1
|
Barrat J, Tzortzakakis AF, Niu M, Zhou X, Paschos GG, Petrosyan D, Savvidis PG. Qubit analog with polariton superfluid in an annular trap. SCIENCE ADVANCES 2024; 10:eado4042. [PMID: 39441935 PMCID: PMC11498216 DOI: 10.1126/sciadv.ado4042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
We report on the experimental realization and characterization of a qubit analog with semiconductor exciton-polaritons. In our system, a polaritonic condensate is confined by a spatially patterned pump laser in an annular trap that supports energy-degenerate vortex states of the polariton superfluid. Using temporal interference measurements, we observe coherent oscillations between a pair of counter-circulating vortex states coupled by elastic scattering of polaritons off the laser-imprinted potential. The qubit basis states correspond to the symmetric and antisymmetric superpositions of the two vortex states. By engineering the potential, we tune the coupling and coherent oscillations between the two circulating current states, control the energies of the qubit basis states, and initialize the qubit in the desired state. The dynamics of the system is accurately reproduced by our theoretical two-state model, and we discuss potential avenues to implement quantum gates and algorithms with polaritonic qubits analogous to quantum computation with standard qubits.
Collapse
Affiliation(s)
- Joris Barrat
- Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Andreas F. Tzortzakakis
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Meng Niu
- Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xiaoqing Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Giannis G. Paschos
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - David Petrosyan
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
- A. Alikhanyan National Science Laboratory (YerPhI), 0036 Yerevan, Armenia
| | - Pavlos G. Savvidis
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
| |
Collapse
|
2
|
Redmann A, Kurtscheid C, Wolf N, Vewinger F, Schmitt J, Weitz M. Bose-Einstein Condensation of Photons in a Four-Site Quantum Ring. PHYSICAL REVIEW LETTERS 2024; 133:093602. [PMID: 39270190 DOI: 10.1103/physrevlett.133.093602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
Thermalization of radiation by contact to matter is a well-known concept, but the application of thermodynamic methods to complex quantum states of light remains a challenge. Here, we observe Bose-Einstein condensation of photons into the hybridized ground state of a coupled four-site ring potential. In our experiment, the periodically closed ring lattice superimposed by a weak harmonic trap for photons is realized inside a spatially structured dye-filled microcavity. Photons thermalize to room temperature, and above a critical photon number macroscopically occupy the symmetric linear combination of the site eigenstates with zero phase winding, which constitutes the ground state of the system. The mutual phase coherence of photons at different lattice sites is verified by optical interferometry.
Collapse
|
3
|
Barrat J, Cherbunin R, Sedov E, Aladinskaia E, Liubomirov A, Litvyak V, Petrov M, Zhou X, Hatzopoulos Z, Kavokin A, Savvidis PG. Stochastic circular persistent currents of exciton polaritons. Sci Rep 2024; 14:12953. [PMID: 38839986 PMCID: PMC11153513 DOI: 10.1038/s41598-024-63725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
We monitor the orbital degree of freedom of exciton-polariton condensates confined within an optical trap and unveil the stochastic switching of persistent annular polariton currents under pulse-periodic excitation. Within an elliptical trap, the low-lying in energy polariton current states manifest as a two-petaled density distribution with a swirling phase. In the stochastic regime, the density distribution, averaged over multiple excitation pulses, becomes homogenized in the azimuthal direction. Meanwhile, the weighted phase, extracted from interference experiments, exhibits two compensatory jumps when varied around the center of the trap. Introducing a supplemental control optical pulse to break the reciprocity of the system enables the transition from a stochastic to a deterministic regime, allowing for controlled polariton circulation direction.
Collapse
Affiliation(s)
- J Barrat
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Roman Cherbunin
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Evgeny Sedov
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia.
- Stoletov Vladimir State University, Gorky str. 87, Vladimir, 600000, Russia.
| | - Ekaterina Aladinskaia
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Alexey Liubomirov
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Valentina Litvyak
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Mikhail Petrov
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Xiaoqing Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Z Hatzopoulos
- FORTH-IESL, P.O. Box 1527, 71110, Heraklion, Crete, Greece
| | - Alexey Kavokin
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
- Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Moscow Region, Dolgoprudnyi, 141701, Russia
| | - P G Savvidis
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- FORTH-IESL, P.O. Box 1527, 71110, Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece
| |
Collapse
|
4
|
Xiong Z, Wu H, Cai Y, Zhai X, Liu T, Li B, Song T, Guo L, Liu Z, Dong Y, Liu P, Ren Y. Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity. NANO LETTERS 2024; 24. [PMID: 38620069 PMCID: PMC11057030 DOI: 10.1021/acs.nanolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Exciton-polariton systems composed of a light-matter quasi-particle with a light effective mass easily realize Bose-Einstein condensation. In this work, we constructed an annular trap in a halide perovskite semiconductor microcavity and observed the spontaneous formation of symmetrical petal-shaped exciton-polariton condensation in the annular trap at room temperature. In our study, we found that the number of petals of the petal-shaped exciton-polariton condensates, which is decided by the orbital angular momentum, is dependent on the light intensity distribution. Therefore, the selective excitation of perovskite microcavity exciton-polariton condensates under all-optical control can be realized by adjusting the light intensity distribution. This could pave the way to room-temperature topological devices, optical cryptographical devices, and new quantum gyroscopes in the exciton-polariton system.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Hao Wu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Yuanwen Cai
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Xiaokun Zhai
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Tong Liu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Baili Li
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Tieling Song
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Longfei Guo
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Zhengliang Liu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Yifan Dong
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Peicheng Liu
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Yuan Ren
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| |
Collapse
|
5
|
Han Q, Wang J, Tian S, Hu S, Wu X, Bai R, Zhao H, Zhang DW, Sun Q, Ji L. Inorganic perovskite-based active multifunctional integrated photonic devices. Nat Commun 2024; 15:1536. [PMID: 38378620 PMCID: PMC10879536 DOI: 10.1038/s41467-024-45565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The development of highly efficient active integrated photonic circuits is crucial for advancing information and computing science. Lead halide perovskite semiconductors, with their exceptional optoelectronic properties, offer a promising platform for such devices. In this study, active micro multifunctional photonic devices were fabricated on monocrystalline CsPbBr3 perovskite thin films using a top-down etching technique with focused ion beams. The etched microwire exhibited a high-quality micro laser that could serve as a light source for integrated devices, facilitating angle-dependent effective propagation between coupled perovskite-microwire waveguides. Employing this strategy, multiple perovskite-based active integrated photonic devices were realized for the first time. These devices included a micro beam splitter that coherently separated lasing signals, an X-coupler performing transfer matrix functions with two distinguishable light sources, and a Mach-Zehnder interferometer manipulating the splitting and coalescence of coherent light beams. These results provide a proof-of-concept for active integrated functionalized photonic devices based on perovskite semiconductors, representing a promising avenue for practical applications in integrated optical chips.
Collapse
Affiliation(s)
- Qi Han
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jun Wang
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China.
| | - Shuangshuang Tian
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - Shen Hu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
| | - Xuefeng Wu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
| | - Rongxu Bai
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Haibin Zhao
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - David W Zhang
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Jiashan Fudan Institute, Jiaxing, 314110, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Qingqing Sun
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
| | - Li Ji
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China.
| |
Collapse
|
6
|
Tian S, Wang Q, Liang S, Han Q, Zhang D, Huang Z, Ning J, Mei S, Xie W, Zhao H, Wu X, Wang J. High Q-Factor Single-Mode Lasing in Inorganic Perovskite Microcavities with Microfocusing Field Confinement. NANO LETTERS 2024; 24:1406-1414. [PMID: 38227806 DOI: 10.1021/acs.nanolett.3c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The realization of high-Q single-mode lasing on the microscale is significant for the advancement of on-chip integrated light sources. It remains a challenging trade-off between Q-factor enhancement and light-field localization to raise the lasing emission rate. Here, we fabricated a zero-dimensional perovskite microcavity integrated with a nondamage pressed microlens to three-dimensionally tailor the intracavity light field and demonstrated linearly and nonlinearly (two-photon) pumped lasing by this microfocusing configuration. Notably, the microlensing microcavity experimentally achieves a high Q-factor (16700), high polarization (99.6%), and high Purcell factor (11.40) single-mode lasing under high-repetition pulse pumping. Three-dimensional light-field confinement formed by the microlens and plate microcavity simultaneously reduces the mode volume (∼3.66 μm3) and suppresses diffraction and transverse walk-off loss, which induces discretization on energy-momentum dispersions and spatial electromagnetic-field distributions. The Q factor and Purcell factor of our lasing come out on top among most of the reported perovskite microcavities, paving a promising avenue toward further studying electrically driven on-chip microlasers.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Qi Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shuang Liang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Qi Han
- School of Microelectronics, Fudan University, 200433 Shanghai, China
| | - Debao Zhang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Zhongmin Huang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Jiqiang Ning
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Haibin Zhao
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Xiang Wu
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Jun Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| |
Collapse
|
7
|
Anantharaman SB, Lynch J, Stevens CE, Munley C, Li C, Hou J, Zhang H, Torma A, Darlington T, Coen F, Li K, Majumdar A, Schuck PJ, Mohite A, Harutyunyan H, Hendrickson JR, Jariwala D. Dynamics of self-hybridized exciton-polaritons in 2D halide perovskites. LIGHT, SCIENCE & APPLICATIONS 2024; 13:1. [PMID: 38161209 PMCID: PMC10757995 DOI: 10.1038/s41377-023-01334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher E Stevens
- KBR Inc., Beavercreek, OH, 45431, USA
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Chentao Li
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Jin Hou
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Andrew Torma
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Thomas Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Francis Coen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin Li
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Aditya Mohite
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Luo Y, Guo Q, Deng X, Ghosh S, Zhang Q, Xu H, Xiong Q. Manipulating nonlinear exciton polaritons in an atomically-thin semiconductor with artificial potential landscapes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:220. [PMID: 37679312 PMCID: PMC10485014 DOI: 10.1038/s41377-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions. Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research. Here, we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS2 microcavities. The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities. Varying the trapping sizes, the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton-exciton spatial overlap. Meanwhile, the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range. Therefore, our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.
Collapse
Affiliation(s)
- Yuan Luo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Quanbing Guo
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Xinyi Deng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hongxing Xu
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
9
|
Guo X, Han Q, Wang J, Tian S, Bai R, Zhao H, Zou X, Lu X, Sun Q, Zhang DW, Hu S, Ji L. Optoelectronic Devices of Large-Scale Transferred All-Inorganic Lead Halide Perovskite Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24606-24613. [PMID: 37184060 DOI: 10.1021/acsami.3c03191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report the large-scale transfer process for monocrystalline CsPbBr3 thin films prepared by chemical vapor deposition (CVD) with excellent optical properties and stability. The transfer process is robust, simple, and effective, in which CsPbBr3 thin films could be transferred to several substrates and effectively avoid chemical or physical fabrication processes to damage the perovskite surface. Moreover, the transfer process endows CsPbBr3 and substrates with atomically clean and electronically flat interfaces. We utilize this transfer process to realize several optoelectronic devices, including a photonic laser with a threshold of 61 μJ/cm2, a photodetector with a responsivity of 2.4 A/W, and a transistor with a hole mobility of 11.47 cm2 V-1 s-1. High device performances mainly originate from low defects of high-quality single-crystal perovskite and seamless contact between CsPbBr3 and target substrates. The large-scale nondestructive transfer process provides promising opportunities for optoelectronic applications based on monocrystalline perovskites.
Collapse
Affiliation(s)
- Xiangyu Guo
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Qi Han
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jun Wang
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shuangshuang Tian
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Rongxu Bai
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Haibin Zhao
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Qingqing Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - David W Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Hubei Yangtz Memory Laboratories, Wuhan 430205, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiashan 314100, China
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Hubei Yangtz Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
10
|
Zhao Y, Tian S, Feng J, Qiu Y, Fan X, Yuan M, Zhao Y, Gao H, Zhao H, Jiang L, Wang J, Wu Y. Electrostatic Epitaxy of Orientational Perovskites for Microlasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210594. [PMID: 36859570 DOI: 10.1002/adma.202210594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Indexed: 05/12/2023]
Abstract
Orientational growth of single-crystalline structures is pivotal in the semiconductor industry, which is achievable by epitaxy for producing thin films, heterostructures, quantum wells, and superlattices. Beyond silicon and III-V semiconductors, solution-processible semiconductors, such as metal-halide perovskites, are emerging for scalable and cost-effective manufacture of optoelectronic devices, whereas the polycrystalline nature of fabricated structures restricts their application toward integrated devices. Here, electrostatic epitaxy, a process sustained by strong electrostatic interactions between self-assembled surfactants (octanoate anions) and Pb2+ , is developed to realize orientational growth of single-crystalline CsPbBr3 microwires. Strong electrostatic interactions localized at the air-liquid interface not only support preferential nucleation for single crystallinity, but also select the crystal facet with the highest Pb2+ areal density for pure crystallographic orientation. Due to the epitaxy at the air-liquid interface, direct growth of oriented single-crystalline microwires onto different substrates without the processes of lift-off and transfer is realized. Photonic lasing emission, waveguide coupling, and on-chip propagation of coherent light are demonstrated based on these single-crystalline microwires. These findings open an avenue for on-chip integration of single-crystalline materials.
Collapse
Affiliation(s)
- Yuyan Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shuangshuang Tian
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xin Fan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yingjie Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Haibin Zhao
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Jun Wang
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| |
Collapse
|
11
|
Xu H, Xu J, Jiang M, Liu M, Tang K, Kan C, Shi D. Exciton-polariton light-emitting diode based on a single ZnO superlattice microwire heterojunction with performance enhanced by Rh nanostructures. Phys Chem Chem Phys 2023; 25:5836-5848. [PMID: 36745472 DOI: 10.1039/d2cp05446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
One-dimensional (1D) wirelike superlattice micro/nanostructures have received considerable attention for potential applications due to their versatility and capability for modulating optical and electrical characteristics. In this study, 1D superlattice microwires (MWs), which are made of undoped ZnO and Ga-doped ZnO with periodic and alternating crystalline layers (ZnO/ZnO:Ga), were synthesized individually. Under optical excitation, a series of resonance peaks in the photoluminescence spectrum can be ascribed to polariton emission, which originates from the coupling interaction of the 1D photonic crystal and confined excitons along the wire direction. Using a p-type GaN layer as the hole transport layer, a kind of waveguide light source based on an individual ZnO/ZnO:Ga superlattice MW was proposed and constructed. By analysing the spatially resolved electroluminescence spectra, the observed multipeak was ascribed to exciton-polariton emission with a vacuum Rabi splitting of about 275 meV. Cladding with Rh nanostructures gives rise to appropriate ultraviolet plasmons, and the Rabi splitting energy of our device was enhanced up to 413 meV. The exciton-polariton properties were further examined using angle-resolved electroluminescence measurements. Therefore, individual superlattice MWs can act as optical microresonators to achieve photon-exciton coupling with a large Rabi splitting energy. The experimental results indicate that an individual ZnO/ZnO:Ga superlattice MW can be generally used in developing exciton-polariton luminescence/lasing light sources, particularly for constructing low-threshold/thresholdless lasers toward pragmatic applications.
Collapse
Affiliation(s)
- Haiying Xu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China. .,College of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Juan Xu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Maosheng Liu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Kai Tang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Caixia Kan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Daning Shi
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| |
Collapse
|
12
|
Wang J, Peng Y, Xu H, Feng J, Huang Y, Wu J, Liew TCH, Xiong Q. Controllable vortex lasing arrays in a geometrically frustrated exciton-polariton lattice at room temperature. Natl Sci Rev 2023; 10:nwac096. [PMID: 37601295 PMCID: PMC10433738 DOI: 10.1093/nsr/nwac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 08/22/2023] Open
Abstract
Quantized vortices appearing in topological excitations of quantum phase transition play a pivotal role in strongly correlated physics involving the underlying confluence of superfluids, Bose-Einstein condensates and superconductors. Exciton polaritons as bosonic quasiparticles have enabled studies of non-equilibrium quantum gases and superfluidity. Exciton-polariton condensates in artificial lattices intuitively emulate energy-band structures and quantum many-body effects of condensed matter, underpinning constructing vortex lattices and controlling quantum fluidic circuits. Here, we harness exciton-polariton quantum fluids of light in a frustrated kagome lattice based on robust metal-halide perovskite microcavities, to demonstrate vortex lasing arrays and modulate their configurations at room temperature. Tomographic energy-momentum spectra unambiguously reveal massless Dirac bands and quenched kinetic-energy flat bands coexisting in kagome lattices, where polariton condensates exhibit prototypical honeycomb and kagome spatial patterns. Spatial coherence investigations illustrate two types of phase textures of polariton condensates carrying ordered quantized-vortex arrays and π-phase shifts, which could be selected when needed using lasing emission energy. Our findings offer a promising platform on which it is possible to study quantum-fluid correlations in complex polaritonic lattices and highlight feasible applications of structured light.
Collapse
Affiliation(s)
- Jun Wang
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
- Department of Optical Science and Engineering, and Shanghai Frontiers
Science Research Base of Intelligent Optoelectronics and Perception, Fudan
University, Shanghai 200433, China
| | - Yutian Peng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of
Physics, Tsinghua University, Beijing 100084,
China
| | - Huawen Xu
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
| | - Jiangang Feng
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
| | - Yuqing Huang
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
| | - Jinqi Wu
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore
637371, Singapore
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of
Physics, Tsinghua University, Beijing 100084,
China
- Beijing Academy of Quantum Information Sciences,
Beijing 100193, China
| |
Collapse
|
13
|
Luo Y, Wang H, Zhao LY, Zhang YL. Dynamics of Strong Coupling Between Free Charge Carriers in Organometal Halide Perovskites and Aluminum Plasmonic States. Front Chem 2022; 9:818459. [PMID: 35096776 PMCID: PMC8795516 DOI: 10.3389/fchem.2021.818459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
We have investigated a strong coupled system composed of a MAPbIxCl3-x perovskite film and aluminum conical nanopits array. The hybrid states formed by surface plasmons and free carriers, rather than the traditional excitons, is observed in both steady-state reflection measurements and transient absorption spectra. In particular, under near upper band resonant excitation, the bleaching signal from the band edge of uncoupled perovskite was completely separated into two distinctive bleaching signals of the hybrid system, which is clear evidence for the formation of strong coupling states between the free carrier–plasmon state. Besides this, a Rabi splitting up to 260 meV is achieved. The appearance of the lower bands can compensate for the poor absorption of the perovskite in the NIR region. Finally, we found that the lifetime of the free carrier–SP hybrid states is slightly shorter than that of uncoupled perovskite film, which can be caused by the ultrafast damping of the SPs modes. These peculiar features on the strong coupled hybrid states based on free charge carriers can open new perspectives for novel plasmonic perovskite solar cells.
Collapse
|
14
|
Su R, Fieramosca A, Zhang Q, Nguyen HS, Deleporte E, Chen Z, Sanvitto D, Liew TCH, Xiong Q. Perovskite semiconductors for room-temperature exciton-polaritonics. NATURE MATERIALS 2021; 20:1315-1324. [PMID: 34211156 DOI: 10.1038/s41563-021-01035-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
Lead-halide perovskites are generally excellent light emitters and can have larger exciton binding energies than thermal energy at room temperature, exhibiting great promise for room-temperature exciton-polaritonics. Rapid progress has been made recently, although challenges and mysteries remain in lead-halide perovskite semiconductors to push polaritons to room-temperature operation. In this Perspective, we discuss fundamental aspects of perovskite semiconductors for exciton-polaritons and review the recent rapid experimental advances using lead-halide perovskites for room-temperature polaritonics, including the experimental realization of strong light-matter interaction using various types of microcavities as well as reaching the polariton condensation regime in planar microcavities and lattices.
Collapse
Affiliation(s)
- Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qing Zhang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Hai Son Nguyen
- Institut des Nanotechnologies de Lyon, Université de Lyon, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Ecully, France
| | - Emmanuelle Deleporte
- LuMIn, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CentraleSupélec, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Zhanghai Chen
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Daniele Sanvitto
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecotekne, Lecce, Italy.
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P. R. China.
- Beijing Academy of Quantum Information Sciences, Beijing, P. R. China.
| |
Collapse
|
15
|
Xiao YF, Vollmer F. Special Issue on the 60 th anniversary of the first laser-Series I: Microcavity Photonics-from fundamentals to applications. LIGHT, SCIENCE & APPLICATIONS 2021; 10:141. [PMID: 34238916 PMCID: PMC8266797 DOI: 10.1038/s41377-021-00583-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Affiliation(s)
- Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
16
|
Liu W, Li Y, Yu H, Wang J, Hu A, Jia S, Li X, Yang H, Dai L, Lu G, Liu Y, Wang S, Gong Q. Imaging and Controlling Photonic Modes in Perovskite Microcavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100775. [PMID: 33987871 DOI: 10.1002/adma.202100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Perovskite microcavities have excellent photophysical properties for integrated optoelectronic devices, such as nanolasers. Imaging and controlling the photonic modes within the cavity are fundamentally important to understand and develop applications. Here, photoemission electron microscopy (PEEM) is used to image the photonic modes within optical microcavities with a nanometer-scale spatial resolution. From a CsPbBr3 microcavity, hybrid mode patterns are observed. Spatial frequency spectrum analysis on the patterns uncovers the characteristic cavity modes, which are modeled with transverse magnetic (TM) and transverse electric (TE) waves, and assigned to exciton-polariton modes. Based on this understanding, the light focus in a designed microcavity is imaged in real space and controlled by the light field polarization. The study confirms that the cavity modes in perovskites can be effectively observed by the PEEM technique under resonant excitation, which, in turn, promotes the design of optoelectronic devices based on perovskite microcavities.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Yaolong Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Haoran Yu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Aiqin Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Shangtong Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Xiaofang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Lun Dai
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Guowei Lu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Yunquan Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| |
Collapse
|