1
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
3
|
Riley M, Tala FNU, Johnson KJ, Johnson BC. Multi-Channel Microscale Nerve Cuffs for Spatially Selective Neuromodulation. MICROMACHINES 2024; 15:1036. [PMID: 39203687 PMCID: PMC11356344 DOI: 10.3390/mi15081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design. This inability to rapidly and cost-effectively prototype novel cuff designs impedes research into selective neuromodulation therapies in acute studies. To address this, we developed a reproducible method to easily create multi-channel epineural nerve cuffs for selective fascicular neuromodulation. Leveraging commercial flexible printed circuit (FPC) technology, we created cuffs with high spatial resolution (50 μm) and customizable parameters like electrode size, channel count, and cuff diameter. We designed cuffs to accommodate adult mouse or rat sciatic nerves (300-1500 μm diameter). We coated the electrodes with PEDOT:PSS to improve the charge injection capacity. We demonstrated selective neuromodulation in both rats and mice, achieving preferential activation of the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles. Selectivity was confirmed through micro-computed tomography (μCT) and quantified through a selectivity index. These results demonstrate the potential of this fabrication method for enabling selective neuromodulation studies while significantly reducing production time and costs compared to traditional approaches.
Collapse
Affiliation(s)
- Morgan Riley
- Biomedical Engineering Doctoral Program, Boise State University, Boise, ID 83725, USA
| | - FNU Tala
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | | | - Benjamin C. Johnson
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
4
|
Griggs DJ, Bloch J, Stanis N, Zhou J, Fisher S, Jahanian H, Yazdan-Shahmorad A. A large-scale optogenetic neurophysiology platform for improving accessibility in NHP behavioral experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600719. [PMID: 38979206 PMCID: PMC11230395 DOI: 10.1101/2024.06.25.600719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Optogenetics has been a powerful scientific tool for two decades, yet its integration with non-human primate (NHP) electrophysiology has been limited due to several technical challenges. These include a lack of electrode arrays capable of supporting large-scale and long-term optical access, inaccessible viral vector delivery methods for transfection of large regions of cortex, a paucity of hardware designed for large-scale patterned cortical illumination, and inflexible designs for multi-modal experimentation. To address these gaps, we introduce a highly accessible platform integrating optogenetics and electrophysiology for behavioral and neural modulation with neurophysiological recording in NHPs. We employed this platform in two rhesus macaques and showcased its capability of optogenetically disrupting reaches, while simultaneously monitoring ongoing electrocorticography activity underlying the stimulation-induced behavioral changes. The platform exhibits long-term stability and functionality, thereby facilitating large-scale electrophysiology, optical imaging, and optogenetics over months, which is crucial for translationally relevant multi-modal studies of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon J Griggs
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | - Julien Bloch
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Noah Stanis
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Jasmine Zhou
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Shawn Fisher
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | | | - Azadeh Yazdan-Shahmorad
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
- Weill Neurohub
| |
Collapse
|
5
|
Lee JM, Pyo YW, Kim YJ, Hong JH, Jo Y, Choi W, Lin D, Park HG. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat Commun 2023; 14:7088. [PMID: 37925553 PMCID: PMC10625630 DOI: 10.1038/s41467-023-42860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Electrophysiological recording technologies can provide valuable insights into the functioning of the central and peripheral nervous systems. Surface electrode arrays made of soft materials or implantable multi-electrode arrays with high electrode density have been widely utilized as neural probes. However, neither of these probe types can simultaneously achieve minimal invasiveness and robust neural signal detection. Here, we present an ultra-thin, minimally invasive neural probe (the "NeuroWeb") consisting of hexagonal boron nitride and graphene, which leverages the strengths of both surface electrode array and implantable multi-electrode array. The NeuroWeb open lattice structure with a total thickness of 100 nm demonstrates high flexibility and strong adhesion, establishing a conformal and tight interface with the uneven mouse brain surface. In vivo electrophysiological recordings show that NeuroWeb detects stable single-unit activity of neurons with high signal-to-noise ratios. Furthermore, we investigate neural interactions between the somatosensory cortex and the cerebellum using transparent dual NeuroWebs and optical stimulation, and measure the times of neural signal transmission between the brain regions depending on the pathway. Therefore, NeuroWeb can be expected to pave the way for understanding complex brain networks with optical and electrophysiological mapping of the brain.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Yeon Jun Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Hee Hong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Yonghyeon Jo
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Dingchang Lin
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hong-Gyu Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
7
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Yaralı Çevik ZB, Karaman O, Topaloğlu N. Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation. BIOMATERIALS ADVANCES 2023; 149:213392. [PMID: 36965403 DOI: 10.1016/j.bioadv.2023.213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Bone tissue engineering aims to diversify and enhance the strategies for bone regeneration to overcome bone-related health problems. Bone mimetic peptides such as Gly-Arg-Gly-Asp-Ser (RGD) are useful tools for osteogenic differentiation. Similarly, photobiomodulation (PBM) at 600-800 nm of wavelength range improves bone tissue healing via the production of intracellular reactive oxygen species (ROS), ATP synthesis, and nitric oxide (NO) release. Besides, traditional monolayer cell culture models have limited conditions to exhibit the details of a mechanism such as a peptide or PBM therapy. However, scaffold-free microtissues (SFMs) can mimic a tissue more properly and be an efficient way to understand the mechanism of therapy via cell-cell interaction. Thus, the synergistic effects of RGD peptide (1 mM) and PBM applications (1 J/cm2 energy density at 655 nm of wavelength and 5 J/cm2 energy density at 808 nm of wavelength) were evaluated on SFMs formed with the co-culture of Human Bone Marrow Stem Cells (hBMSC) and Human Umbilical Vein Endothelial Cells (HUVEC) for osteogenic differentiation. Cell viability assays, mechanistic analysis, and the evaluation of osteogenic differentiation markers were performed. Combined therapies of RGD and PBM were more successful to induce osteogenic differentiation than single therapies. Especially, RGD + PBM at 655 nm group exhibited a higher capability of osteogenic differentiation via ROS production, ATP synthesis, and NO release. It can be concluded that the concomitant use of RGD and PBM may enhance bone regeneration and become a promising therapeutic tool to heal bone-related problems in clinics.
Collapse
Affiliation(s)
- Ziyşan Buse Yaralı Çevik
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Ozan Karaman
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Nermin Topaloğlu
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| |
Collapse
|
9
|
Kumar V, Kymissis I. MicroLED/LED electro-optical integration techniques for non-display applications. APPLIED PHYSICS REVIEWS 2023; 10:021306. [PMID: 37265477 PMCID: PMC10155219 DOI: 10.1063/5.0125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/20/2023] [Indexed: 06/03/2023]
Abstract
MicroLEDs offer an extraordinary combination of high luminance, high energy efficiency, low cost, and long lifetime. These characteristics are highly desirable in various applications, but their usage has, to date, been primarily focused toward next-generation display technologies. Applications of microLEDs in other technologies, such as projector systems, computational imaging, communication systems, or neural stimulation, have been limited. In non-display applications which use microLEDs as light sources, modifications in key electrical and optical characteristics such as external efficiency, output beam shape, modulation bandwidth, light output power, and emission wavelengths are often needed for optimum performance. A number of advanced fabrication and processing techniques have been used to achieve these electro-optical characteristics in microLEDs. In this article, we review the non-display application areas of the microLEDs, the distinct opto-electrical characteristics required for these applications, and techniques that integrate the optical and electrical components on the microLEDs to improve system-level efficacy and performance.
Collapse
Affiliation(s)
- V. Kumar
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - I. Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
10
|
Liang YW, Lai ML, Chiu FM, Tseng HY, Lo YC, Li SJ, Chang CW, Chen PC, Chen YY. Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode. BIOSENSORS 2023; 13:265. [PMID: 36832031 PMCID: PMC9953878 DOI: 10.3390/bios13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
Collapse
Affiliation(s)
- Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Feng-Mao Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Large-scale multimodal surface neural interfaces for primates. iScience 2022; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
|
12
|
Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239085. [PMID: 36501805 PMCID: PMC9735502 DOI: 10.3390/s22239085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
In recent decades, microelectrodes have been widely used in neuroscience to understand the mechanisms behind brain functions, as well as the relationship between neural activity and behavior, perception and cognition. However, the recording of neuronal activity over a long period of time is limited for various reasons. In this review, we briefly consider the types of penetrating chronic microelectrodes, as well as the conductive and insulating materials for microelectrode manufacturing. Additionally, we consider the effects of penetrating microelectrode implantation on brain tissue. In conclusion, we review recent advances in the field of in vivo microelectrodes.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| | - Ivan Antifeev
- Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
13
|
A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Biomed Microdevices 2022; 24:31. [PMID: 36138255 DOI: 10.1007/s10544-022-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.
Collapse
|
14
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Bhaskara S, Sakorikar T, Chatterjee S, Shabari Girishan K, Pandya HJ. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
17
|
Kim H, Kim MJ, Kwon YW, Jeon S, Lee S, Kim C, Choi BT, Shin Y, Hong SW, Shin HK. Benefits of a Skull-Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104629. [PMID: 35076161 PMCID: PMC9008794 DOI: 10.1002/advs.202104629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/08/2022] [Indexed: 05/05/2023]
Abstract
Photobiomodulation (PBM) has received attention due to its potential for improving tissue function and enhancing regeneration in stroke. A lightweight, compact, and simple system of miniaturized electronic devices consisting of packaged light-emitting diodes (LEDs) that incorporates a flexible substrate for in vivo brain PBM in a mouse model is developed. Using this device platform, the preventive and therapeutic effects of PBM affixed to the exposed skull of mice in the photothrombosis and middle cerebral artery occlusion stroke model are evaluated. Among the wavelength range of 630, 850, and 940 nm LED array, the PBM with 630-nm LED array is proved to be the most effective for reducing the infarction volume and neurological impairment after ischemic stroke. Moreover, the PBM with 630 nm LED array remarkably improves the capability of spatial learning and memory in the chronic poststroke phase, attenuates AIM2 inflammasome activation and inflammasome-mediated pyroptosis, and modulates microglial polarization in the hippocampus and cortex 7 days following ischemic stroke. Thus, PBM may prevent tissue and functional damage in acute ischemic injury, thereby attenuating the development of cognitive impairment after stroke.
Collapse
Affiliation(s)
- Hyunha Kim
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
- Department of Pharmacology and NeuroscienceCreighton University School of MedicineOmahaNE68178USA
| | - Min Jae Kim
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Young Woo Kwon
- Department of Nano‐Fusion TechnologyCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Sangheon Jeon
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Seo‐Yeon Lee
- Department of PharmacologyWonkwang University School of MedicineIksan54538Republic of Korea
| | - Chang‐Seok Kim
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Yong‐Il Shin
- Department of Rehabilitation MedicineSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Suck Won Hong
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| |
Collapse
|
18
|
Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int J Mol Sci 2022; 23:ijms23031800. [PMID: 35163726 PMCID: PMC8836693 DOI: 10.3390/ijms23031800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Collapse
|
19
|
Directional Growth of cm-Long PLGA Nanofibers by a Simple and Fast Wet-Processing Method. MATERIALS 2022; 15:ma15020687. [PMID: 35057400 PMCID: PMC8777905 DOI: 10.3390/ma15020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023]
Abstract
The development of aligned nanofibers as useful scaffolds for tissue engineering is an actively sought-for research objective. Here, we propose a novel improvement of an existing self-assembly-based nanofabrication technique (ASB-SANS). This improvement, which we termed Directional ASB-SANS, allows one to produce cm2-large domains of highly aligned poly(lactic-co-glycolic acid) (PLGA) nanofibers in a rapid, inexpensive, and easy way. The so-grown aligned PLGA nanofibers exhibited remarkable adhesion to different substrates (glass, polyimide, and Si/SiOx), even when immersed in PBS solution and kept at physiological temperature (37 °C) for up to two weeks. Finally, the Directional ASB-SANS technique allowed us to grow PLGA fibers also on highly heterogeneous substrates such as polyimide-based, gold-coated flexible electrodes. These results suggest the viability of Directional ASB-SANS method for realizing biocompatible/bioresorbable, nanostructured coatings, potentially suitable for neural interface systems.
Collapse
|
20
|
Lin S, Du Y, Xia Y, Xie Y, Xiao L, Wang G. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms. Front Psychiatry 2022; 13:950910. [PMID: 36159933 PMCID: PMC9492959 DOI: 10.3389/fpsyt.2022.950910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS The neural circuit mechanisms underlying depression remain unclear. Recently optogenetics has gradually gained recognition as a novel technique to regulate the activity of neurons with light stimulation. Scientists are now transferring their focus to the function of brain regions and neural circuits in the pathogenic progress of depression. Deciphering the circuitry mechanism of depressive-like behaviors may help us better understand the symptomatology of depression. However, few studies have summarized current progress on optogenetic researches into the neural circuit mechanisms of depressive-like behaviors. AIMS This review aimed to introduce fundamental characteristics and methodologies of optogenetics, as well as how this technique achieves specific neuronal control with spatial and temporal accuracy. We mainly summarized recent progress in neural circuit discoveries in depressive-like behaviors using optogenetics and exhibited the potential of optogenetics as a tool to investigate the mechanism and possible optimization underlying antidepressant treatment such as ketamine and deep brain stimulation. METHODS A systematic review of the literature published in English mainly from 2010 to the present in databases was performed. The selected literature is then categorized and summarized according to their neural circuits and depressive-like behaviors. CONCLUSIONS Many important discoveries have been made utilizing optogenetics. These findings support optogenetics as a powerful and potential tool for studying depression. And our comprehension to the etiology of depression and other psychiatric disorders will also be more thorough with this rapidly developing technique in the near future.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Xia
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Ahmed Z, Reddy JW, Malekoshoaraie MH, Hassanzade V, Kimukin I, Jain V, Chamanzar M. Flexible optoelectric neural interfaces. Curr Opin Biotechnol 2021; 72:121-130. [PMID: 34826682 PMCID: PMC9741731 DOI: 10.1016/j.copbio.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Understanding the neural basis of brain function and dysfunction and designing effective therapeutics require high resolution targeted stimulation and recording of neural activity. Optical methods have been recently developed for neural stimulation as well as functional and structural imaging. These methods call for implantable devices to deliver light into the neural tissue at depth with high spatiotemporal resolution. To address this need, rigid and flexible neurophotonic implants have been recently designed. This article reviews the state-of-the-art flexible passive and active penetrating optical neural probes developed for light delivery with minimal damage to the tissue. Passive and active flexible neurophotonic implants are compared and insights about future directions are provided.
Collapse
Affiliation(s)
- Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Mohammad H Malekoshoaraie
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vahid Hassanzade
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ibrahim Kimukin
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
22
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yao W, Yan Z, Zhang M, Wu Z, Liu Y, Pun SH, Lei TC, Vai MI, Mak PU, Chen C, Zhang B. Influence of the Surface Material and Illumination upon the Performance of a Microelectrode/Electrolyte Interface in Optogenetics. MICROMACHINES 2021; 12:1061. [PMID: 34577704 PMCID: PMC8471589 DOI: 10.3390/mi12091061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Integrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system. In this work, an integrated planar optrode with a blue LED and microelectrodes was designed and fabricated. The charge transfer mechanism on the interface was theoretically modeled and experimentally verified. An evaluation system for assessing microelectrodes was also built up. Using this system, the proposed model of various biocompatible surface materials on microelectrodes was further investigated under different illumination conditions. The influence of illumination on the microelectrode/electrolyte interface was the cause of optical artifacts, which interfere the biological signal recording. It was found that surface materials had a great effect on the charge transfer capacity, electrical stability and recoverability, photostability, and especially optical artifacts. The metal with better charge transfer capacity and electrical stability is highly possible to have a better performance on the optical artifacts, regardless of its electrical recoverability and photostability under the illumination conditions of optogenetics. Among the five metals used in our investigation, iridium served as the best surface material for the proposed integrated optrodes. Thus, optimizing the surface material for optrodes could reduce optical interference, enhance the quality of the neural signal recording for optogenetics, and thus help to advance the research in neuroscience.
Collapse
Grants
- 62061160368 & 0022/2020/AFJ This research was funded by the joint funding of the Nature Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China
- 2019B010132003, 2019B010132001 Science & Technology Plan of Guangdong Province, China
- 2016YFB0400105, 2017YFB0403001 the National Key Research and Development Program
- 20167612042080001 the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China
- 088/2016/A2, 0144/2019/A3, 0022/2020/AFJ, SKL-AMSV (FDCT-funded), SKL-AMSV-ADDITIONAL FUND, SKL-AMSV(UM)-2020-2022 the Science and Technology Development Fund, Macau SAR
- MYRG2018-00146-AMSV, MYRG2019-00056-AMSV the University of Macau
- 2020YFB1313502 the National Key R&D Program of China
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Wanqing Yao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Minjie Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA;
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Zhao Y, Liang J, Zeng Q, Li Y, Li P, Fan K, Sun W, Lv J, Qin Y, Wang Q, Tao J, Wang W. 2000 PPI silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off. OPTICS EXPRESS 2021; 29:20217-20228. [PMID: 34266115 DOI: 10.1364/oe.428482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 05/25/2023]
Abstract
In this article, 2000 PPI red silicon-based AlGaInP micro-LED arrays were fabricated and investigated. The AlGaInP epilayer was transferred onto the silicon substrate via the In-Ag bonding technique and an epilayer lift-off process. The silicon substrate with a high thermal conductivity could provide satisfactory heat dissipation, leading to micro-LED arrays that had a stable emission spectrum with increasing current density from 20 to 420 A/cm2 along with a red-shift of the peak position from 624.69 to 627.12 nm (Δλ = 2.43 nm). Additionally, increasing the injection current density had little effect on the CIE (x, y) of the micro-LED arrays. Further, the I-V characteristics and light output power of micro-LED arrays with different pixel sizes demonstrated that the AlGaInP red micro-LED array on a silicon substrate had excellent electrical stability and optical output.
Collapse
|
24
|
Gori M, Vadalà G, Giannitelli SM, Denaro V, Di Pino G. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Front Bioeng Biotechnol 2021; 9:659033. [PMID: 34113605 PMCID: PMC8185207 DOI: 10.3389/fbioe.2021.659033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neural-interfaced prostheses aim to restore sensorimotor limb functions in amputees. They rely on bidirectional neural interfaces, which represent the communication bridge between nervous system and neuroprosthetic device by controlling its movements and evoking sensory feedback. Compared to extraneural electrodes (i.e., epineural and perineural implants), intraneural electrodes, implanted within peripheral nerves, have higher selectivity and specificity of neural signal recording and nerve stimulation. However, being implanted in the nerve, their main limitation is represented by the significant inflammatory response that the body mounts around the probe, known as Foreign Body Reaction (FBR), which may hinder their rapid clinical translation. Furthermore, the mechanical mismatch between the consistency of the device and the surrounding neural tissue may contribute to exacerbate the inflammatory state. The FBR is a non-specific reaction of the host immune system to a foreign material. It is characterized by an early inflammatory phase eventually leading to the formation of a fibrotic capsule around intraneural interfaces, which increases the electrical impedance over time and reduces the chronic interface biocompatibility and functionality. Thus, the future in the reduction and control of the FBR relies on innovative biomedical strategies for the fabrication of next-generation neural interfaces, such as the development of more suitable designs of the device with smaller size, appropriate stiffness and novel conductive and biomimetic coatings for improving their long-term stability and performance. Here, we present and critically discuss the latest biomedical approaches from material chemistry and tissue engineering for controlling and mitigating the FBR in chronic neural implants.
Collapse
Affiliation(s)
- Manuele Gori
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sara Maria Giannitelli
- Laboratory of Tissue Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
25
|
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R. Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 2021; 11:10783. [PMID: 34031442 PMCID: PMC8144184 DOI: 10.1038/s41598-021-88960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Collapse
Affiliation(s)
- Jan Antolik
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00, Prague 1, Czechia.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Quentin Sabatier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Charlie Galle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), NeuroPSI, Gif-sur-Yvette, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
- University of Pittsburgh, McGowan Institute, 3025 E Carson St, Pittsburgh, PA, USA
| |
Collapse
|
26
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
27
|
Griggs DJ, Khateeb K, Zhou J, Liu T, Wang R, Yazdan-Shahmorad A. Multi-modal artificial dura for simultaneous large-scale optical access and large-scale electrophysiology in non-human primate cortex. J Neural Eng 2021; 18:10.1088/1741-2552/abf28d. [PMID: 33770770 PMCID: PMC8523212 DOI: 10.1088/1741-2552/abf28d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Objective.Non-human primates (NHPs) are critical for development of translational neural technologies because of their neurological and neuroanatomical similarities to humans. Large-scale neural interfaces in NHPs with multiple modalities for stimulation and data collection poise us to unveil network-scale dynamics of both healthy and unhealthy neural systems. We aim to develop a large-scale multi-modal interface for NHPs for the purpose of studying large-scale neural phenomena including neural disease, damage, and recovery.Approach.We present a multi-modal artificial dura (MMAD) composed of flexible conductive traces printed into transparent medical grade polymer. Our MMAD provides simultaneous neurophysiological recordings and optical access to large areas of the cortex (∼3 cm2) and is designed to mitigate photo-induced electrical artifacts. The MMAD is the centerpiece of the interfaces we have designed to support electrocorticographic recording and stimulation, cortical imaging, and optogenetic experiments, all at the large-scales afforded by the brains of NHPs. We performed electrical and optical experiments bench-side andin vivowith macaques to validate the utility of our MMAD.Main results.Using our MMAD we present large-scale electrocorticography from sensorimotor cortex of three macaques. Furthermore, we validated surface electrical stimulation in one of our animals. Our bench-side testing showed up to 90% reduction of photo-induced artifacts with our MMAD. The transparency of our MMAD was confirmed both via bench-side testing (87% transmittance) and viain vivoimaging of blood flow from the underlying microvasculature using optical coherence tomography angiography.Significance.Our results indicate that our MMAD supports large-scale electrocorticography, large-scale cortical imaging, and, by extension, large-scale optical stimulation. The MMAD prepares the way for both acute and long-term chronic experiments with complimentary data collection and stimulation modalities. When paired with the complex behaviors and cognitive abilities of NHPs, these assets prepare us to study large-scale neural phenomena including neural disease, damage, and recovery.
Collapse
Affiliation(s)
- Devon J Griggs
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Karam Khateeb
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Jasmine Zhou
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Teng Liu
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA, United States of America
| | - Azadeh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
28
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Li H, Ma Y, Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. MATERIALS HORIZONS 2021; 8:383-400. [PMID: 34821261 DOI: 10.1039/d0mh00483a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in materials and mechanics designs have led to the development of flexible electronics, which have important applications to human healthcare due to their good biocompatibility and conformal integration with biological tissue. Material innovation and mechanics design have played a key role in designing the substrates and encapsulations of flexible electronics for various bio-integrated systems. This review first introduces the inorganic materials and novel organic materials used for the substrates and encapsulation of flexible electronics, and summarizes their mechanics properties, permeability and optical transmission properties. The structural designs of the substrates are then introduced to ensure the reliability of flexible electronics, including the patterned and pre-strained designs to improve the stretchability, and the strain-isolation and -limiting substrates to reduce the deformation. Some emerging encapsulations are presented to protect the flexible electronics from degradation, environmental erosion or contamination, though they may slightly reduce the stretchability of flexible electronics.
Collapse
Affiliation(s)
- Haibo Li
- Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
30
|
Butnaru I, Chiriac AP, Asandulesa M, Sava I, Lisa G, Damaceanu MD. Tailoring poly(ether-imide) films features towards high performance flexible substrates. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Wang L, Ge C, Wang M, Ji B, Guo Z, Wang X, Yang B, Li C, Liu J. An artefact-resist optrode with internal shielding structure for low-noise neural modulation. J Neural Eng 2020; 17:046024. [PMID: 32640443 DOI: 10.1088/1741-2552/aba41f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The combination of optical manipulation of neural activities with electrophysiology recording is a promising technology for discovering mechanisms of brain disorders and mapping brain networks. However, fiber-based optrode is limited by the large size of light source and the winding of optical fiber, which hinders animal's natural movement. Meanwhile, the laser diode (LD)-based optrode restricted to the stimulation-locked artefacts will contaminate neural signal acquired from recording channels. APPROACH Here, a reformative low-noise optrode with internal grounded shielding layer is proposed to mitigate the stimulus-locked artefacts generated during LDactivation for the application of optogenetics. MAIN RESULTS The artefact mitigation capacity of grounded shielding was verified via simulation and experiments with transient amplitude of artefacts declined from over 5 mV to approximately 200 µV in-vitro. Meanwhile, the stimulation parameters were used based on previous studies by which neurons were activated without over heating the tissue as characterized by in-vitro studies (the output optical intensity is 823 ± 38 mW mm-2). Furthermore, the microelectrodes were modified with Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT: PSS) to increase the signal recording quality of the optrode. Finally, in-vivo optogenetics experiments were carried in the hippocampus of one mouse and the results showed our low-noise optrode was qualified to achieve high-quality neural recording (signal-to-noise ratio about 13) and specific neuron stimulation simultaneously. SIGNIFICANCE These results suggest the low-noise optrodes exhibit the ability of manipulating and recording neural dynamics and they are excellent candidates for neuroscience research.
Collapse
Affiliation(s)
- Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Micro fabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brosch M, Deckert M, Rathi S, Takagaki K, Weidner T, Ohl FW, Schmidt B, Lippert MT. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. J Neural Eng 2020; 17:046014. [PMID: 32705997 DOI: 10.1088/1741-2552/aba1a4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO). We focused here on improving existing processes based on metal traces and polyimide (PI), which produce more robust and cost-effective devices, to develop a multi-electrode array for optophysiology. APPROACH The most widely used substrate material for surface electrodes, PI, has seen little use for optophysiologicalμECoG/ECoG arrays. This is due to its lack of transparency at optogenetically relevant short wavelengths. Here we use very thin layers of PI in combination with chrome-gold-platinum electrodes to achieve the necessary substrate transparency and high mechanical flexibility in a device that still rejects light artifacts well. MAIN RESULTS The manufactured surface arrays have a thickness of only 6.5 µm, resulting in 80% transparency for blue light. We demonstrate immunity against opto-electric artifacts, long term stability and biocompatibility as well as suitability for optical voltage imaging. The biocompatible arrays are capable of recording stable ECoGs over months without any measurable degradation and can be used to map the tonotopic organization of the curved rodent auditory cortex. SIGNIFICANCE Our novel probes combine proven materials and processing steps to create optically near-transparent electrode arrays with superior longevity. In contrast to previous opto-electrodes, our probes are simple to manufacture, robust, offer long-term stability, and are a practical engineering solution for optophysiological experiments not requiring transparency of the electrode sites themselves.
Collapse
Affiliation(s)
- Marcel Brosch
- Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ji B, Ge C, Guo Z, Wang L, Wang M, Xie Z, Xu Y, Li H, Yang B, Wang X, Li C, Liu J. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens Bioelectron 2020; 153:112009. [DOI: 10.1016/j.bios.2020.112009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
34
|
Xu X, Mee T, Jia X. New era of optogenetics: from the central to peripheral nervous system. Crit Rev Biochem Mol Biol 2020; 55:1-16. [PMID: 32070147 DOI: 10.1080/10409238.2020.1726279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics has recently gained recognition as a biological technique to control the activity of cells using light stimulation. Many studies have applied optogenetics to cell lines in the central nervous system because it has the potential to elucidate neural circuits, treat neurological diseases and promote nerve regeneration. There have been fewer studies on the application of optogenetics in the peripheral nervous system. This review introduces the basic principles and approaches of optogenetics and summarizes the physiology and mechanism of opsins and how the technology enables bidirectional control of unique cell lines with superior spatial and temporal accuracy. Further, this review explores and discusses the therapeutic potential for the development of optogenetics and its capacity to revolutionize treatment for refractory epilepsy, depression, pain, and other nervous system disorders, with a focus on neural regeneration, especially in the peripheral nervous system. Additionally, this review synthesizes the latest preclinical research on optogenetic stimulation, including studies on non-human primates, summarizes the challenges, and highlights future perspectives. The potential of optogenetic stimulation to optimize therapy for peripheral nerve injuries (PNIs) is also highlighted. Optogenetic technology has already generated exciting, preliminary evidence, supporting its role in applications to several neurological diseases, including PNIs.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
36
|
Wang LC, Wang MH, Ge CF, Ji BW, Guo ZJ, Wang XL, Yang B, Li CY, Liu JQ. The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact. Biosens Bioelectron 2019; 145:111661. [DOI: 10.1016/j.bios.2019.111661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
37
|
Li X, Kundaliya D, Tan ZJ, Anc M, Fang NX. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion. OPTICS EXPRESS 2019; 27:30864-30874. [PMID: 31684329 DOI: 10.1364/oe.27.030864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Pixelated color converters are envisioned to achieve full-color high-resolution display through down conversion of blue/ultraviolet(UV) micro-LEDs. Quantum dots (QDs) are promising narrow-band converters of high quantum efficiency and brightness enabling saturated colors with wide color gamut in displays. Here we demonstrate high-resolution pixelated red and green QDs/thiol-ene photo-polymer converters (single pixel down to 6 µm; converters array of 21 µm pixel, 30 µm pitch and sub 10 µm thickness) patterned through projection lithography. QDs capped with amine surface group are uniformly dispersed in thiol-ene photo-polymer matrix at high concentrations (up to 100 mg/mL), which reduces aggregation and improves conversion efficiency by 0.5-1 times compared to drop-cast QDs. Color cross-talk is also reduced through patterning light blocking walls between converter pixels.
Collapse
|