1
|
Filan C, Charles S, Casteleiro Costa P, Niu W, Cheng B, Wen Z, Lu H, Robles FE. Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids. Sci Rep 2024; 14:22331. [PMID: 39333572 PMCID: PMC11436713 DOI: 10.1038/s41598-024-72038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable three-dimensional (3D) architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution quantitative image analysis of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.
Collapse
Affiliation(s)
- Caroline Filan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Seleipiri Charles
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
| | - Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Brian Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Hang Lu
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia, 30332, USA
| | - Francisco E Robles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA.
| |
Collapse
|
2
|
Najar U, Barolle V, Balondrade P, Fink M, Boccara C, Aubry A. Harnessing forward multiple scattering for optical imaging deep inside an opaque medium. Nat Commun 2024; 15:7349. [PMID: 39187504 PMCID: PMC11347655 DOI: 10.1038/s41467-024-51619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here, we report on a de-scanned measurement of a high-dimension reflection matrix R via low coherence interferometry. Then, we show how a set of independent focusing laws can be extracted for each medium voxel through an iterative multi-scale analysis of wave distortions contained in R. It enables an optimal and local compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art.
Collapse
Affiliation(s)
- Ulysse Najar
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Victor Barolle
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Paul Balondrade
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
3
|
Morawiec S, Ajduk A, Stremplewski P, Kennedy BF, Szkulmowski M. Full-field optical coherence microscopy enables high-resolution label-free imaging of the dynamics of live mouse oocytes and early embryos. Commun Biol 2024; 7:1057. [PMID: 39191989 DOI: 10.1038/s42003-024-06745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
High quality label-free imaging of oocytes and early embryos is essential for accurate assessment of their developmental potential, a key element of assisted reproduction procedures. To achieve this goal, we propose full-field optical coherence microscopy (FF-OCM), constructed as a compact module fully integrated with a commercial wide-field fluorescence microscope. Our system achieves optical sectioning in wide-field, high in-plane resolution of 0.5 µm, and high sensitivity to backscattered light. To demonstrate its imaging capabilities, we study live mouse oocytes and embryos at all important stages of meiotic maturation and early embryogenesis. Our system enables visualization of intracellular structures, which are not visible in common bright-field microscopy, i.e., internal structure of nuclear apparatus, cytoskeletal filaments, cellular cortex, cytoplasmic protrusions, or zona pellucida features. Additionally, we visualize and quantify intracellular dynamics like cytoplasmic stirring motion, nuclear envelope fluctuations and nucleolus mobility. Altogether, we demonstrate that FF-OCM is a powerful tool for research in developmental biology that also holds great potential for non-invasive time-lapse monitoring of oocyte and embryo quality in assisted reproduction.
Collapse
Affiliation(s)
- Seweryn Morawiec
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland.
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycjusz Stremplewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Brendan F Kennedy
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
4
|
Meleppat RK, Valente D, Lee S, Jonnal RS, Doble N, Zawadzki RJ. On-axis full-field swept-source optical coherence tomography for murine retinal imaging. OPTICS LETTERS 2024; 49:4630-4633. [PMID: 39146121 DOI: 10.1364/ol.531116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
A full-field swept-source optical coherence tomography (FF-SS-OCT) for in vivo murine retinal imaging is demonstrated. The on-axis FF-SS-OCT system was built in a Mach-Zehnder interferometer configuration employing a tunable laser source with an adjustable sweep rate and sweep range in conjunction with a fast 2D-CMOS camera. A large field retinal (coherent) illumination was accomplished using an imaging interface comprised of a short-focal length imaging lens and a contact lens. The magnification between the camera and retina (spatial sampling) was appropriately chosen to record the microscopic structural features of the retina in the image. A pupil stop was employed in the detection path to reject unwanted backscattering from the mouse eye and other sources and limit aberrations distorting the retinal images. In vivo mouse retinal imaging was performed at a sweep rate of 150 Hz to acquire volumes unaffected by the system vibrations, which predominated at lower frequencies. Operating the FF-SS-OCT at this speed yielded an effective axial scan rate of 20 million A-scans/s and a field of view of 820 × 410 µm (24.12° × 12.06°). High-quality retinal B-scans and enface images of the retina were obtained with the SS-FF-OCT, revealing all major retinal layers and vascular plexuses.
Collapse
|
5
|
Oldenburg AL, Ji P, Yu X, Yang L. Compressed intracellular motility via non-uniform temporal sampling in dynamic optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076002. [PMID: 38966847 PMCID: PMC11223688 DOI: 10.1117/1.jbo.29.7.076002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Significance Optical coherence tomography has great utility for capturing dynamic processes, but such applications are particularly data-intensive. Samples such as biological tissues exhibit temporal features at varying time scales, which makes data reduction challenging. Aim We propose a method for capturing short- and long-term correlations of a sample in a compressed way using non-uniform temporal sampling to reduce scan time and memory overhead. Approach The proposed method separates the relative contributions of white noise, fluctuating features, and stationary features. The method is demonstrated on mammary epithelial cell spheroids in three-dimensional culture for capturing intracellular motility without loss of signal integrity. Results Results show that the spatial patterns of motility are preserved and that hypothesis tests of spheroids treated with blebbistatin, a motor protein inhibitor, are unchanged with up to eightfold compression. Conclusions The ability to measure short- and long-term correlations compressively will enable new applications in (3+1)D imaging and high-throughput screening.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill, North Carolina, United States
| | - Pan Ji
- University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Chapel Hill, North Carolina, United States
| | - Xiao Yu
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill, North Carolina, United States
| | - Lin Yang
- University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Chapel Hill, North Carolina, United States
| |
Collapse
|
6
|
Chen K, Swanson S, Bizheva K. Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:4162-4175. [PMID: 39022542 PMCID: PMC11249681 DOI: 10.1364/boe.527797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Dynamic optical coherence tomography (dOCT) utilizes time-dependent signal intensity fluctuations to enhance contrast in OCT images and indirectly probe physiological processes in cells. Majority of the dOCT studies published so far are based on acquisition of 2D images (B-scans or C-scans) by utilizing point-scanning Fourier domain (spectral or swept-source) OCT or full-field OCT respectively, primarily due to limitations in the image acquisition rate. Here we introduce a novel, high-speed spectral domain line-field dOCT (SD-LF-dOCT) system and image acquisition protocols designed for fast, volumetric dOCT imaging of biological tissues. The imaging probe is based on an exchangeable afocal lens pair that enables selection of combinations of transverse resolution (from 1.1 µm to 6.4 µm) and FOV (from 250 × 250 µm2 to 1.4 × 1.4 mm2), suitable for different biomedical applications. The system offers axial resolution of ∼ 1.9 µm in biological tissue, assuming an average refractive index of 1.38. Maximum sensitivity of 90.5 dB is achieved for 3.5 mW optical imaging power at the tissue surface and maximum camera acquisition rate of 2,000 fps. Volumetric dOCT images acquired with the SD-LF-dOCT system from plant tissue (cucumber), animal tissue (mouse liver) and human prostate carcinoma spheroids allow for volumetric visualization of the tissues' cellular and sub-cellular structures and assessment of cellular motility.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Stephanie Swanson
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, Canada
- System Design Engineering Department, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Hsiao YT, Liao IH, Wu BK, Chu HPC, Hsieh CL. Probing chromatin condensation dynamics in live cells using interferometric scattering correlation spectroscopy. Commun Biol 2024; 7:763. [PMID: 38914653 PMCID: PMC11196589 DOI: 10.1038/s42003-024-06457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Chromatin organization and dynamics play important roles in governing the regulation of nuclear processes of biological cells. However, due to the constant diffusive motion of chromatin, examining chromatin nanostructures in living cells has been challenging. In this study, we introduce interferometric scattering correlation spectroscopy (iSCORS) to spatially map nanoscopic chromatin configurations within unlabeled live cell nuclei. This label-free technique captures time-varying linear scattering signals generated by the motion of native chromatin on a millisecond timescale, allowing us to deduce chromatin condensation states. Using iSCORS imaging, we quantitatively examine chromatin dynamics over extended periods, revealing spontaneous fluctuations in chromatin condensation and heterogeneous compaction levels in interphase cells, independent of cell phases. Moreover, we observe changes in iSCORS signals of chromatin upon transcription inhibition, indicating that iSCORS can probe nanoscopic chromatin structures and dynamics associated with transcriptional activities. Our scattering-based optical microscopy, which does not require labeling, serves as a powerful tool for visualizing dynamic chromatin nano-arrangements in live cells. This advancement holds promise for studying chromatin remodeling in various crucial cellular processes, such as stem cell differentiation, mechanotransduction, and DNA repair.
Collapse
Affiliation(s)
- Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - I-Hsin Liao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Bo-Kuan Wu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | | | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan.
- Department of Physics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhang S, Yang B, Yang H, Zhao J, Zhang Y, Gao Y, Monteiro O, Zhang K, Liu B, Wang S. Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients. Sci Bull (Beijing) 2024; 69:1748-1756. [PMID: 38702279 DOI: 10.1016/j.scib.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/06/2024]
Abstract
An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin (H&E) histology, such as frozen section, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography (D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group (n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma (IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ (DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests (n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%; only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow (approximately 3 min) was significantly shorter than that required for traditional procedures (approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/surgery
- Breast Neoplasms/pathology
- Tomography, Optical Coherence/methods
- Deep Learning
- Female
- Prospective Studies
- Middle Aged
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Ductal, Breast/pathology
- Aged
- Adult
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Intraoperative Period
Collapse
Affiliation(s)
- Shuwei Zhang
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Bin Yang
- China ESG Institute, Capital University of Economics and Business, Beijing 100070, China; Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Houpu Yang
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Jin Zhao
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Yuanyuan Zhang
- Department of Pathology, Peking University People's Hospital, Beijing 100044, China
| | - Yuanxu Gao
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Olivia Monteiro
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China; College of Future Technology, Peking University, Beijing 100091, China.
| | - Bo Liu
- School of Mathematical and Computational Sciences, Massey University, Auckland 0745, New Zealand.
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
9
|
Branciforti F, Salvi M, D’Agostino F, Marzola F, Cornacchia S, De Titta MO, Mastronuzzi G, Meloni I, Moschetta M, Porciani N, Sciscenti F, Spertini A, Spilla A, Zagaria I, Deloria AJ, Deng S, Haindl R, Szakacs G, Csiszar A, Liu M, Drexler W, Molinari F, Meiburger KM. Segmentation and Multi-Timepoint Tracking of 3D Cancer Organoids from Optical Coherence Tomography Images Using Deep Neural Networks. Diagnostics (Basel) 2024; 14:1217. [PMID: 38928633 PMCID: PMC11203156 DOI: 10.3390/diagnostics14121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Recent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors. Here, we propose an automatic deep learning-based pipeline with convolutional neural networks that synergistically includes optimized preprocessing steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing methods, showcasing good generalizability and tracking capabilities over an extended period of 13 days. The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identification. The proposed comprehensive approach enables the accurate tracking of organoid growth and morphological changes over time, advancing organoid analysis and serving as a solid foundation for future studies for drug screening and tumor drug sensitivity detection based on organoids.
Collapse
Affiliation(s)
- Francesco Branciforti
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Massimo Salvi
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Filippo D’Agostino
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Francesco Marzola
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Sara Cornacchia
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Maria Olimpia De Titta
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Girolamo Mastronuzzi
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Isotta Meloni
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Miriam Moschetta
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Niccolò Porciani
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Fabrizio Sciscenti
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Alessandro Spertini
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Andrea Spilla
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Ilenia Zagaria
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Abigail J. Deloria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (A.J.D.); (S.D.); (R.H.); (M.L.); (W.D.)
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (A.J.D.); (S.D.); (R.H.); (M.L.); (W.D.)
| | - Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (A.J.D.); (S.D.); (R.H.); (M.L.); (W.D.)
| | - Gergely Szakacs
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (A.C.)
| | - Agnes Csiszar
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (A.C.)
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (A.J.D.); (S.D.); (R.H.); (M.L.); (W.D.)
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (A.J.D.); (S.D.); (R.H.); (M.L.); (W.D.)
| | - Filippo Molinari
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| | - Kristen M. Meiburger
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.B.); (M.S.); (F.D.); (F.M.); (S.C.); (M.O.D.T.); (G.M.); (I.M.); (M.M.); (N.P.); (F.S.); (A.S.); (A.S.); (I.Z.); (F.M.)
| |
Collapse
|
10
|
Iyer RR, Žurauskas M, Rao Y, Chaney EJ, Boppart SA. Bichromatic tetraphasic full-field optical coherence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22704. [PMID: 38584966 PMCID: PMC10996847 DOI: 10.1117/1.jbo.29.s2.s22704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Significance Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast. Aim We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts. Approach BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast. Results BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors. Conclusions BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Žurauskas
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yug Rao
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana Champaign, NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
11
|
Tse T, Chen Y, Siadati M, Miao Y, Song J, Ma D, Mammo Z, Ju MJ. Generalized 3D registration algorithm for enhancing retinal optical coherence tomography images. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066002. [PMID: 38745984 PMCID: PMC11091473 DOI: 10.1117/1.jbo.29.6.066002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Significance Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.
Collapse
Affiliation(s)
- Tiffany Tse
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Yudan Chen
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Mahsa Siadati
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Yusi Miao
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Jun Song
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
| | - Da Ma
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, United States
| | - Zaid Mammo
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Myeong Jin Ju
- The University of British Columbia, School of Biomedical Engineering, Faculty of Medicine and Applied Science, Vancouver, British Columbia, Canada
- The University of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Fei K, Luo Z, Chen Y, Huang Y, Li S, Mazlin V, Boccara AC, Yuan J, Xiao P. Cellular structural and functional imaging of donor and pathological corneas with label-free dual-mode full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3869-3888. [PMID: 38867788 PMCID: PMC11166435 DOI: 10.1364/boe.525116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
In this study, a dual-mode full-field optical coherence tomography (FFOCT) was customized for label-free static and dynamic imaging of corneal tissues, including donor grafts and pathological specimens. Static images effectively depict relatively stable structures such as stroma, scar, and nerve fibers, while dynamic images highlight cells with active intracellular metabolism, specifically for corneal epithelial cells. The dual-mode images complementarily demonstrate the 3D microstructural features of the cornea and limbus. Dual-modal imaging reveals morphological and functional changes in corneal epithelial cells without labeling, indicating cellular apoptosis, swelling, deformation, dynamic signal alterations, and distinctive features of inflammatory cells in keratoconus and corneal leukoplakia. These findings propose dual-mode FFOCT as a promising technique for cellular-level cornea and limbus imaging.
Collapse
Affiliation(s)
- Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhongzhou Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yupei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Viacheslav Mazlin
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS, 1 rue Jussieu, Paris 75005, France
| | - Albert Claude Boccara
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS, 1 rue Jussieu, Paris 75005, France
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
13
|
Leartprapun N, Zeng Z, Hajjarian Z, Bossuyt V, Nadkarni SK. Laser speckle rheological microscopy reveals wideband viscoelastic spectra of biological tissues. SCIENCE ADVANCES 2024; 10:eadl1586. [PMID: 38718128 PMCID: PMC11078189 DOI: 10.1126/sciadv.adl1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ziqian Zeng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Veerle Bossuyt
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Wang B, Ganjee R, Khandaker I, Flohr K, He Y, Li G, Wesalo J, Sahel JA, da Silva S, Pi S. Deep learning based characterization of human organoids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3112-3127. [PMID: 38855657 PMCID: PMC11161340 DOI: 10.1364/boe.515781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Organoids, derived from human induced pluripotent stem cells (hiPSCs), are intricate three-dimensional in vitro structures that mimic many key aspects of the complex morphology and functions of in vivo organs such as the retina and heart. Traditional histological methods, while crucial, often fall short in analyzing these dynamic structures due to their inherently static and destructive nature. In this study, we leveraged the capabilities of optical coherence tomography (OCT) for rapid, non-invasive imaging of both retinal, cerebral, and cardiac organoids. Complementing this, we developed a sophisticated deep learning approach to automatically segment the organoid tissues and their internal structures, such as hollows and chambers. Utilizing this advanced imaging and analysis platform, we quantitatively assessed critical parameters, including size, area, volume, and cardiac beating, offering a comprehensive live characterization and classification of the organoids. These findings provide profound insights into the differentiation and developmental processes of organoids, positioning quantitative OCT imaging as a potentially transformative tool for future organoid research.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Razieh Ganjee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keevon Flohr
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuanhang He
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guang Li
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Wesalo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Liu Y, Abd El-Sadek I, Morishita R, Makita S, Mori T, Furukawa A, Matsusaka S, Yasuno Y. Neural-network based high-speed volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3216-3239. [PMID: 38855683 PMCID: PMC11161370 DOI: 10.1364/boe.519964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate deep-learning neural network (NN)-based dynamic optical coherence tomography (DOCT), which generates high-quality logarithmic-intensity-variance (LIV) DOCT images from only four OCT frames. The NN model is trained for tumor spheroid samples using a customized loss function: the weighted mean absolute error. This loss function enables highly accurate LIV image generation. The fidelity of the generated LIV images to the ground truth LIV images generated using 32 OCT frames is examined via subjective image observation and statistical analysis of image-based metrics. Fast volumetric DOCT imaging with an acquisition time of 6.55 s/volume is demonstrated using this NN-based method.
Collapse
Affiliation(s)
- Yusong Liu
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City 34517, Damietta, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuko Furukawa
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
17
|
Filan C, Charles S, Casteleiro Costa P, Niu W, Cheng BF, Wen Z, Lu H, Robles FE. Non-Invasive Label-free Analysis Pipeline for In Situ Characterization of Differentiation in 3D Brain Organoid Models. RESEARCH SQUARE 2024:rs.3.rs-4049577. [PMID: 38645145 PMCID: PMC11030508 DOI: 10.21203/rs.3.rs-4049577/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable 3D architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution imaging of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.
Collapse
Affiliation(s)
- Caroline Filan
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30318, USA
| | - Seleipiri Charles
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
| | - Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, 30332, USA
| | - Weibo Niu
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia 30322, USA
| | - Brian F. Cheng
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30318, USA
| | - Zhexing Wen
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia 30322, USA
- Emory University School of Medicine, Departments of Cell Biology and Neurology, Atlanta, Georgia, 30322, USA
| | - Hang Lu
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, Georgia 30332, USA
| | - Francisco E. Robles
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30318, USA
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30318, USA
| |
Collapse
|
18
|
Ren C, Hao S, Wang F, Matt A, Amaral MM, Yang D, Wang L, Zhou C. Dynamic contrast optical coherence tomography (DyC-OCT) for label-free live cell imaging. Commun Biol 2024; 7:278. [PMID: 38448627 PMCID: PMC10918170 DOI: 10.1038/s42003-024-05973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.
Collapse
Affiliation(s)
- Chao Ren
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Abigail Matt
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Marcello Magri Amaral
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| | - Daniel Yang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leyao Wang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA.
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA.
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Abd El-Sadek I, Morishita R, Mori T, Makita S, Mukherjee P, Matsusaka S, Yasuno Y. Label-free visualization and quantification of the drug-type-dependent response of tumor spheroids by dynamic optical coherence tomography. Sci Rep 2024; 14:3366. [PMID: 38336794 PMCID: PMC10858208 DOI: 10.1038/s41598-024-53171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of 0 (control), 0.1, 1, and 10 µM for 1, 3, and 6 days. In addition, fluorescence microscopy imaging was performed for reference. The D-OCT imaging was performed using a custom-built OCT device. Two algorithms, namely logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) were used to visualize the tissue dynamics. The spheroids treated with 0.1 and 1 µM TAM appeared similar to the control spheroid, whereas those treated with 10 µM TAM had significant structural corruption and decreasing LIV and OCDS[Formula: see text] over treatment time. The spheroids treated with PTX had decreasing volumes and decrease of LIV and OCDS[Formula: see text] signals over time at most PTX concentrations. The spheroids treated with DOX had decreasing and increasing volumes over time at DOX concentrations of 1 and 10 µM, respectively. Meanwhile, the LIV and OCDS[Formula: see text] signals decreased over treatment time at all DOX concentrations. The D-OCT, particularly OCDS[Formula: see text], patterns were consistent with the fluorescence microscopic patterns. The diversity in the structural and D-OCT results among the drug types and among the concentrations are explained by the mechanisms of the drugs. The presented results suggest that D-OCT is useful for evaluating the difference in the tumor spheroid response to different drugs and it can be a useful tool for anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
20
|
Roberto de Barros N, Wang C, Maity S, Peirsman A, Nasiri R, Herland A, Ermis M, Kawakita S, Gregatti Carvalho B, Hosseinzadeh Kouchehbaghi N, Donizetti Herculano R, Tirpáková Z, Mohammad Hossein Dabiri S, Lucas Tanaka J, Falcone N, Choroomi A, Chen R, Huang S, Zisblatt E, Huang Y, Rashad A, Khorsandi D, Gangrade A, Voskanian L, Zhu Y, Li B, Akbari M, Lee J, Remzi Dokmeci M, Kim HJ, Khademhosseini A. Engineered organoids for biomedical applications. Adv Drug Deliv Rev 2023; 203:115142. [PMID: 37967768 PMCID: PMC10842104 DOI: 10.1016/j.addr.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.
Collapse
Affiliation(s)
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; São Paulo State University (UNESP), Bioengineering and Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jean Lucas Tanaka
- Butantan Institute, Viral Biotechnology Laboratory, São Paulo, SP Brazil; University of São Paulo (USP), São Paulo, SP Brazil
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Elisheva Zisblatt
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.
| |
Collapse
|
21
|
Xia T, Umezu K, Scully DM, Wang S, Larina IV. In vivo volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography. OPTICA 2023; 10:1439-1451. [PMID: 38665775 PMCID: PMC11044847 DOI: 10.1364/optica.499927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Deirdre M. Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
23
|
Simon A, Badachi Y, Ropers J, Laurent I, Dong L, Da Maia E, Bourcier A, Canlorbe G, Uzan C. Value of high-resolution full-field optical coherence tomography and dynamic cell imaging for one-stop rapid diagnosis breast clinic. Cancer Med 2023; 12:19500-19511. [PMID: 37772663 PMCID: PMC10587972 DOI: 10.1002/cam4.6560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Full-field optical coherence tomography combined with dynamic cell imaging (D-FFOCT) is a new, simple-to-use, nondestructive, quick technique that can provide sufficient spatial resolution to mimic histopathological analysis. The objective of this study was to evaluate diagnostic performance of D-FFOCT for one-stop rapid diagnosis breast clinic. METHODS Dynamic full-field optical coherence tomography was applied to fresh, untreated breast and nodes biopsies. Four different readers (senior and junior radiologist, surgeon, and pathologist) analyzed the samples without knowing final histological diagnosis or American College of Radiology classification. The results were compared to conventional processing and staining (hematoxylin-eosin). RESULTS A total of 217 biopsies were performed on 152 patients. There were 144 breast biopsies and 61 lymph nodes with 101 infiltrative cancers (49.27%), 99 benign lesions (48.29%), 3 ductal in situ carcinoma (1.46%), and 2 atypias (0.98%). The diagnostic performance results were as follow: sensitivity: 77% [0.7;0.82], specificity: 64% [0.58;0.71], PPV: 74% [0.68;0.78], and NPV: 75% [0.72;0.78]. A large image atlas was created as well as a diagnosis algorithm from the readers' experience. CONCLUSION With 74% PPV and 75% NPV, D-FFOCT is not yet ready to be used in clinical practice to identify breast cancer. This is mainly explained by the lack of experience and knowledge of this new technic by the four lectors. By training with the diagnosis algorithm and the image atlas, radiologists could have better outcomes allowing quick detection of breast cancer and lymph node involvement. Deep learning could also be used, and further investigation will follow.
Collapse
Affiliation(s)
- Alexis Simon
- Department of Radiology, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Yasmina Badachi
- Department of Radiology, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Jacques Ropers
- Clinical Research Unit, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Isaura Laurent
- Clinical Research Unit, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Lida Dong
- Department of Pathology, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Elisabeth Da Maia
- Department of Pathology, Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Agnès Bourcier
- Department of Gynaecological and Breast Surgery and OncologyAssistance Publique des Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Geoffroy Canlorbe
- Department of Gynaecological and Breast Surgery and OncologyAssistance Publique des Hôpitaux de Paris (AP‐HP)ParisFrance
- Centre de Recherche Saint‐Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and TherapeuticsSorbonne UniversityParisFrance
- Institut Universitaire de Cancérologie (IUC)Sorbonne UniversityParisFrance
| | - Catherine Uzan
- Department of Gynaecological and Breast Surgery and OncologyAssistance Publique des Hôpitaux de Paris (AP‐HP)ParisFrance
- Centre de Recherche Saint‐Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and TherapeuticsSorbonne UniversityParisFrance
- Institut Universitaire de Cancérologie (IUC)Sorbonne UniversityParisFrance
| |
Collapse
|
24
|
Monfort T, Azzollini S, Brogard J, Clémençon M, Slembrouck-Brec A, Forster V, Picaud S, Goureau O, Reichman S, Thouvenin O, Grieve K. Dynamic full-field optical coherence tomography module adapted to commercial microscopes allows longitudinal in vitro cell culture study. Commun Biol 2023; 6:992. [PMID: 37770552 PMCID: PMC10539404 DOI: 10.1038/s42003-023-05378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as a label-free imaging tool, capable of resolving cell types and organelles within 3D live samples, whilst monitoring their activity at tens of milliseconds resolution. Here, a D-FFOCT module design is presented which can be coupled to a commercial microscope with a stage top incubator, allowing non-invasive label-free longitudinal imaging over periods of minutes to weeks on the same sample. Long term volumetric imaging on human induced pluripotent stem cell-derived retinal organoids is demonstrated, highlighting tissue and cell organization processes such as rosette formation and mitosis as well as cell shape and motility. Imaging on retinal explants highlights single 3D cone and rod structures. An optimal workflow for data acquisition, postprocessing and saving is demonstrated, resulting in a time gain factor of 10 compared to prior state of the art. Finally, a method to increase D-FFOCT signal-to-noise ratio is demonstrated, allowing rapid organoid screening.
Collapse
Affiliation(s)
- Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France
| | - Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Jérémy Brogard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Marilou Clémençon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Amélie Slembrouck-Brec
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Valerie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France.
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France.
| |
Collapse
|
25
|
Abd El-Sadek I, Shen LTW, Mori T, Makita S, Mukherjee P, Lichtenegger A, Matsusaka S, Yasuno Y. Label-free drug response evaluation of human derived tumor spheroids using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15377. [PMID: 37717067 PMCID: PMC10505213 DOI: 10.1038/s41598-023-41846-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
This study aims at demonstrating label-free drug-response-patterns assessment of different tumor spheroids and drug types by dynamic optical coherence tomography (D-OCT). The study involved human breast cancer (MCF-7) and colon cancer (HT-29) spheroids. The MCF-7 and HT-29 spheroids were treated with paclitaxel (Taxol; PTX) and the active metabolite of irinotecan SN-38, respectively. The drugs were applied with 0 (control), 0.1, 1, and 10 μM concentrations and the treatment durations were 1, 3, and 6 days. A swept-source OCT microscope equipped with a repeated raster scanning protocol was used to scan the spheroids. Logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) algorithms were used to visualize the tumor spheroid dynamics. LIV and OCDS[Formula: see text] images visualized different response patterns of the two types of spheroids. In addition, spheroid morphology, LIV, and OCDS[Formula: see text] quantification showed different time-courses among the spheroid and drug types. These results may indicate different action mechanisms of the drugs. The results showed the feasibility of D-OCT for the evaluation of drug response patterns of different cell spheroids and drug types and suggest that D-OCT can perform anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
26
|
Mukherjee P, Fukuda S, Lukmanto D, Tran TH, Okada K, Makita S, El-Sadek IA, Lim Y, Yasuno Y. Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15324. [PMID: 37714913 PMCID: PMC10504276 DOI: 10.1038/s41598-023-42559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 [Formula: see text]m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Donny Lukmanto
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Thi Hang Tran
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. program in Human Biology, School of Integrative and Global Majors, Univeristy of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517, New Damietta City, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
27
|
Alhaddad S, Thouvenin O, Boccara M, Boccara C, Mazlin V. Comparative analysis of full-field OCT and optical transmission tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4845-4861. [PMID: 37791282 PMCID: PMC10545181 DOI: 10.1364/boe.494585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/05/2023]
Abstract
This work compares two tomographic imaging technologies, time-domain full-field optical coherence tomography (FFOCT) working in reflection and optical transmission tomography (OTT), using a new optical setup that combines both. We show that, due to forward-scattering properties, the axial sectioning and contrast in OTT can be optimized by tuning illumination. The influence of sample scattering and thickness are discussed. We illustrate the comparison of the two methods in static (morphology) and dynamic (metabolic contrast) regimes using cell cultures, tissues and entire organisms emphasizing the advantages of both approaches.
Collapse
Affiliation(s)
- Samer Alhaddad
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Martine Boccara
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Sorbonne Université, EPHE, UA, CNRS ; CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Viacheslav Mazlin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|
28
|
Hao S, Ren C, Wang F, Park K, Volmert BD, Aguirre A, Zhou C. Dual-modality imaging system for monitoring human heart organoids beating in vitro. OPTICS LETTERS 2023; 48:3929-3932. [PMID: 37527085 PMCID: PMC10707703 DOI: 10.1364/ol.493824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
To reveal the three-dimensional microstructure and calcium dynamics of human heart organoids (hHOs), we developed a dual-modality imaging system combining the advantages of optical coherence tomography (OCT) and fluorescence microscopy. OCT provides high-resolution volumetric structural information, while fluorescence imaging indicates the electrophysiology of the hHOs' beating behavior. We verified that concurrent OCT motion mode (M-mode) and calcium imaging retrieved the same beating pattern from the heart organoids. We further applied dynamic contrast OCT (DyC-OCT) analysis to strengthen the verification and localize the beating clusters inside the hHOs. This imaging platform provides a powerful tool for studying and assessing hHOs in vitro, with potential applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
| | - Chao Ren
- Program of Ph.D. in Imaging Science, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Kibeom Park
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Brett D. Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Chao Zhou
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| |
Collapse
|
29
|
Maldiney T, Garcia-Hermoso D, Sitterlé E, Chassot JM, Thouvenin O, Boccara C, Blot M, Piroth L, Quenot JP, Charles PE, Aimanianda V, Podac B, Boulnois L, Dalle F, Sautour M, Bougnoux ME, Lanternier F. Dynamic full-field optical coherence tomography for live-cell imaging and growth-phase monitoring in Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1183340. [PMID: 37502605 PMCID: PMC10369068 DOI: 10.3389/fcimb.2023.1183340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction The diagnosis of cutaneous manifestations of deep mycoses relies on both histopathological and direct examinations. Yet, the current diagnostic criteria cannot prevent missed cases, including invasive aspergillosis, which requires the development of a novel diagnostic approach and imaging tools. We recently introduced the use of dynamic full-field optical coherence tomography (D-FF-OCT) in fungal diagnostics with a definition approaching that of conventional microscopy and the ability to return metabolic information regarding different fungal species. The present work focuses on subcellular dynamics and live-cell imaging of Aspergillus fumigatus with D-FF-OCT to follow the fungal growth stages. Methods The A. fumigatus ATCC 204305 quality-control strain was used for all imaging experiments, following incubation times varying between 24 and 72 h at 30°C in a humidified chamber on Sabouraud dextrose agar. Fungal growth was subsequently monitored with D-FF-OCT for up to 5 h at room temperature and following the pharmacological stress of either voriconazole, amphotericin B, or caspofungin gradient concentration. Results D-FF-OCT images allow not only the visualization of intracellular trafficking of vacuoles but also an evolving dynamic segmentation of conidiophores depending on the chronological development and aging of the hyphae or the effect of antifungal treatment. The same applies to conidial heads, with the most intense D-FF-OCT signal coming from vesicles, revealing a changing dynamic within a few hours only, as well as complete extinction following subsequent drying of the Sabouraud dextrose agar. Discussion These results provide additional data on the ability of D-FF-OCT to monitor some of the main life cycle processes, dynamics, and intracellular trafficking of vacuoles in A. fumigatus, with or without the effect of pharmacological stress. Such complementary metabolic information could help both clinicians and microbiologists in either mechanistic studies toward experimental mycology or the development of a potential D-FF-OCT-guided diagnosis of superficial fungal infections.
Collapse
Affiliation(s)
- Thomas Maldiney
- Department of Intensive Care Medicine, William Morey General Hospital, Chalon-sur-Saône, France
- Lipness Team, Institut national de la santé et de la recherche médicale (INSERM) Research Centre Lipides, Nutrition, Cancer - Unité mixte de recherche (LNC-UMR)1231, University of Burgundy, Dijon, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Université Paris Cité, National Reference Centre for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Emilie Sitterlé
- Centre hospitalier universitaire (CHU) Necker Enfants Malades, Assistance publique - Hôpitaux de Paris (AP-HP), Institut Pasteur, Paris, France
| | - Jean-Marie Chassot
- Institut Langevin, École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Olivier Thouvenin
- Institut Langevin, École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Claude Boccara
- Institut Langevin, École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Mathieu Blot
- Lipness Team, Institut national de la santé et de la recherche médicale (INSERM) Research Centre Lipides, Nutrition, Cancer - Unité mixte de recherche (LNC-UMR)1231, University of Burgundy, Dijon, France
- Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France
| | - Lionel Piroth
- Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), CIC1432, Clinical Epidemiology Unit, Dijon, France
| | - Jean-Pierre Quenot
- Lipness Team, Institut national de la santé et de la recherche médicale (INSERM) Research Centre Lipides, Nutrition, Cancer - Unité mixte de recherche (LNC-UMR)1231, University of Burgundy, Dijon, France
- Institut national de la santé et de la recherche médicale (INSERM), CIC1432, Clinical Epidemiology Unit, Dijon, France
- Department of Intensive Care Medicine, Dijon Bourgogne University Hospital, Dijon, France
| | - Pierre-Emmanuel Charles
- Lipness Team, Institut national de la santé et de la recherche médicale (INSERM) Research Centre Lipides, Nutrition, Cancer - Unité mixte de recherche (LNC-UMR)1231, University of Burgundy, Dijon, France
- Department of Intensive Care Medicine, Dijon Bourgogne University Hospital, Dijon, France
| | | | - Bianca Podac
- Medical Biology Laboratory, William Morey General Hospital, Chalon-sur-Saône, France
| | - Léa Boulnois
- Medical Biology Laboratory, William Morey General Hospital, Chalon-sur-Saône, France
| | - Frédéric Dalle
- Department of Parasitology/Mycology, Dijon Bourgogne University Hospital, Dijon, France
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM) A 02.102 Procédés Alimentaires et Microbiologiques, Univ. Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Marc Sautour
- Department of Parasitology/Mycology, Dijon Bourgogne University Hospital, Dijon, France
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM) A 02.102 Procédés Alimentaires et Microbiologiques, Univ. Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Marie-Elisabeth Bougnoux
- Centre hospitalier universitaire (CHU) Necker Enfants Malades, Assistance publique - Hôpitaux de Paris (AP-HP), Institut Pasteur, Paris, France
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité sous contrat (USC) 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Université Paris Cité, National Reference Centre for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
30
|
Monfort T, Azzollini S, Ben Yacoub T, Audo I, Reichman S, Grieve K, Thouvenin O. Interface self-referenced dynamic full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:3491-3505. [PMID: 37497503 PMCID: PMC10368024 DOI: 10.1364/boe.488663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as an invaluable live label-free and non-invasive imaging modality able to image subcellular biological structures and their metabolic activity within complex 3D samples. However, D-FFOCT suffers from fringe artefacts when imaging near reflective surfaces and is highly sensitive to vibrations. Here, we present interface Self-Referenced (iSR) D-FFOCT, an alternative configuration to D-FFOCT that takes advantage of the presence of the sample coverslip in between the sample and the objective by using it as a defocused reference arm, thus avoiding the aforementioned artefacts. We demonstrate the ability of iSR D-FFOCT to image 2D fibroblast cell cultures, which are among the flattest mammalian cells.
Collapse
Affiliation(s)
- Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Tasnim Ben Yacoub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
31
|
Azzollini S, Monfort T, Thouvenin O, Grieve K. Dynamic optical coherence tomography for cell analysis [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3362-3379. [PMID: 37497511 PMCID: PMC10368035 DOI: 10.1364/boe.488929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
Label-free live optical imaging of dynamic cellular and subcellular features has been made possible in recent years thanks to the advances made in optical imaging techniques, including dynamic optical coherence tomography (D-OCT) methods. These techniques analyze the temporal fluctuations of an optical signal associated with the active movements of intracellular organelles to obtain an ensemble metric recapitulating the motility and metabolic state of cells. They hence enable visualization of cells within compact, static environments and evaluate their physiology. These emerging microscopies show promise, in particular for the three-dimensional evaluation of live tissue samples such as freshly excised biopsies and 3D cell cultures. In this review, we compare the various techniques used for dynamic OCT. We give an overview of the range of applications currently being explored and discuss the future outlook and opportunities for the field.
Collapse
Affiliation(s)
- Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | | | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| |
Collapse
|
32
|
Zhu Y, Zhou Y, Guo Z. Fractal-based aberration-corrected full-field OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:3775-3797. [PMID: 37497484 PMCID: PMC10368032 DOI: 10.1364/boe.485090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The Kolmogorov turbulence model has been validated as a quantitative 3D light scattering model of the inhomogeneous refraction index of biological tissue using full-field OCT (FF-OCT). A fractal-based computational compensation approach was proposed for correcting of depth-resolved aberrations with volumetric FF-OCT. First, the power-spectral density spectrum of the index inhomogeneities was measured by radial Fourier transformation of volumetric data. The spectrum's shape indicates the spatial correlation function and can be quantified as the fractal dimension of tissue. The defocusing correction matrix was built by applying fractal-based analysis as an image quality metric. For comparison, tissue-induced in-depth aberration models were built by phase compensation. After digital aberration correction of FF-OCT images, it enables extracting the temporal contrast indicating the sample dynamics in onion in mitosis and ex vivo mouse heart during delayed neuronal death. The proposed fractal-based contrast augmented images show subcellular resolution recording of dynamic scatters of the growing-up onion cell wall and some micro activities. In addition, low-frequency chamber and high-frequency cardiac muscle fibers from ex vivo mouse heart tissue. Therefore, the depth-resolved changes in fractal parameters may be regarded as a quantitative indicator of defocus aberration compensation. Also the enhanced temporal contrast in FF-OCT has the potential to be a label-free, non-invasive, and three-dimensional imaging tool to investigate sub-cellular activities in metabolism studies.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Yuan Zhou
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Zhenyan Guo
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| |
Collapse
|
33
|
Xiao TH, Zhou Y, Goda K. Unlocking the secrets of the invisible world: incredible deep optical imaging through in-silico clearing. LIGHT, SCIENCE & APPLICATIONS 2023; 12:161. [PMID: 37369651 PMCID: PMC10300014 DOI: 10.1038/s41377-023-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In-silico clearing enables deep optical imaging of biological samples by correcting image blur caused by scattering and aberration. This breakthrough method offers researchers unprecedented insights into three-dimensional biological systems, with enormous potential for advancing biology and medicine to better understand living organisms and human health.
Collapse
Affiliation(s)
- Ting-Hui Xiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuqi Zhou
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
34
|
Mukherjee P, Fukuda S, Lukmanto D, Tran TH, Okada K, Makita S, El-sadek IA, Lim Y, Yasuno Y. Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography.. [DOI: 10.1101/2023.05.01.539010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTRenal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT)ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 μm swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric DOCT can be used as a tool to investigate kidney function during kidney diseases.
Collapse
|
35
|
Zhang J, Mazlin V, Fei K, Boccara AC, Yuan J, Xiao P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther Adv Chronic Dis 2023; 14:20406223231170146. [PMID: 37152350 PMCID: PMC10161339 DOI: 10.1177/20406223231170146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
Collapse
Affiliation(s)
- Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, Paris, France
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| |
Collapse
|
36
|
Scholler J, Mandache D, Mathieu MC, Lakhdar AB, Darche M, Monfort T, Boccara C, Olivo-Marin JC, Grieve K, Meas-Yedid V, la Guillaume EBA, Thouvenin O. Automatic diagnosis and classification of breast surgical samples with dynamic full-field OCT and machine learning. J Med Imaging (Bellingham) 2023; 10:034504. [PMID: 37274760 PMCID: PMC10234284 DOI: 10.1117/1.jmi.10.3.034504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose The adoption of emerging imaging technologies in the medical community is often hampered when they provide a new unfamiliar contrast that requires experience to be interpreted. Dynamic full-field optical coherence tomography (D-FF-OCT) microscopy is such an emerging technique. It provides fast, high-resolution images of excised tissues with a contrast comparable to H&E histology but without any tissue preparation and alteration. Approach We designed and compared two machine learning approaches to support interpretation of D-FF-OCT images of breast surgical specimens and thus provide tools to facilitate medical adoption. We conducted a pilot study on 51 breast lumpectomy and mastectomy surgical specimens and more than 1000 individual 1.3 × 1.3 mm 2 images and compared with standard H&E histology diagnosis. Results Using our automatic diagnosis algorithms, we obtained an accuracy above 88% at the image level (1.3 × 1.3 mm 2 ) and above 96% at the specimen level (above cm 2 ). Conclusions Altogether, these results demonstrate the high potential of D-FF-OCT coupled to machine learning to provide a rapid, automatic, and accurate histopathology diagnosis with minimal sample alteration.
Collapse
Affiliation(s)
- Jules Scholler
- PSL University, Institut Langevin, ESPCI Paris, CNRS, Paris, France
| | - Diana Mandache
- AQUYRE Bioscences-LLTech SAS, Paris, France
- Institut Pasteur, Bioimage Analysis Unit, Paris, France
| | - Marie Christine Mathieu
- Gustave Roussy Cancer Campus, Department of Medical Biology and Pathology, Villejuif, France
| | | | - Marie Darche
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
| | - Tual Monfort
- PSL University, Institut Langevin, ESPCI Paris, CNRS, Paris, France
| | - Claude Boccara
- PSL University, Institut Langevin, ESPCI Paris, CNRS, Paris, France
| | | | - Kate Grieve
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
- Quinze-Vingts National Eye Hospital, Paris, France
| | | | | | | |
Collapse
|
37
|
Morishita R, Suzuki T, Mukherjee P, Abd El-Sadek I, Lim Y, Lichtenegger A, Makita S, Tomita K, Yamamoto Y, Nagamoto T, Yasuno Y. Label-free intratissue activity imaging of alveolar organoids with dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:2333-2351. [PMID: 37206117 PMCID: PMC10191660 DOI: 10.1364/boe.488097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
An organoid is a three-dimensional (3D) in vitro cell culture emulating human organs. We applied 3D dynamic optical coherence tomography (DOCT) to visualize the intratissue and intracellular activities of human induced pluripotent stem cells (hiPSCs)-derived alveolar organoids in normal and fibrosis models. 3D DOCT data were acquired with an 840-nm spectral domain optical coherence tomography with axial and lateral resolutions of 3.8 µm (in tissue) and 4.9 µm, respectively. The DOCT images were obtained by the logarithmic-intensity-variance (LIV) algorithm, which is sensitive to the signal fluctuation magnitude. The LIV images revealed cystic structures surrounded by high-LIV borders and mesh-like structures with low LIV. The former may be alveoli with a highly dynamics epithelium, while the latter may be fibroblasts. The LIV images also demonstrated the abnormal repair of the alveolar epithelium.
Collapse
Affiliation(s)
- Rion Morishita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshio Suzuki
- Department of Medical Oncology, Faculty of
Medicine,
University of
Tsukuba, Ibaraki 305-8575, Japan
- HiLung Inc.,
Kyoto, Japan
| | - Pradipta Mukherjee
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science,
Damietta University, New Damietta City
34517, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna,
Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Shuichi Makita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Kiriko Tomita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | - Yoshiaki Yasuno
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
38
|
Yasuhiko O, Takeuchi K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:101. [PMID: 37105955 PMCID: PMC10140380 DOI: 10.1038/s41377-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive understanding of the architecture and time-course morphological changes of thick multicellular specimens.
Collapse
Affiliation(s)
- Osamu Yasuhiko
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| | - Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| |
Collapse
|
39
|
Desa DE, Qian T, Skala MC. Label-free optical imaging and sensing for quality control of stem cell manufacturing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100435. [PMID: 37885458 PMCID: PMC10602581 DOI: 10.1016/j.cobme.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human stem cells provide emerging methods for drug screening, disease modeling, and personalized patient therapies. To meet this growing demand for scale-up, stem cell manufacturing methods must be streamlined with continuous monitoring technologies and automated feedback to optimize growth conditions for high production and consistency. Label-free optical imaging and sensing, including multiphoton microscopy, Raman spectroscopy, and low-cost methods such as phase and transmitted light microscopy, can provide rapid, repeatable, and non-invasive monitoring of stem cells throughout cell differentiation and maturation. Machine learning algorithms trained on label-free optical imaging and sensing features could identify viable cells and predict optimal manufacturing conditions. These techniques have the potential to streamline stem cell manufacturing and accelerate their use in regenerative medicine.
Collapse
Affiliation(s)
- Danielle E Desa
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, United States
| | - Tongcheng Qian
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, United States
| | - Melissa C Skala
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr., Madison, WI 53706, United States
| |
Collapse
|
40
|
Kang YG, Canoy RJE, Jang Y, Santos ARMP, Son I, Kim BM, Park Y. Optical coherence microscopy with a split-spectrum image reconstruction method for temporal-dynamics contrast-based imaging of intracellular motility. BIOMEDICAL OPTICS EXPRESS 2023; 14:577-592. [PMID: 36874497 PMCID: PMC9979675 DOI: 10.1364/boe.478264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Biomedical researchers use optical coherence microscopy (OCM) for its high resolution in real-time label-free tomographic imaging. However, OCM lacks bioactivity-related functional contrast. We developed an OCM system that can measure changes in intracellular motility (indicating cellular process states) via pixel-wise calculations of intensity fluctuations from metabolic activity of intracellular components. To reduce image noise, the source spectrum is split into five using Gaussian windows with 50% of the full bandwidth. The technique verified that F-actin fiber inhibition by Y-27632 reduces intracellular motility. This finding could be used to search for other intracellular-motility-associated therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yong Guk Kang
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Raymart Jay E. Canoy
- Department of Biomicro System Technology, College of Engineering, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Yongjun Jang
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ana Rita M. P. Santos
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Inwoo Son
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Beop-Min Kim
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Häner NU, Dysli C, Munk MR. Imaging in retinal vascular disease: A review. Clin Exp Ophthalmol 2023; 51:217-228. [PMID: 36597823 DOI: 10.1111/ceo.14203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Retinal vascular diseases represent a broad field of ocular pathologies. Retinal imaging is an important tool for diagnosis, prognosis and follow up of retinal vascular diseases. It includes a wide variety of imaging techniques ranging from colour fundus photography and optical coherence tomography to dynamic diagnostic options such as fluorescein angiography, and optical coherence tomography angiography. The newest developments in respective imaging techniques include widefield imaging to assess the retinal periphery, which is of especial interest in retinal vascular diseases. Automatic image analysis and artificial intelligence may support the image analysis and may prove valuable for prognostic purposes. This review provides a broad overview of the imaging techniques that have been used in the past, today and maybe in the future to stage and monitor retinal vascular disease with focus on the main disease entities including diabetic retinopathy, retinal vein occlusion, and retinal artery occlusion.
Collapse
Affiliation(s)
- Nathanael U Häner
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| | - Marion R Munk
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| |
Collapse
|
42
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
43
|
Hsiao YT, Wu TY, Wu BK, Chu SW, Hsieh CL. Spinning disk interferometric scattering confocal microscopy captures millisecond timescale dynamics of living cells. OPTICS EXPRESS 2022; 30:45233-45245. [PMID: 36522930 DOI: 10.1364/oe.471935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Interferometric scattering (iSCAT) microscopy is a highly sensitive imaging technique that uses common-path interferometry to detect the linear scattering fields associated with samples. However, when measuring a complex sample, such as a biological cell, the superposition of the scattering signals from various sources, particularly those along the optical axis of the microscope objective, considerably complicates the data interpretation. Herein, we demonstrate high-speed, wide-field iSCAT microscopy in conjunction with confocal optical sectioning. Utilizing the multibeam scanning strategy of spinning disk confocal microscopy, our iSCAT confocal microscope acquires images at a rate of 1,000 frames per second (fps). The configurations of the spinning disk and the background correction procedures are described. The iSCAT confocal microscope is highly sensitive-individual 10 nm gold nanoparticles are successfully detected. Using high-speed iSCAT confocal imaging, we captured the rapid movements of single nanoparticles on the model membrane and single native vesicles in the living cells. Label-free iSCAT confocal imaging enables the detailed visualization of nanoscopic cell dynamics in their most native forms. This holds promise to unveil cell activities that are previously undescribed by fluorescence-based microscopy.
Collapse
|
44
|
Ha-Wissel L, Yasak H, Huber R, Zillikens D, Ludwig RJ, Thaçi D, Hundt JE. Case report: Optical coherence tomography for monitoring biologic therapy in psoriasis and atopic dermatitis. Front Med (Lausanne) 2022; 9:995883. [PMID: 36237538 PMCID: PMC9551172 DOI: 10.3389/fmed.2022.995883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biologic therapies are increasingly used to treat chronic inflammatory skin diseases such as psoriasis and atopic dermatitis. In clinical practice, scores based on evaluation of objective and subjective symptoms are used to assess disease severity, leading to evaluation of treatment goals with clinical decisions on treatment initiation, switch to another treatment modality or to discontinue current treatment. However, this visual-based scoring is relatively subjective and inaccurate due to inter- and intraobserver reliability. Optical coherence tomography (OCT) is a fast, high-resolution, in vivo imaging modality that enables the visualization of skin structure and vasculature. We evaluated the use of OCT for quantification and monitoring of skin inflammation to improve objective assessment of disease activity in patients with psoriasis and atopic dermatitis. We assessed the following imaging parameters including epidermal thickness, vascular density, plexus depth, vessel diameter, and vessel count. A total of four patients with psoriasis or atopic dermatitis were treated with biologic agents according to current treatment guidelines. OCT was used to monitor their individual treatment response in a target lesion representing disease activity for 52 weeks. Psoriatic and eczema lesions exhibited higher epidermal thickness, increased vascular density, and higher vessel count compared to uninvolved skin. An upward shift of the superficial vascular plexus accompanied by smaller vessel diameters was seen in psoriasis in contrast to atopic dermatitis, where larger vessels were observed. A response to biologic therapy was characterized by normalization of the imaging parameters in the target lesions in comparison to uninvolved skin during the observation period of 52 weeks. Optical coherence tomography potentially serves as an instrument to monitor biologic therapy in inflammatory skin diseases. Imaging parameters may enable objective quantification of inflammation in psoriasis or atopic dermatitis in selected representative skin areas. OCT may reveal persistent subclinical inflammation in atopic dermatitis beyond clinical remission.
Collapse
Affiliation(s)
- Linh Ha-Wissel
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
- Institute for Inflammatory Medicine, University of Lübeck, Lübeck, Germany
- *Correspondence: Linh Ha-Wissel,
| | - Handan Yasak
- Institute for Inflammatory Medicine, University of Lübeck, Lübeck, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Diamant Thaçi
- Institute for Inflammatory Medicine, University of Lübeck, Lübeck, Germany
| | - Jennifer E. Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| |
Collapse
|
45
|
Ong J, Zarnegar A, Corradetti G, Singh SR, Chhablani J. Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders. J Clin Med 2022; 11:jcm11175139. [PMID: 36079077 PMCID: PMC9457394 DOI: 10.3390/jcm11175139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Optical coherence tomography (OCT) imaging has played a pivotal role in the field of retina. This light-based, non-invasive imaging modality provides high-quality, cross-sectional analysis of the retina and has revolutionized the diagnosis and management of retinal and choroidal diseases. Since its introduction in the early 1990s, OCT technology has continued to advance to provide quicker acquisition times and higher resolution. In this manuscript, we discuss some of the most recent advances in OCT technology and techniques for choroidal and retinal diseases. The emerging innovations discussed include wide-field OCT, adaptive optics OCT, polarization sensitive OCT, full-field OCT, hand-held OCT, intraoperative OCT, at-home OCT, and more. The applications of these rising OCT systems and techniques will allow for a closer monitoring of chorioretinal diseases and treatment response, more robust analysis in basic science research, and further insights into surgical management. In addition, these innovations to optimize visualization of the choroid and retina offer a promising future for advancing our understanding of the pathophysiology of chorioretinal diseases.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giulia Corradetti
- Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90033, USA
| | | | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
46
|
Mazlin V, Thouvenin O, Alhaddad S, Boccara M, Boccara C. Label free optical transmission tomography for biosystems: intracellular structures and dynamics. BIOMEDICAL OPTICS EXPRESS 2022; 13:4190-4203. [PMID: 36032580 PMCID: PMC9408247 DOI: 10.1364/boe.453586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing need for label free methods that could reveal intracellular structures and dynamics. In this context, we develop a new optical tomography method working in transmission - full-field optical transmission tomography (FF-OTT). The method can measure the forward scattering signals and reveals the time-dependent metabolic signals in living cells. FF-OTT is a common path interferometer taking advantage of the Gouy phase shift - a π phase shift that the light wave experiences around the focus. By modulating the position of the focus one can alter the phase of the scattered light. Demodulation of images with different phases rejects the background and enhances the light from the depth-of-field, thus producing an optical section. We test FF-OTT by imaging single-cell diatoms and ex vivo biological samples. In fresh samples, we show that the intracellular motions create visible intensity fluctuations in FF-OTT so that the method is able to reveal a metabolic dynamic contrast. FF-OTT was found to be an efficient label free technique that can be readily implemented thanks to a robust common-path speckle-free interferometer design using an incoherent light source.
Collapse
Affiliation(s)
- Viacheslav Mazlin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
- These authors contributed equally to this work
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
- These authors contributed equally to this work
| | - Samer Alhaddad
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Martine Boccara
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, EPHE, UA, CNRS ; CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|
47
|
|
48
|
Cai Y, Grieve K, Mecê P. Characterization and Analysis of Retinal Axial Motion at High Spatiotemporal Resolution and Its Implication for Real-Time Correction in Human Retinal Imaging. Front Med (Lausanne) 2022; 9:868217. [PMID: 35903318 PMCID: PMC9320321 DOI: 10.3389/fmed.2022.868217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
High-resolution ophthalmic imaging devices including spectral-domain and full-field optical coherence tomography (SDOCT and FFOCT) are adversely affected by the presence of continuous involuntary retinal axial motion. Here, we thoroughly quantify and characterize retinal axial motion with both high temporal resolution (200,000 A-scans/s) and high axial resolution (4.5 μm), recorded over a typical data acquisition duration of 3 s with an SDOCT device over 14 subjects. We demonstrate that although breath-holding can help decrease large-and-slow drifts, it increases small-and-fast fluctuations, which is not ideal when motion compensation is desired. Finally, by simulating the action of an axial motion stabilization control loop, we show that a loop rate of 1.2 kHz is ideal to achieve 100% robust clinical in-vivo retinal imaging.
Collapse
Affiliation(s)
- Yao Cai
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
- DOTA, ONERA, Université Paris Saclay, Palaiseau, France
- *Correspondence: Pedro Mecê
| |
Collapse
|
49
|
Mukherjee P, Fukuda S, Lukmanto D, Yamashita T, Okada K, Makita S, Abd El-Sadek I, Miyazawa A, Zhu L, Morishita R, Lichtenegger A, Oshika T, Yasuno Y. Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:4071-4086. [PMID: 35991915 PMCID: PMC9352293 DOI: 10.1364/boe.461433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 05/30/2023]
Abstract
Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repeating raster scan and logarithmic intensity variance (LIV) analysis that enables volumetric metabolic imaging with a standard-speed (50,000 A-lines/s) OCT system. Metabolic domains associated with lipid droplet accumulation and inflammation are clearly visualized three-dimensionally. Particularly, the normal-diet liver exhibits highly metabolic vessel-like structures of peri-vascular hepatic zones. The 1-week MCD-diet liver shows ring-shaped highly metabolic structures formed with lipid droplets. The 2-week MCD-diet liver exhibits fragmented vessel-like structures associated with inflammation. These results imply that volumetric LIV imaging is useful for visualizing and assessing NAFLD abnormalities.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Donny Lukmanto
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517 New Damietta City, Damietta, Egypt
| | | | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
50
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|