscope, France
| | - M Spitschan
- Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - A Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - J Zeitzer
- Center for Sleep and Circadian Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Gentner C, Burri S, Charbon E, Bruschini C, de Aguiar HB. Toward video-rate compressive spontaneous Raman imaging via single-photon avalanche diode arrays. OPTICS LETTERS 2024; 49:6573-6576. [PMID: 39546722 DOI: 10.1364/ol.538993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Spontaneous Raman microscopy is well-known for its remarkable chemical contrast yet suffers from slow acquisition speeds. Recently, the compressive Raman microspectroscopy framework has shown that a significant speed advantage is brought by leveraging shot-noise-limited detection using a single-photon avalanche diode (SPAD). However, current imaging speeds of compressive Raman architectures are fundamentally limited by SPAD sensitivity and dead time. Here, we demonstrate an efficient and scalable compressive Raman parallelization scheme based on SPAD arrays. We show that parallelization using line excitation, instead of spatial multiplexing, allows to reach effective pixel dwell times (τ pdt ) of 0.8 µs. Such fast speed represents over one order-of-magnitude speed-up over previous demonstrations. This effective parallelization not only allows for demonstrating unprecedented chemical imaging speeds using the otherwise weak spontaneous Raman effect but also paves the way for true video-rate inexpensive molecular microspectroscopy.
Collapse
|
3
|
Wanitzek M, Schulze J, Oehme M. Ge-on-Si single-photon avalanche diode using a double mesa structure. OPTICS LETTERS 2024; 49:6345-6348. [PMID: 39546665 DOI: 10.1364/ol.534436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024]
Abstract
We present experimental results of Ge-on-Si single-photon avalanche diodes based on a novel, to our knowledge, double mesa structure. Using this structure, the electric field at the mesa edges is suppressed compared to a traditional single mesa, leading to significant performance improvements. The dark current in linear mode shows a smaller increase for larger reverse voltages, resulting in a reduction by more than 260 times at low temperatures. Operated in the Geiger-mode at 110 K, the dark count rate in the double mesa is 100 times smaller. The devices achieve a dark count rate of 953 kHz, a single-photon detection efficiency of 7.3%, and a record-low jitter of 81 ps at an excess bias of 17.6% and a temperature of 110 K.
Collapse
|
4
|
Massaro G, D’Angelo M. Characterization of Defocused Coherent Imaging Systems with Periodic Objects. SENSORS (BASEL, SWITZERLAND) 2024; 24:6885. [PMID: 39517781 PMCID: PMC11548293 DOI: 10.3390/s24216885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Recent advancements in quantum and quantum-inspired imaging techniques have enabled high-resolution 3D imaging through photon correlations. These techniques exhibit reduced degradation of image resolution for out-of-focus samples compared to conventional methods (i.e., intensity-based incoherent imaging). A key advantage of these correlation-based approaches is their independence from the system numerical aperture (NA). Interestingly, both improved resolution of defocused images and NA-independent scaling are linked to the spatial coherence of light. This suggests that while correlation measurements exploit spatial coherence, they are not essential for achieving this imaging advantage. This discovery has led to the development of optical systems that achieve similar performance by using spatially coherent illumination and relying on intensity measurements: direct 3D imaging with NA-independent resolution was recently demonstrated in a correlation-free setup using LED light. Here, we explore the physics behind the enhanced performance of defocused coherent imaging, showing that it arises from the modification of the sample's spatial harmonic content due to diffraction, unlike the blurring seen in conventional imaging. The results we present are crucial for understanding the implications of the physical differences between coherent and incoherent imaging, and are expected to pave the way for the practical application of the discovered phenomena.
Collapse
Affiliation(s)
- Gianlorenzo Massaro
- Dipartimento di Fisica, Università degli Studi di Bari, 70125 Bari, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Milena D’Angelo
- Dipartimento di Fisica, Università degli Studi di Bari, 70125 Bari, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
5
|
Kan L, Zhang Y, Luo Y, Wei Y, Zhong J, Gao Y, Liu Y, Wang K, Li S. Near-Infrared Emissive π-Conjugated Oligomer Nanoparticles for Three- and Four-Photon Deep-Brain Microscopic Imaging Beyond 1700 nm Excitation. ACS NANO 2024; 18:26828-26838. [PMID: 39297406 DOI: 10.1021/acsnano.4c07810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
High-resolution visualization of the deep brain is still a challenging and very significant issue. Multiphoton microscopy (MPM) holds great promise for high-spatiotemporal deep-tissue imaging under NIR-III and NIR-IV excitation. However, thus far, their applications have been seriously restricted by the scarcity of efficient organic probes. Herein, we designed and synthesized two donor-acceptor-donor-type conjugated small molecules (TNT and TNS) for in vivo mouse deep-brain imaging with three- and four-photon microscopy under 1700 and 2200 nm excitation. With a selenium (Se) substitution, we synthesized two conjugated small molecules to promote their emission into the deep near-infrared region with high quantum yields of 55% and 20% in THF solvent, respectively, and their water-dispersive nanoparticles have relatively large absorption cross-sections in the 1700 and 2200 nm windows, respectively, with good biosafety. With these superiorities, these organic NPs achieve high-resolution deep-brain imaging via three-photon and four-photon microscopy with excitation at 1700 and 2200 nm windows, and 1620 μm deep in the brain vasculature can be visualized in vivo. This study demonstrates the efficiency of NIR-emissive conjugated small molecules for high-performance MPM imaging in the NIR-III and NIR-IV window and provides a route for the future design of organic MPM probes.
Collapse
Affiliation(s)
- Lijun Kan
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yingxian Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yao Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Jincheng Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Ma Y, Park J, Huang L, Sen C, Burri S, Bruschini C, Yang X, Cui Q, Cameron RB, Fishbein GA, Gomperts BN, Ozcan A, Charbon E, Gao L. Light-field tomographic fluorescence lifetime imaging microscopy. Proc Natl Acad Sci U S A 2024; 121:e2402556121. [PMID: 39320920 PMCID: PMC11459138 DOI: 10.1073/pnas.2402556121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that enables the visualization of biological samples at the molecular level by measuring the fluorescence decay rate of fluorescent probes. This provides critical information about molecular interactions, environmental changes, and localization within biological systems. However, creating high-resolution lifetime maps using conventional FLIM systems can be challenging, as it often requires extensive scanning that can significantly lengthen acquisition times. This issue is further compounded in three-dimensional (3D) imaging because it demands additional scanning along the depth axis. To tackle this challenge, we developed a computational imaging technique called light-field tomographic FLIM (LIFT-FLIM). Our approach allows for the acquisition of volumetric fluorescence lifetime images in a highly data-efficient manner, significantly reducing the number of scanning steps required compared to conventional point-scanning or line-scanning FLIM imagers. Moreover, LIFT-FLIM enables the measurement of high-dimensional data using low-dimensional detectors, which are typically low cost and feature a higher temporal bandwidth. We demonstrated LIFT-FLIM using a linear single-photon avalanche diode array on various biological systems, showcasing unparalleled single-photon detection sensitivity. Additionally, we expanded the functionality of our method to spectral FLIM and demonstrated its application in high-content multiplexed imaging of lung organoids. LIFT-FLIM has the potential to open up broad avenues in both basic and translational biomedical research.
Collapse
Affiliation(s)
- Yayao Ma
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Luzhe Huang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Samuel Burri
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Xilin Yang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| | - Qi Cui
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Robert B. Cameron
- Department of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA90095
| | - Brigitte N. Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Aydogan Ozcan
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
7
|
Bocchieri A, Charbon E, Velten A. Scintillation event imaging with a single photon avalanche diode camera. COMMUNICATIONS ENGINEERING 2024; 3:135. [PMID: 39294245 PMCID: PMC11411079 DOI: 10.1038/s44172-024-00281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Position and time measurements of scintillation events encode information about the radiation source. Single photon avalanche diode (SPAD) arrays offer multiple-megapixel spatial resolution and tens of picoseconds temporal resolution for detecting single photons. Current lensless designs for measuring scintillation events use sensors that are lower in spatial resolution. Camera-based designs use sensors that are lower in temporal resolution or readout rate and cannot image individual interactions. Here we propose to image scintillation events in a thick, monolithic scintillator using a high-resolution SPAD camera. We demonstrate that a commercial SPAD camera is able to gather sufficient signal to image individual scintillation events and observe 3D shifts in their spatial distribution. Simulations show that a SPAD camera can localize individual scintillation events in 3D. We report direct imaging of gamma-ray interactions in a scintillator with a SPAD camera. The proposed design may allow to measure complex signatures of individual particles interacting in the scintillator.
Collapse
Affiliation(s)
- Alex Bocchieri
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, USA.
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory (AQUA), Swiss Federal Institute of Technology Lausanne (EPFL), Neuchâtel, Switzerland
| | - Andreas Velten
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Oguh B, Orunesajo E, Abubakar S, Lee SK, Li W. Time-to-brightness converter (TBC): measuring photon arrival time with conventional cameras. OPTICS LETTERS 2024; 49:5208-5211. [PMID: 39270264 DOI: 10.1364/ol.539879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
We introduce a new, to our knowledge, method to measure the arrival time of photons with a sub-nanosecond precision using two conventional cameras. The method exploits the finite rise/fall time of the electro-optical global shutter implemented in modern complementary metal-oxide semiconductor (CMOS) cameras. By mapping the arrival time to the normalized brightness, the time of flight (ToF) can be determined with a precision better than 0.3 ns. The method can be implemented at the pixel level of a camera and thus simultaneously provides a high spatial resolution to achieve high-performing three-dimensional (3D) imaging.
Collapse
|
9
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
10
|
Moreno S, Moro V, Canals J, Diéguez A. Area-Efficient Mixed-Signal Time-to-Digital Converter Integration for Time-Resolved Photon Counting. SENSORS (BASEL, SWITZERLAND) 2024; 24:5763. [PMID: 39275674 PMCID: PMC11398150 DOI: 10.3390/s24175763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD arrays. Fabricated using a 150 nm CMOS process, the prototype occupies an area of only 18.3 µm × 36.5 µm, a notable size reduction compared to conventional designs. The experimental results demonstrated high performance, with an integral nonlinearity (INL) of 0.35/0.14 least significant bit (LSB) and a differential nonlinearity (DNL) of 0.14/-0.12 LSB. In addition, the proposed TDC can support the construction of histograms comprising up to 512 bins, making it an effective solution to accommodate a wide range of resolution requirements. Validated in a point-of-care (PoC) device for fluorescence lifetime measurements, it distinguished between lifetimes of approximately 4.1 ns, 3.6 ns and 80 ns with the Alexa Fluor (AF) 546 and 568 dyes and Quantum Dot (QD) 705, respectively. The analog storage design and area-efficient architecture offer a novel approach to integrating TDCs in SPAD-based systems, with potential applications in medical diagnostics and beyond.
Collapse
Affiliation(s)
- Sergio Moreno
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Victor Moro
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Canals
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Angel Diéguez
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Fratta G, Daniele P, Labanca I, Acconcia G, Rech I. Near-zero distortion in TCSPC at more than one photon per excitation period: experimental validation. OPTICS LETTERS 2024; 49:4958-4961. [PMID: 39208005 DOI: 10.1364/ol.534363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The time-correlated single-photon counting (TCSPC) technique is widely renowned for its capability of reconstructing rapid and weak light signals with exceptional sensitivity and sub-picosecond timing resolution. Unfortunately, the speed of TCSPC has been historically severely limited to avoid a phenomenon known as pileup distortion. For this reason, the count rate of a classic TCSPC acquisition channel is kept below a few percent of the laser excitation rate (usually 1%-5%). In this work, we experimentally validate a novel, to our knowledge, TCSPC theory recently reported that effectively overcomes such a limitation and finally achieves high-speed operation without distortion. Exploiting a single-photon avalanche diode (SPAD), in this paper we show how to acquire additional information about the status of the system at run time, and by combining it with the classic TCSPC data histogram, we report how a count rate of approximately 60% of the excitation frequency with near-zero distortion can indeed be achieved with a commercial system.
Collapse
|
12
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Whitehead W, Oh W, Theogarajan L. CMOS Single-Photon Avalanche Diode Circuits for Probabilistic Computing. IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS 2024; 10:49-57. [PMID: 39492924 PMCID: PMC11529380 DOI: 10.1109/jxcdc.2024.3452030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Intrinsically random hardware devices are increasingly attracting attention for their potential use in probabilistic computing architectures. One such device is the single-photon avalanche diode (SPAD) and an associated functional unit, the variable-rate SPAD circuit (VRSC), recently proposed by us as a source of randomness for sampling and annealing Ising and Potts models. This work develops a more advanced understanding of these VRSCs by introducing several VRSC design options and studying their tradeoffs as implemented in a 65-nm CMOS process. Each VRSC is composed of a SPAD and a processing circuit. Combinations of three different SPAD designs and three different types of processing circuits were evaluated on several metrics such as area, speed, and variability. Measured results from the SPAD design space show that even extremely small SPADs are suitable for probabilistic computing purposes, and that high dark count rates are not detrimental either, so SPADs for probabilistic computing are actually easier to integrate in standard CMOS processes. Results from the circuit design space show that the time-to-analog-based designs introduced in this work can produce highly exponential and analytical transfer functions, but that the less analytically tractable output of the previously proposed filter-based designs can achieve less variability in a smaller footprint. Probabilistic bits (P-bits) composed of the fabricated VRSCs achieve bit flip rates of 50 MHz and allow at least one order of magnitude of control over their simulated annealing temperature.
Collapse
Affiliation(s)
- William Whitehead
- Department of Electrical and Computer Engineering, UCSB, Santa Barbara, CA 93106 USA
| | - Wonsik Oh
- Department of Electrical and Computer Engineering, UCSB, Santa Barbara, CA 93106 USA
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, UCSB, Santa Barbara, CA 93106 USA
| |
Collapse
|
14
|
Foust DJ, Piston DW. Measuring G protein activation by spectrally resolved imaging fluorescence fluctuation spectroscopy. Biophys J 2024:S0006-3495(24)00552-6. [PMID: 39148292 DOI: 10.1016/j.bpj.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The activation of heterotrimeric G proteins through G-protein-coupled receptors (GPCRs) is a ubiquitous signaling mechanism in eukaryotic biology. The three principal molecular components of this cascade are the GPCR, Gα subunit, and Gβγ subunit. Measurement of interactions between these components and their downstream effectors in live cells is paramount to understanding how cells fine-tune their physiology in response to many external stimuli. Multicolor fluorescence fluctuation spectroscopy (FFS) approaches allow the sensitive detection of heteromeric interactions by using spectrally distinct fluorophores to label biomolecules of interest. We considered three imaging FFS approaches to measuring molecular interactions from the signals produced by a spectrally resolved confocal microscopy: raster spectral image correlation spectroscopy (RSICS), spectral spatial cumulant analysis, and native resolution spatial cumulant analysis. We characterized these approaches using simulation and experiments on heteromers with known stoichiometries. We found that RSICS had the best sensitivity for measuring heteromeric interactions and employed it to measure G protein complexes. As measured by RSICS, interactions between the G protein subunits Gαi1 and Gβ1γ2 were sensitive to the stimulation of two GPCRs, the D2 dopamine receptor and the α-2A adrenergic receptor. Interactions between GPCRs and G proteins were not detectable above background, supporting a collisional model of GPCR/G protein interactions in contrast to a preassembly model where strong interactions would be present. These data are uniquely available by this FFS framework, which is appropriate for not only multiplexed measurements of G protein biology but any dynamic protein complexes in the cell.
Collapse
Affiliation(s)
- Daniel J Foust
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
15
|
Smith AW. Recent applications of fluorescence correlation spectroscopy in live cells. Curr Opin Chem Biol 2024; 81:102480. [PMID: 38905722 DOI: 10.1016/j.cbpa.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
As a time-domain analogue of fluorescence imaging, FCS offers valuable insights into molecular dynamics, interactions, and concentrations within living cells. The primary insight generated by FCS is molecular mobility and concentration, which makes it useful for investigating molecular-scale details without the need for enrichment or separation. A specific strength of FCS is the ability to probe protein-protein interactions in live cells and several recent applications in this area are summarized. FCS is also used to investigate plasma membrane protein organization, with many applications to cell surface receptors and the mechanisms of drug binding. Finally, FCS is undergoing continual methodological innovations, such as imaging FCS, SPIM-FCS PIE-FCCS, STED-FCS, three-color FCS, and massively parallel FCS, which extend the capabilities to investigate molecular dynamics at different spatial and temporal scales. These innovations enable detailed examinations of cellular processes, including cellular transport and the spatial organization of membrane proteins.
Collapse
Affiliation(s)
- Adam W Smith
- Texas Tech University, Department of Chemistry & Biochemistry, Lubbock, TX, USA.
| |
Collapse
|
16
|
Laurenzis M, Bacher E. Fourier analysis in single photon imaging. OPTICS EXPRESS 2024; 32:26525-26536. [PMID: 39538517 DOI: 10.1364/oe.522742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/29/2024] [Indexed: 11/16/2024]
Abstract
Single photon imaging has become an established sensing approach. Compared to intensity imaging, versatile advantages have been demonstrated, such as imaging with high sensitivity, at a high frame rate, and with a high dynamic range. In this paper, we investigate the Fourier analysis of single photon counting at a frame rate of approximately 100 kHz and a high spatial resolution of 512 px × 512 px. We observed signal modulation in raw data as well as in data converted to photon flux, but with the data processing, the signal's frequency response is affected by significant damping. Thus, analysis sensible to signal frequency should work on the raw single photon counting signal. Furthermore, imaging of magnitude and phase in the Fourier domain can visualize areas of certain signal modulation, and the gradient of the phase angle can reveal the direction of movements. Finally, we have applied our method to real world scenarios by analyzing unmanned aerial vehicle's motion in outdoor experiments.
Collapse
|
17
|
Sims RR, Bendifallah I, Grimm C, Lafirdeen ASM, Domínguez S, Chan CY, Lu X, Forget BC, St-Pierre F, Papagiakoumou E, Emiliani V. Scanless two-photon voltage imaging. Nat Commun 2024; 15:5095. [PMID: 38876987 PMCID: PMC11178882 DOI: 10.1038/s41467-024-49192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.
Collapse
Affiliation(s)
- Ruth R Sims
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Imane Bendifallah
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Christiane Grimm
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Soledad Domínguez
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Chung Yuen Chan
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Benoît C Forget
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | - Valentina Emiliani
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
18
|
Lv Z, Zhang S, Jiang H. Superhigh gain InGaN/GaN visible-light photodetector using polarization heterointerface barrier and single-carrier superlattices. OPTICS EXPRESS 2024; 32:22045-22051. [PMID: 38859544 DOI: 10.1364/oe.527830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Visible-light detection with high sensitivity and strong wavelength selectivity is highly desired in emerging applications. Here, we demonstrate a high-performance visible-light photodetector with an active region composed of a polarization induced barrier and single-carrier superlattices (SCSLs). The barrier at SCSLs/GaN heterointerface brings both a low dark current and a high gain originating from the photoinduced barrier reduction effect. Meanwhile, the designed InGaN/GaN SCSLs allow the photoelectrons in the quantum wells to escape, but photogenerated holes are weakly localized, thus generating the additional photoconductive gain. The resulting devices exhibited a super-high gain of 7.8 × 104, a large detectivity of 1.2 × 1016 jones, and a relatively fast response speed with rise/falling time of 2.5/89.6 ns. Also, a 400/500-nm rejection ratio greater than 3 × 105 was shown at 1 V, indicating excellent wavelength selectivity.
Collapse
|
19
|
Taimori A, Mills B, Gaughan E, Ali A, Dhaliwal K, Williams G, Finlayson N, Hopgood JR. A Novel Fit-Flexible Fluorescence Soft Imager: Tri-Sensing of Intensity, Fall-Time, and Life Profile. IEEE Trans Biomed Eng 2024; 71:1864-1878. [PMID: 38300773 DOI: 10.1109/tbme.2024.3354856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Time-resolved fluorescence imaging techniques, like confocal fluorescence lifetime imaging microscopy, are powerful photonic instrumentation tools of modern science with diverse applications, including: biology, medicine, and chemistry. However, complexities of the systems, both at specimen and device levels, cause difficulties in quantifying soft biomarkers. To address the problems, we first aim to understand and model the underlying photophysics of fluorescence decay curves. For this purpose, we provide a set of mathematical functions, called "life models", fittable with the real temporal recordings of histogram of photon counts. For each model, an equivalent electrical circuit, called a "life circuit", is derived for explaining the whole process. In confocal endomicroscopy, the components of excitation laser, specimen, and fluorescence-emission signal as the histogram of photon counts are modelled by a power source, network of resistor-inductor-capacitor circuitry, and multimetre, respectively. We then design a novel pixel-level temporal classification algorithm, called a "fit-flexible approach", where qualities of "intensity", "fall-time", and "life profile" are identified for each point. A model selection mechanism is used at each pixel to flexibly choose the best representative life model based on a proposed Misfit-percent metric. A two-dimensional arrangement of the quantified information detects some kind of structural information. This approach showed a potential of separating microbeads from lung tissue, distinguishing the tri-sensing from conventional methods. We alleviated by 7% the error of the Misfit-percent for recovering the histograms on real samples than the best state-of-the-art competitor. Codes are available online.
Collapse
|
20
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
21
|
Zhu B, Jonathan H. A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:3539. [PMID: 38894330 PMCID: PMC11175340 DOI: 10.3390/s24113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
To translate near-infrared (NIR) and shortwave infrared (SWIR) fluorescence imaging into the clinic, the paired imaging device needs to detect trace doses of fluorescent imaging agents. Except for the filtration scheme and excitation light source, the image sensor used will finally determine the detection limitations of NIR and SWIR fluorescence imaging systems. In this review, we investigate the current state-of-the-art image sensors used in NIR and SWIR fluorescence imaging systems and discuss the advantages and limitations of their characteristics, such as readout architecture and noise factors. Finally, the imaging performance of these image sensors is evaluated and compared.
Collapse
Affiliation(s)
- Banghe Zhu
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | |
Collapse
|
22
|
Kapitany V, Fatima A, Zickus V, Whitelaw J, McGhee E, Insall R, Machesky L, Faccio D. Single-sample image-fusion upsampling of fluorescence lifetime images. SCIENCE ADVANCES 2024; 10:eadn0139. [PMID: 38781345 PMCID: PMC11114222 DOI: 10.1126/sciadv.adn0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.
Collapse
Affiliation(s)
- Valentin Kapitany
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Areeba Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Ewan McGhee
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | | | - Daniele Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Triggiani D, Tamma V. Estimation with Ultimate Quantum Precision of the Transverse Displacement between Two Photons via Two-Photon Interference Sampling Measurements. PHYSICAL REVIEW LETTERS 2024; 132:180802. [PMID: 38759164 DOI: 10.1103/physrevlett.132.180802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter, based on transverse-momentum sampling measurements at the output. This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as superresolved single-molecule localization microscopy with quantum dots, by circumventing the requirements in standard direct imaging of camera resolution at the diffraction limit, and of highly magnifying objectives. Interestingly, we show that our interferometric technique achieves the ultimate spatial precision in nature irrespectively of the overlap of the two displaced photonic wave packets, while its precision is only reduced of a constant factor for photons differing in any nonspatial degrees of freedom. This opens a new research paradigm based on the interface between spatially resolved quantum interference and quantum-enhanced spatial sensitivity.
Collapse
Affiliation(s)
- Danilo Triggiani
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
| |
Collapse
|
24
|
Moya-Zamanillo V, Rosado J. Understanding the Nonlinear Response of SiPMs. SENSORS (BASEL, SWITZERLAND) 2024; 24:2648. [PMID: 38676265 PMCID: PMC11053975 DOI: 10.3390/s24082648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
A systematic study of the nonlinear response of Silicon Photomultipliers (SiPMs) was conducted through Monte Carlo (MC) simulations. The MC code was validated against experimental data for two different SiPMs. Nonlinearity mainly depends on the balance between the photon rate and the pixel recovery time. Additionally, nonlinearity has been found to depend on the light pulse shape, the correlated noise, the overvoltage dependence of the photon detection efficiency, and the impedance of the readout circuit. Correlated noise has been shown to have a minor impact on nonlinearity, but it can significantly affect the shape of the SiPM output current. Considering these dependencies and a previous statistical analysis of the nonlinear response of SiPMs, two phenomenological fitting models were proposed for exponential-like and finite light pulses, explaining the roles of their various terms and parameters. These models provide an accurate description of the nonlinear responses of SiPMs at the level of a few percentages for a wide range of situations.
Collapse
|
25
|
Wang YZ, Zhang WJ, Zhang XY, Xu GZ, Xiong JM, Chen ZG, Hong YY, Liu XY, Yuan PS, Wu L, Wang Z, You LX. Free-space coupled, large-active-area superconducting microstrip single-photon detector for photon-counting time-of-flight imaging. APPLIED OPTICS 2024; 63:3130-3137. [PMID: 38856457 DOI: 10.1364/ao.519475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 06/11/2024]
Abstract
Numerous applications at the photon-starved regime require a free-space coupling single-photon detector with a large active area, low dark count rate (DCR), and superior time resolutions. Here, we developed a superconducting microstrip single-photon detector (SMSPD), with a large active area of 260 µm in diameter, a DCR of ∼5k c p s, and a low time jitter of ∼171p s, operated at a near-infrared of 1550 nm and a temperature of ∼2.0K. As a demonstration, we applied the detector to a single-pixel galvanometer scanning system and successfully reconstructed the object information in depth and intensity using a time-correlated photon counting technology.
Collapse
|
26
|
Pitsch C, Walter D, Gasparini L, Bürsing H, Eichhorn M. A Method to Correct the Temporal Drift of Single-Photon Detectors Based on Asynchronous Quantum Ghost Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:2578. [PMID: 38676195 PMCID: PMC11054488 DOI: 10.3390/s24082578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Single-photon detection and timing has attracted increasing interest in recent years due to their necessity in the field of quantum sensing and the advantages of single-quanta detection in the field of low-level light imaging. While simple bucket detectors are mature enough for commercial applications, more complex imaging detectors are still a field of research comprising mostly prototype-level detectors. A major problem in these detectors is the implementation of in-pixel timing circuitry, especially for two-dimensional imagers. One of the most promising approaches is the use of voltage-controlled ring resonators in every pixel. Each of these runs independently based on a voltage supplied by a global reference. However, this yields the problem that the supply voltage can change across the chip which, in turn, changes the period of the ring resonator. Due to additional parasitic effects, this problem can worsen with increasing measurement time, leading to drift in the timing information. We present here a method to identify and correct such temporal drifts in single-photon detectors based on asynchronous quantum ghost imaging. We also show the effect of this correction on recent quantum ghost imaging (QGI) measurement from our group.
Collapse
Affiliation(s)
- Carsten Pitsch
- Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Gutleuthausstr. 1, 76275 Ettlingen, Germany
| | - Dominik Walter
- Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Gutleuthausstr. 1, 76275 Ettlingen, Germany
| | - Leonardo Gasparini
- Fondazione Bruno Kessler, Center for Sensors & Devices, Integrated Readout ASICs & Image Sensors, Via Sommarive 18-Povo, 38123 Trento, Italy
| | - Helge Bürsing
- Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Gutleuthausstr. 1, 76275 Ettlingen, Germany
| | - Marc Eichhorn
- Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Gutleuthausstr. 1, 76275 Ettlingen, Germany
- Institute of Control Systems (IRS), Karlsruhe Institute of Technology, Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
28
|
Bovolenta A, Cominelli A, Acconcia G, Rech I. Quantifying distortion in time-correlated single photon counting: a universal parameter. OPTICS LETTERS 2024; 49:1563-1566. [PMID: 38489451 DOI: 10.1364/ol.511914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
One major drawback of the classic time-correlated single photon counting (TCSPC) technique is pileup-related distortion. To keep it under a reasonable level, the maximum count rate has to be reduced, posing a serious limitation to the overall measurement speed. This means that there is an intrinsic trade-off between speed and distortion: either count rate is raised, but distortion is worsened, or distortion is minimized at the expense of speed. In both cases, it is impossible to precisely evaluate the degree of distortion introduced. Here comes our new, to the best of our knowledge, figure of merit, which is able to provide a numerical estimate of the distortion whatever the signal shape is, marking a real turning point in the way of doing TCSPC. In this article, this new parameter will be defined and its effectiveness will be demonstrated by means of mathematical computations.
Collapse
|
29
|
Na N, Lu YC, Liu YH, Chen PW, Lai YC, Lin YR, Lin CC, Shia T, Cheng CH, Chen SL. Room temperature operation of germanium-silicon single-photon avalanche diode. Nature 2024; 627:295-300. [PMID: 38383784 DOI: 10.1038/s41586-024-07076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The ability to detect single photons has led to the advancement of numerous research fields1-11. Although various types of single-photon detector have been developed12, because of two main factors-that is, (1) the need for operating at cryogenic temperature13,14 and (2) the incompatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes15,16-so far, to our knowledge, only Si-based single-photon avalanche diode (SPAD)17,18 has gained mainstream success and has been used in consumer electronics. With the growing demand to shift the operation wavelength from near-infrared to short-wavelength infrared (SWIR) for better safety and performance19-21, an alternative solution is required because Si has negligible optical absorption for wavelengths beyond 1 µm. Here we report a CMOS-compatible, high-performing germanium-silicon SPAD operated at room temperature, featuring a noise-equivalent power improvement over the previous Ge-based SPADs22-28 by 2-3.5 orders of magnitude. Key parameters such as dark count rate, single-photon detection probability at 1,310 nm, timing jitter, after-pulsing characteristic time and after-pulsing probability are, respectively, measured as 19 kHz µm-2, 12%, 188 ps, ~90 ns and <1%, with a low breakdown voltage of 10.26 V and a small excess bias of 0.75 V. Three-dimensional point-cloud images are captured with direct time-of-flight technique as proof of concept. This work paves the way towards using single-photon-sensitive SWIR sensors, imagers and photonic integrated circuits in everyday life.
Collapse
Affiliation(s)
- Neil Na
- Artilux Inc., Zhubei, Taiwan ROC.
| | | | | | | | | | | | | | - Tim Shia
- Artilux Inc., Zhubei, Taiwan ROC
| | | | | |
Collapse
|
30
|
Liu M, Lai Y, Marquez M, Vetrone F, Liang J. Short-wave Infrared Photoluminescence Lifetime Mapping of Rare-Earth Doped Nanoparticles Using All-Optical Streak Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305284. [PMID: 38183381 PMCID: PMC10953585 DOI: 10.1002/advs.202305284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Indexed: 01/08/2024]
Abstract
The short-wave infrared (SWIR) photoluminescence lifetimes of rare-earth doped nanoparticles (RENPs) have found diverse applications in fundamental and applied research. Despite dazzling progress in the novel design and synthesis of RENPs with attractive optical properties, existing optical systems for SWIR photoluminescence lifetime imaging are still considerably restricted by inefficient photon detection, limited imaging speed, and low sensitivity. To overcome these challenges, SWIR photoluminescence lifetime imaging microscopy using an all-optical streak camera (PLIMASC) is developed. Synergizing scanning optics and a high-sensitivity InGaAs CMOS camera, SWIR-PLIMASC has a 1D imaging speed of up to 138.9 kHz in the spectral range of 900-1700 nm, which quantifies the photoluminescence lifetime of RENPs in a single shot. A 2D photoluminescence lifetime map can be acquired by 1D scanning of the sample. To showcase the power of SWIR-PLIMASC, a series of core-shell RENPs with distinct SWIR photoluminescence lifetimes is synthesized. In particular, using Er3+ -doped RENPs, SWIR-PLIMASC enables multiplexed anti-counterfeiting. Leveraging Ho3+ -doped RENPs as temperature indicators, this system is applied to SWIR photoluminescence lifetime-based thermometry. Opening up a new avenue for efficient SWIR photoluminescence lifetime mapping, this work is envisaged to contribute to advanced materials characterization, information science, and biomedicine.
Collapse
Affiliation(s)
- Miao Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Miguel Marquez
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| |
Collapse
|
31
|
Franks M, Dieminger T, Kaneyasu K, Sgalaberna D, Bruschini C, Charbon E, Kose U, Li B, Mos P, Wayne M, Weber T, Wu J. Demonstration of particle tracking with scintillating fibres read out by a SPAD array sensor and application as a neutrino active target. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2024; 84:202. [PMID: 39050377 PMCID: PMC11266435 DOI: 10.1140/epjc/s10052-024-12509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/23/2024] [Indexed: 07/27/2024]
Abstract
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hundred μ m diameter are used, either they are grouped together and coupled with a single SiPM, losing spatial resolution, or a very large number of electronic channels is required. In this article we propose and provide a first demonstration of a novel configuration which allows each individual scintillating fibre to be read out regardless of the size of its diameter, by imaging them with Single-Photon Avalanche Diode (SPAD) array sensors. Differently from SiPMs, SPAD array sensors provide single-photon detection with single-pixel spatial resolution. In addition, O(us) or faster coincidence of detected photons allows to obtain noise-free images. Such a concept can be particularly advantageous if adopted as a neutrino active target, where scintillating fibres alternated along orthogonal directions can provide isotropic, high-resolution tracking in a dense material and reconstruct the kinematics of low-momentum protons (down to 150 MeV/c), crucial for an accurate characterisation of the neutrino-nucleus cross section. In this work the tracking capabilities of a bundle of scintillating fibres coupled to SwissSPAD2 is demonstrated. The impact of such detector configuration in GeV-neutrino experiments is studied with simulations and reported. Finally, future plans, including the development of a new SPAD array sensor optimised for neutrino detection, are discussed.
Collapse
Affiliation(s)
- Matthew Franks
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Till Dieminger
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Kodai Kaneyasu
- Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland
| | - Davide Sgalaberna
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Claudio Bruschini
- Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland
| | - Edoardo Charbon
- Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland
| | - Umut Kose
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Botao Li
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Paul Mos
- Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland
| | - Michael Wayne
- Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland
| | - Tim Weber
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| | - Jialin Wu
- Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Chen F, Wu L, Chen C, Wan X, Chen W, Chen X, Zhou J, Cheng M, Fu Z, Ding N, Deng Z, Shen Y, Liu C, Bai J, Wu L, Sun W, Liu D. Raman lidar at 355 nm using low dead time photon counting for atmospheric aerosol measurements. APPLIED OPTICS 2024; 63:1529-1537. [PMID: 38437365 DOI: 10.1364/ao.515523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Photon counting is an effective way to enhance the dynamic range of the data acquisition system (DAQ) in Raman lidars. However, there exists a deficiency of relatively high dead times among current options, which necessitates an additional calibration procedure for the nonlinearity of the photon counting signal, thus leading to unanticipated errors. A field programmable gate array (FPGA)-based photon counting module has been proposed and implemented in a Raman lidar, offering two operational channels. Through observational experiments, it was determined that this module has an overall dead time of 1.13 ns taking advantage of the high-speed amplifier/discriminator pair and the logic design, a significant improvement compared to the 4.35 ns of a commercially used Licel transient recorder within the same counting rate range. This notably low dead time implies that its output maintains sufficient linearity even at substantially high counting rates. As a result, the need for a dead time calibration procedure prior to signal integration with the analog signal is eliminated, reducing uncertainty in the final integrated signal, and even in the retrieval result. The backscattering result of the comparison between this module and a transient recorder indicates that a more precise performance can be acquired benefiting from this hardware upgrading.
Collapse
|
33
|
Li Z, Tan HH, Jagadish C, Fu L. An efficient modeling workflow for high-performance nanowire single-photon avalanche detector. NANOTECHNOLOGY 2024; 35:175209. [PMID: 38237187 DOI: 10.1088/1361-6528/ad2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Single-photon detector (SPD), an essential building block of the quantum communication system, plays a fundamental role in developing next-generation quantum technologies. In this work, we propose an efficient modeling workflow of nanowire SPDs utilizing avalanche breakdown at reverse-biased conditions. The proposed workflow is explored to maximize computational efficiency and balance time-consuming drift-diffusion simulation with fast script-based post-processing. Without excessive computational effort, we could predict a suite of key device performance metrics, including breakdown voltage, dark/light avalanche built-up time, photon detection efficiency, dark count rate, and the deterministic part of timing jitter due to device structures. Implementing the proposed workflow onto a single InP nanowire and comparing it to the extensively studied planar devices and superconducting nanowire SPDs, we showed the great potential of nanowire avalanche SPD to outperform their planar counterparts and obtain as superior performance as superconducting nanowires, i.e. achieve a high photon detection efficiency of 70% with a dark count rate less than 20 Hz at non-cryogenic temperature. The proposed workflow is not limited to single-nanowire or nanowire-based device modeling and can be readily extended to more complicated two-/three dimensional structures.
Collapse
Affiliation(s)
- Zhe Li
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - Hark Hoe Tan
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - Chennupati Jagadish
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - Lan Fu
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
34
|
Lin Y, Mos P, Ardelean A, Bruschini C, Charbon E. Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging. Sci Rep 2024; 14:3286. [PMID: 38331957 PMCID: PMC10853568 DOI: 10.1038/s41598-024-52966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, and robustness. Inspired by the concept of Edge Artificial Intelligence (Edge AI), we propose a robust approach that enables fast FLI with no degradation of accuracy. This approach couples a recurrent neural network (RNN), which is trained to estimate the fluorescence lifetime directly from raw timestamps without building histograms, to SPAD TCSPC systems, thereby drastically reducing transfer data volumes and hardware resource utilization, and enabling real-time FLI acquisition. We train two variants of the RNN on a synthetic dataset and compare the results to those obtained using center-of-mass method (CMM) and least squares fitting (LS fitting). Results demonstrate that two RNN variants, gated recurrent unit (GRU) and long short-term memory (LSTM), are comparable to CMM and LS fitting in terms of accuracy, while outperforming them in the presence of background noise by a large margin. To explore the ultimate limits of the approach, we derive the Cramer-Rao lower bound of the measurement, showing that RNN yields lifetime estimations with near-optimal precision. To demonstrate real-time operation, we build a FLI microscope based on an existing SPAD TCSPC system comprising a 32[Formula: see text]32 SPAD sensor named Piccolo. Four quantized GRU cores, capable of processing up to 4 million photons per second, are deployed on the Xilinx Kintex-7 FPGA that controls the Piccolo. Powered by the GRU, the FLI setup can retrieve real-time fluorescence lifetime images at up to 10 frames per second. The proposed FLI system is promising and ideally suited for biomedical applications, including biological imaging, biomedical diagnostics, and fluorescence-assisted surgery, etc.
Collapse
Affiliation(s)
- Yang Lin
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland
| | - Paul Mos
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland
| | - Andrei Ardelean
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland.
| |
Collapse
|
35
|
Gouzou D, Taimori A, Haloubi T, Finlayson N, Wang Q, Hopgood JR, Vallejo M. Applications of machine learning in time-domain fluorescence lifetime imaging: a review. Methods Appl Fluoresc 2024; 12:022001. [PMID: 38055998 PMCID: PMC10851337 DOI: 10.1088/2050-6120/ad12f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community. FLIm goes beyond conventional spectral imaging, providing additional lifetime information, and could lead to optical histopathology supporting real-time diagnostics. However, most current studies do not use the full potential of machine/deep learning models. As a developing image modality, FLIm data are not easily obtainable, which, coupled with an absence of standardisation, is pushing back the research to develop models which could advance automated diagnosis and help promote FLIm. In this paper, we describe recent developments that improve FLIm image quality, specifically time-domain systems, and we summarise sensing, signal-to-noise analysis and the advances in registration and low-level tracking. We review the two main applications of ML for FLIm: lifetime estimation and image analysis through classification and segmentation. We suggest a course of action to improve the quality of ML studies applied to FLIm. Our final goal is to promote FLIm and attract more ML practitioners to explore the potential of lifetime imaging.
Collapse
Affiliation(s)
- Dorian Gouzou
- Dorian Gouzou and Marta Vallejo are with Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ali Taimori
- Tarek Haloubi, Ali Taimori, and James R. Hopgood are with Institute for Imaging, Data and Communication, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FG, United Kingdom
| | - Tarek Haloubi
- Tarek Haloubi, Ali Taimori, and James R. Hopgood are with Institute for Imaging, Data and Communication, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FG, United Kingdom
| | - Neil Finlayson
- Neil Finlayson is with Institute for Integrated Micro and Nano Systems, School of Engineering, University ofEdinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Qiang Wang
- Qiang Wang is with Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - James R Hopgood
- Tarek Haloubi, Ali Taimori, and James R. Hopgood are with Institute for Imaging, Data and Communication, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FG, United Kingdom
| | - Marta Vallejo
- Dorian Gouzou and Marta Vallejo are with Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
36
|
Harel M, Arbiv U, Ankri R. Multiplexed near infrared fluorescence lifetime imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:026004. [PMID: 38425720 PMCID: PMC10902792 DOI: 10.1117/1.jbo.29.2.026004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Significance Fluorescence lifetime imaging (FLI) plays a pivotal role in enhancing our understanding of biological systems, providing a valuable tool for non-invasive exploration of biomolecular and cellular dynamics, both in vitro and in vivo. Its ability to selectively target and multiplex various entities, alongside heightened sensitivity and specificity, offers rapid and cost-effective insights. Aim Our aim is to investigate the multiplexing capabilities of near-infrared (NIR) FLI within a scattering medium that mimics biological tissues. We strive to develop a comprehensive understanding of FLI's potential for multiplexing diverse targets within a complex, tissue-like environment. Approach We introduce an innovative Monte Carlo (MC) simulation approach that accurately describes the scattering behavior of fluorescent photons within turbid media. Applying phasor analyses, we enable the multiplexing of distinct targets within a single FLI image. Leveraging the state-of-the-art single-photon avalanche diode (SPAD) time-gated camera, SPAD512S, we conduct experimental wide-field FLI in the NIR regime. Results Our study demonstrates the successful multiplexing of dual targets within a single FLI image, reaching a depth of 1 cm within tissue-like phantoms. Through our novel MC simulation approach and phasor analyses, we showcase the effectiveness of our methodology in overcoming the challenges posed by scattering media. Conclusions This research underscores the potential of NIR FLI for multiplexing applications in complex biological environments. By combining advanced simulation techniques with cutting-edge experimental tools, we introduce significant results in the non-invasive exploration of biomolecular dynamics, to advance the field of FLI research.
Collapse
Affiliation(s)
- Meital Harel
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Uri Arbiv
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Rinat Ankri
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| |
Collapse
|
37
|
Bogatskaya AV, Klenov NV, Popov AM, Schegolev AE, Titovets PA, Tereshonok MV, Yakovlev DS. Multilayer Bolometric Structures for Efficient Wideband Communication Signal Reception. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:141. [PMID: 38251106 PMCID: PMC10818736 DOI: 10.3390/nano14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
It is known that the dielectric layer (resonator) located behind the conducting plate of the bolometer system can significantly increase its sensitivity near the resonance frequencies. In this paper, the possibility of receiving broadband electromagnetic signals in a multilayer bolometric meta-material made of alternating conducting (e.g., silicon semiconductor) and dielectric layers is demonstrated both experimentally and numerically. It is shown that such a multilayer structure acts as a lattice of resonators and can significantly increase the width of the frequency band of efficient electromagnetic energy absorption. The parameters of the dielectric and semiconductor layers determine the frequency bands. Numerical modeling of the effect has been carried out under the conditions of our experiment. The numerical results show acceptable qualitative agreement with the experimental data. This study develops the previously proposed technique of resonant absorption of electromagnetic signals in bolometric structures.
Collapse
Affiliation(s)
- Anna V. Bogatskaya
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.B.); (N.V.K.); (A.M.P.)
- P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay V. Klenov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.B.); (N.V.K.); (A.M.P.)
- Superconducting Quantum Computing Lab, Russian Quantum Center, Skolkovo, 143025 Moscow, Russia
- D. V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexander M. Popov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.B.); (N.V.K.); (A.M.P.)
- P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey E. Schegolev
- D. V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Science and Research Department, Moscow Technical University of Communication and Informatics, 111024 Moscow, Russia; (P.A.T.); (M.V.T.)
| | - Pavel A. Titovets
- Science and Research Department, Moscow Technical University of Communication and Informatics, 111024 Moscow, Russia; (P.A.T.); (M.V.T.)
| | - Maxim V. Tereshonok
- Science and Research Department, Moscow Technical University of Communication and Informatics, 111024 Moscow, Russia; (P.A.T.); (M.V.T.)
| | - Dmitry S. Yakovlev
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| |
Collapse
|
38
|
Hopkinson C, Matheson AB, Finlayson N, Tanner MG, Akram AR, Henderson RK. Combined fluorescence lifetime and surface topographical imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:212-221. [PMID: 38223190 PMCID: PMC10783922 DOI: 10.1364/boe.504309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/16/2024]
Abstract
In this work a combined fluorescence lifetime and surface topographical imaging system is demonstrated. Based around a 126 × 192 time resolved single photon avalanche diode (SPAD) array operating in time correlated single-photon counting (TCSPC) mode, both the fluorescence lifetime and time of flight (ToF) can be calculated on a pixel by pixel basis. Initial tests on fluorescent samples show it is able to provide 4 mm resolution in distance and 0.4 ns resolution in lifetime. This combined modality has potential biomedical applications such as surgical guidance, endoscopy, and diagnostic imaging. The system is demonstrated on both ovine and human pulmonary tissue samples, where it offers excellent fluorescence lifetime contrast whilst also giving a measure of the distance to the sample surface.
Collapse
Affiliation(s)
- Charlotte Hopkinson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Andrew B. Matheson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Neil Finlayson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Michael G. Tanner
- Institute of Photonics and Quantum
Sciences, School of Engineering and Physical Sciences,
Heriot-Watt University, Edinburgh EH14 4AS,
UK
| | - Ahsan R. Akram
- Centre for Inflammation Research, Institute
of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU,
UK
| | - Robert K. Henderson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
39
|
Petusseau AF, Streeter SS, Ulku A, Feng Y, Samkoe KS, Bruschini C, Charbon E, Pogue BW, Bruza P. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:016004. [PMID: 38235320 PMCID: PMC10794045 DOI: 10.1117/1.jbo.29.1.016004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Significance Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecular phenotypic information about the disease being resected. Conventional fluorescence-guided surgery relies on long, microsecond scale laser pulses to excite fluorescent probes. However, this technique only provides two-dimensional information; crucial depth information, such as the location of malignancy below the tissue surface, is not provided. Aim We developed a depth sensing imaging technique using light detection and ranging (LiDAR) time-of-flight (TOF) technology to sense the depth of target tissue while overcoming the influence of tissue optical properties and fluorescent probe concentration. Approach The technology is based on a large-format (512 × 512 pixel ), binary, gated, single-photon avalanche diode (SPAD) sensor with an 18 ps time-gate step, synchronized with a picosecond pulsed laser. The fast response of the sensor was developed and tested for its ability to quantify fluorescent inclusions at depth and optical properties in tissue-like phantoms through analytical model fitting of the fast temporal remission data. Results After calibration and algorithmic extraction of the data, the SPAD LiDAR technique allowed for sub-mm resolution depth sensing of fluorescent inclusions embedded in tissue-like phantoms, up to a maximum of 5 mm in depth. The approach provides robust depth sensing even in the presence of variable tissue optical properties and separates the effects of fluorescence depth from absorption and scattering variations. Conclusions LiDAR TOF fluorescence imaging using an SPAD camera provides both fluorescence intensity images and the temporal profile of fluorescence, which can be used to determine the depth at which the signal is emitted over a wide field of view. The proposed tool enables fluorescence imaging at a higher depth in tissue and with higher spatial precision than standard, steady-state fluorescence imaging tools, such as intensity-based near-infrared fluorescence imaging, optical coherence tomography, Raman spectroscopy, or confocal microscopy. Integration of this technique into a standard surgical tool could enable rapid, more accurate estimation of resection boundaries, thereby improving the surgeon's efficacy and efficiency, and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Arthur F Petusseau
- Dartmouth College, Thayer School of Engineering and Dartmouth Cancer Center, Hanover, New Hampshire, United States
| | - Samuel S Streeter
- Geisel School of Medicine at Dartmouth, Department of Orthopaedics, Hanover, New Hampshire, United States
| | - Arin Ulku
- Ecole polytechnique fédérale de Lausanne, Advanced Quantum Architecture Laboratory, Neuchâtel, Switzerland
| | - Yichen Feng
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire, United States
| | - Kimberley S Samkoe
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire, United States
| | - Claudio Bruschini
- Ecole polytechnique fédérale de Lausanne, Advanced Quantum Architecture Laboratory, Neuchâtel, Switzerland
| | - Edoardo Charbon
- Ecole polytechnique fédérale de Lausanne, Advanced Quantum Architecture Laboratory, Neuchâtel, Switzerland
| | - Brian W Pogue
- Dartmouth College, Thayer School of Engineering and Dartmouth Cancer Center, Hanover, New Hampshire, United States
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering and Dartmouth Cancer Center, Hanover, New Hampshire, United States
| |
Collapse
|
40
|
Ren W, Ni R. Noninvasive Visualization of Amyloid-Beta Deposits in Alzheimer's Amyloidosis Mice via Fluorescence Molecular Tomography Using Contrast Agent. Methods Mol Biol 2024; 2785:271-285. [PMID: 38427199 DOI: 10.1007/978-1-0716-3774-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is pathologically featured by the accumulation of amyloid-beta (Aβ) plaque and neurofibrillary tangles. Compared to small animal positron emission tomography, optical imaging features nonionizing radiation, low cost, and logistic convenience. Optical detection of Aβ deposits is typically implemented by 2D macroscopic imaging and various microscopic techniques assisted with Aβ-targeted contrast agents. Here, we introduce fluorescence molecular tomography (FMT), a macroscopic 3D fluorescence imaging technique, convenient for in vivo longitudinal monitoring of the animal brain without the involvement of cranial window opening operation. This chapter aims to provide the protocols for FMT in vivo imaging of Aβ deposits in the brain of rodent model of Alzheimer's disease. The materials, stepwise method, notes, limitations of FMT, and emerging opportunities for FMT techniques are presented.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Milanese T, Bruschini C, Burri S, Bernasconi E, Ulku AC, Charbon E. LinoSPAD2: an FPGA-based, hardware-reconfigurable 512×1 single-photon camera system. OPTICS EXPRESS 2023; 31:44295-44314. [PMID: 38178504 DOI: 10.1364/oe.505748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
We report on LinoSPAD2, a single-photon camera system, comprising a 512×1 single-photon avalanche diode (SPAD) front-end and one or two FPGA-based back-ends. Digital signals generated by the SPADs are processed by the FPGA in real time, whereas the FPGA offers full reconfigurability at a very high level of granularity both in time and space domains. The LinoSPAD2 camera system can process 512 SPADs simultaneously through 256 channels, duplicated on each FPGA-based back-end, with a bank of 64 time-to-digital converters (TDCs) operating at 133 MSa/s, whereas each TDC has a time resolution of 20 ps (LSB). To the best of our knowledge, LinoSPAD2 is the first fully reconfigurable SPAD camera system of large format. The SPAD front-end features a pitch of 26.2 μm, a native fill factor of 25.1%, and a microlens array achieving 2.3× concentration factor. At room temperature, the median dark count rate (DCR) is 80 cps at 7 V excess bias, the peak photon detection probability (PDP) is 53% at 520 nm wavelength, and the single-photon timing resolution (SPTR) is 50 ps FWHM. The instrument response function (IRF) is around 100 ps FWHM at system level. The LinoSPAD2 camera system is suitable for numerous applications, including LiDAR imaging, heralded spectroscopy, compressive Raman sensing, and other computational imaging techniques.
Collapse
|
42
|
Lozovoy KA, Douhan RMH, Dirko VV, Deeb H, Khomyakova KI, Kukenov OI, Sokolov AS, Akimenko NY, Kokhanenko AP. Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3078. [PMID: 38063774 PMCID: PMC10707864 DOI: 10.3390/nano13233078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 09/11/2024]
Abstract
Avalanche photodiodes have emerged as a promising technology with significant potential for various medical applications. This article presents an overview of the advancements and applications of avalanche photodiodes in the field of medical imaging. Avalanche photodiodes offer distinct advantages over traditional photodetectors, including a higher responsivity, faster response times, and superior signal-to-noise ratios. These characteristics make avalanche photodiodes particularly suitable for medical-imaging modalities that require a high detection efficiency, excellent timing resolution, and enhanced spatial resolution. This review explores the key features of avalanche photodiodes, discusses their applications in medical-imaging techniques, and highlights the challenges and future prospects in utilizing avalanche photodiodes for medical purposes. Special attention is paid to the recent progress in silicon-compatible avalanche photodiodes.
Collapse
Affiliation(s)
- Kirill A. Lozovoy
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Rahaf M. H. Douhan
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Vladimir V. Dirko
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Hazem Deeb
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Kristina I. Khomyakova
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Olzhas I. Kukenov
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Arseniy S. Sokolov
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Nataliya Yu. Akimenko
- Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia;
| | - Andrey P. Kokhanenko
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| |
Collapse
|
43
|
Lyons A, Zickus V, Álvarez-Mendoza R, Triggiani D, Tamma V, Westerberg N, Tassieri M, Faccio D. Fluorescence lifetime Hong-Ou-Mandel sensing. Nat Commun 2023; 14:8005. [PMID: 38049423 PMCID: PMC10696080 DOI: 10.1038/s41467-023-43868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Fluorescence Lifetime Imaging Microscopy in the time domain is typically performed by recording the arrival time of photons either by using electronic time tagging or a gated detector. As such the temporal resolution is limited by the performance of the electronics to 100's of picoseconds. Here, we demonstrate a fluorescence lifetime measurement technique based on photon-bunching statistics with a resolution that is only dependent on the duration of the reference photon or laser pulse, which can readily reach the 1-0.1 picosecond timescale. A range of fluorescent dyes having lifetimes spanning from 1.6 to 7 picoseconds have been here measured with only ~1 s measurement duration. We corroborate the effectiveness of the technique by measuring the Newtonian viscosity of glycerol/water mixtures by means of a molecular rotor having over an order of magnitude variability in lifetime, thus introducing a new method for contact-free nanorheology. Accessing fluorescence lifetime information at such high temporal resolution opens a doorway for a wide range of fluorescent markers to be adopted for studying yet unexplored fast biological processes, as well as fundamental interactions such as lifetime shortening in resonant plasmonic devices.
Collapse
Affiliation(s)
- Ashley Lyons
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Vytautas Zickus
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257, Vilnius, Lithuania
| | | | - Danilo Triggiani
- School of Mathematics and Physics, University of Portsmouth, Portsmouth, PO1 3QL, UK
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth, PO1 3QL, UK
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
| | - Niclas Westerberg
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manlio Tassieri
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
44
|
Vogel R, Prins PT, Rabouw FT, Weckhuysen BM. Operando time-gated Raman spectroscopy of solid catalysts. Catal Sci Technol 2023; 13:6366-6376. [PMID: 38014392 PMCID: PMC10642357 DOI: 10.1039/d3cy00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 11/29/2023]
Abstract
Operando Raman spectroscopy is a powerful analytical tool to provide new insights in the working and deactivation principles of solid catalysts. Intense fluorescence can obscure Raman spectra to the extent that they become uninterpretable. Time-gated Raman spectroscopy, based on pulsed excitation and time-gated detection, suppresses background fluorescence based on its slower time dynamics compared to Raman scattering. In this work, we demonstrate and quantify the benefit of time gating for operando Raman spectroscopy, using the propane dehydrogenation reaction over Pt-Sn-based catalyst materials as a case study. Experimental time-gated Raman spectroscopy data are fitted to a time-trace model that is used to optimize time gating for the maximum signal-to-background-noise ratio. Time-gated Raman spectra of a spent propane dehydrogenation catalyst material show lower background fluorescence compared to the time-integrated Raman spectra counterparts. Simultaneous operando time-gated and time-integrated Raman spectroscopy experiments demonstrate the benefit of time gating to obtain more distinct Raman features, especially in the early coking stages where spectra are dominated by background fluorescence.
Collapse
Affiliation(s)
- Robin Vogel
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - P Tim Prins
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Freddy T Rabouw
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University Princetonplein 1 3584 CC Utrecht The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
45
|
Acconcia G, Ceccarelli F, Gulinatti A, Rech I. Timing measurements with silicon single photon avalanche diodes: principles and perspectives [Invited]. OPTICS EXPRESS 2023; 31:33963-33999. [PMID: 37859164 DOI: 10.1364/oe.491400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/10/2023] [Indexed: 10/21/2023]
Abstract
Picosecond timing of single photons has laid the foundation of a great variety of applications, from life sciences to quantum communication, thanks to the combination of ultimate sensitivity with a bandwidth that cannot be reached by analog recording techniques. Nowadays, more and more applications could still be enabled or advanced by progress in the available instrumentation, resulting in a steadily increasing research interest in this field. In this scenario, single-photon avalanche diodes (SPADs) have gained a key position, thanks to the remarkable precision they are able to provide, along with other key advantages like ruggedness, compactness, large signal amplitude, and room temperature operation, which neatly distinguish them from other solutions like superconducting nanowire single-photon detectors and silicon photomultipliers. With this work, we aim at filling a gap in the literature by providing a thorough discussion of the main design rules and tradeoffs for silicon SPADs and the electronics employed along them to achieve high timing precision. In the end, we conclude with our outlook on the future by summarizing new routes that could benefit from present and prospective timing features of silicon SPADs.
Collapse
|
46
|
Bian L, Song H, Peng L, Chang X, Yang X, Horstmeyer R, Ye L, Zhu C, Qin T, Zheng D, Zhang J. High-resolution single-photon imaging with physics-informed deep learning. Nat Commun 2023; 14:5902. [PMID: 37737270 PMCID: PMC10516985 DOI: 10.1038/s41467-023-41597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
High-resolution single-photon imaging remains a big challenge due to the complex hardware manufacturing craft and noise disturbances. Here, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging with enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 × 32 pixels, 90 scenes, 10 different bit depths, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this physical noise model, we synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depths, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique in a series of experiments including microfluidic inspection, Fourier ptychography, and high-speed imaging. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance.
Collapse
Affiliation(s)
- Liheng Bian
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology (Jiaxing), Jiaxing, 314019, China.
| | - Haoze Song
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
| | - Lintao Peng
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuyang Chang
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
| | - Xi Yang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunli Zhu
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
| | - Tong Qin
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
| | - Dezhi Zheng
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology (Jiaxing), Jiaxing, 314019, China
| | - Jun Zhang
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
47
|
Zhou X, Bec J, Ehrlich K, Garcia AA, Marcu L. Pulse-sampling fluorescence lifetime imaging: evaluation of photon economy. OPTICS LETTERS 2023; 48:4578-4581. [PMID: 37656559 PMCID: PMC10883700 DOI: 10.1364/ol.490096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/26/2023] [Indexed: 09/03/2023]
Abstract
This Letter presents an experimental study comparing the photon rate and photon economy of pulse sampling fluorescence lifetime imaging (PS-FLIm) with the conventional time-correlated single photon counting (TCSPC) technique. We found that PS-FLIm has a significantly higher photon detection rate (200 MHz) compared with TCSPC (2-8 MHz) but lower photon economy (4-5 versus 1-1.3). The main factor contributing to the lower photon economy in PS-FLIm is laser pulse variability. These results demonstrate that PS-FLIm offers 25× faster imaging speed than TCSPC while maintaining room light rejection in clinical settings. This makes PS-FLIm a robust technique for clinical applications.
Collapse
|
48
|
Liu Q, Fong B, Yoo S, Unruh JR, Guo F, Yu Z, Chen J, Si K, Li R, Zhou C. Nascent mitochondrial proteins initiate the localized condensation of cytosolic protein aggregates on the mitochondrial surface. Proc Natl Acad Sci U S A 2023; 120:e2300475120. [PMID: 37494397 PMCID: PMC10401023 DOI: 10.1073/pnas.2300475120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.
Collapse
Affiliation(s)
- Qingqing Liu
- Buck Institute for Research on Aging, Novato, CA94945
| | - Benjamin Fong
- Buck Institute for Research on Aging, Novato, CA94945
| | - Seungmin Yoo
- Buck Institute for Research on Aging, Novato, CA94945
| | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS66160
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21218
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore117411, Singapore
| | - Chuankai Zhou
- Buck Institute for Research on Aging, Novato, CA94945
| |
Collapse
|
49
|
Yao D, Connolly PWR, Sykes AJ, Shah YD, Accarino C, Grant J, Cumming DRS, Buller GS, McLaughlin S, Altmann Y. Rapid single-photon color imaging of moving objects. OPTICS EXPRESS 2023; 31:26610-26625. [PMID: 37710518 DOI: 10.1364/oe.493172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 09/16/2023]
Abstract
This paper outlines an experimental demonstration of a Bayesian image reconstruction approach to achieve rapid single-photon color imaging of moving objects. The capacity to extract the color of objects is important in a variety of target identification and computer vision applications. Nonetheless, it remains challenging to achieve high-speed color imaging of moving objects in low-photon flux environments. The low-photon regime presents particular challenges for efficient spectral separation and identification, while unsupervised image reconstruction algorithms are often slow and computationally expensive. In this paper, we address both of these difficulties using a combination of hardware and computational solutions. We demonstrate color imaging using a Single-Photon Avalanche Diode (SPAD) detector array for rapid, low-light-level data acquisition, with an integrated color filter array (CFA) for efficient spectral unmixing. High-speed image reconstruction is achieved using a bespoke Bayesian algorithm to produce high-fidelity color videos. The analysis is conducted first on simulated data allowing different pixel formats and photon flux scenarios to be investigated. Experiments are then performed using a plasmonic metasurface-based CFA, integrated with a 64 × 64 pixel format SPAD array. Passive imaging is conducted using white-light illumination of multi-colored, moving targets. Intensity information is recorded in a series of 2D photon-counting SPAD frames, from which accurate color information is extracted using the fast Bayesian method introduced herein. The per-frame reconstruction rate proves to be hundreds of times faster than the previous computational method. Furthermore, this approach yields additional information in the form of uncertainty measures, which can be used to assist with imaging system optimization and decision-making in real-world applications. The techniques demonstrated point the way towards rapid video-rate single-photon color imaging. The developed Bayesian algorithm, along with more advanced SPAD technology and utilization of time-correlated single-photon counting (TCSPC) will permit live 3D, color videography in extremely low-photon flux environments.
Collapse
|
50
|
Wang H, Li ZJ, Hu XM, Hao H, Guo JW, Huang YH, Liu H, Wan C, Tu XC, Jia XQ, Zhang LB, Chen J, Kang L, Yue T, Zhao QY, Wu PH. Image distortion by ambiguous multiple-photon detections in a superconducting nanowire single-photon imager and the correction method. OPTICS EXPRESS 2023; 31:23579-23588. [PMID: 37475438 DOI: 10.1364/oe.492616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023]
Abstract
Scaling up superconducting nanowire single-photon detectors (SNSPDs) into a large array for imaging applications is the current pursuit. Although various readout architectures have been proposed, they cannot resolve multiple-photon detections (MPDs) currently, which limits the operation of the SNSPD arrays at high photon flux. In this study, we focused on the readout ambiguity of a superconducting nanowire single-photon imager applying time-of-flight multiplexing readout. The results showed that image distortion depended on both the incident photon flux and the imaging object. By extracting multiple-photon detections on idle pixels, which were virtual because of the incorrect mapping from the ambiguous readout, a correction method was proposed. An improvement factor of 1.3~9.3 at a photon flux of µ = 5 photon/pulse was obtained, which indicated that joint development of the pixel design and restoration algorithm could compensate for the readout ambiguity and increase the dynamic range.
Collapse
|