1
|
Fang Z, Bi S, Brown JD, Chen J, Pan T. Microfluidics in the eye: a review of glaucoma implants from an engineering perspective. LAB ON A CHIP 2023; 23:4736-4772. [PMID: 37847237 DOI: 10.1039/d3lc00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Glaucoma is a progressive optic neuropathy in the eye, which is a leading cause of irreversible blindness worldwide and currently affects over 70 million individuals. Clinically, intraocular pressure (IOP) reduction is the only proven treatment to halt the progression of glaucoma. Microfluidic devices such as glaucoma drainage devices (GDDs) and minimally invasive glaucoma surgery (MIGS) devices are routinely used by ophthalmologists to manage elevated IOP, by creating an artificial pathway for the over-accumulated aqueous humor (AH) in a glaucomatous eye, when the natural pathways are severely blocked. Herein, a detailed modelling and analysis of both the natural microfluidic pathways of the AH in the eye and artificial microfluidic pathways formed additionally by the various glaucoma implants are conducted to provide an insight into the causes of the IOP abnormality and the improvement schemes of current implant designs. The mechanisms of representative glaucoma implants have been critically reviewed from the perspective of microfluidics, and we have categorized the current implants into four groups according to the targeted drainage sites of the AH, namely Schlemm's canal, suprachoroidal space, subconjunctival space, and ocular surface. In addition, we propose to divide the development and evolution of glaucoma implant designs into three technological waves, which include microtube (1st), microvalve (2nd) and microsystem (3rd). With the emerging trends of minimal invasiveness and artificial intelligence in the development of medical implants, we envision that a comprehensive glaucoma treatment microsystem is on the horizon, which is featured with active and wireless control of IOP, real-time continuous monitoring of IOP and aqueous rate, etc. The current review could potentially cast light on the unmatched needs, challenges, and future directions of the microfluidic structural and functional designs of glaucoma implants, which would enable an enhanced safety profile, reduced complications, increased efficacy of lowering IOP and reduced IOP fluctuations, closed-loop and on-demand control of IOP, etc.
Collapse
Affiliation(s)
- Zecong Fang
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Shuzhen Bi
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | | | - Junyi Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Tingrui Pan
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Pereira ICF, van Mechelen RJS, Wyss HM, Pinchuk L, Beckers HJM, den Toonder JMJ. Magnetically actuated glaucoma drainage device for regulating intraocular pressure after implantation. MICROSYSTEMS & NANOENGINEERING 2023; 9:92. [PMID: 37484503 PMCID: PMC10356933 DOI: 10.1038/s41378-023-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023]
Abstract
The key risk factor for glaucoma is increased intraocular pressure (IOP). Glaucoma drainage devices implanted in the eye can reduce IOP and thus stop disease progression. However, most devices currently used in clinical practice are passive and do not allow for postsurgical IOP control, which may result in serious complications such as hypotony (i.e., excessively low IOP). To enable noninvasive IOP control, we demonstrate a novel, miniature glaucoma implant that will enable the repeated adjustment of the hydrodynamic resistance after implantation. This is achieved by integrating a magnetic microvalve containing a micropencil-shaped plug that is moved using an external magnet, thereby opening or closing fluidic channels. The microplug is made from biocompatible poly(styrene-block-isobutylene-block-styrene) (SIBS) containing iron microparticles. The complete implant consists of an SIBS drainage tube and a housing element containing the microvalve and fabricated with hot embossing using femtosecond laser-machined glass molds. Using in vitro and ex vivo microfluidic experiments, we demonstrate that when the microvalve is closed, it can provide sufficient hydrodynamic resistance to overcome hypotony. Valve function is repeatable and stable over time. Due to its small size, our implant is a promising, safe, easy-to-implant, minimally invasive glaucoma surgery device.
Collapse
Affiliation(s)
- Inês C. F. Pereira
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Ralph J. S. van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Centre+ (MUMC+), 6202AZ Maastricht, The Netherlands
| | - Hans M. Wyss
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Leonard Pinchuk
- InnFocus, Inc., a Santen Company, Miami, Florida 33186 USA
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136 USA
| | - Henny J. M. Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Centre+ (MUMC+), 6202AZ Maastricht, The Netherlands
| | - Jaap M. J. den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Yang Q, Enríquez Á, Devathasan D, Thompson CA, Nayee D, Harris R, Satoski D, Obeng-Gyasi B, Lee A, Bentley RT, Lee H. Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment. Nat Commun 2022; 13:520. [PMID: 35082280 PMCID: PMC8791973 DOI: 10.1038/s41467-022-28101-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/06/2022] [Indexed: 11/08/2022] Open
Abstract
Maintaining the patency of indwelling drainage devices is critical in preventing further complications following an intraventricular hemorrhage (IVH) and other chronic disease management. Surgeons often use drainage devices to remove blood and cerebrospinal fluid but these catheters frequently become occluded with hematoma. Using an implantable magnetic microactuator, we created a self-clearing catheter that can generate large enough forces to break down obstructive blood clots by applying time-varying magnetic fields. In a blood-circulating model, our self-clearing catheters demonstrated a > 7x longer functionality than traditional catheters (211 vs. 27 min) and maintained a low pressure for longer periods (239 vs. 79 min). Using a porcine IVH model, the self-clearing catheters showed a greater survival rate than control catheters (86% vs. 0%) over the course of 6 weeks. The treated animals also had significantly smaller ventricle sizes 1 week after implantation compared to the control animals with traditional catheters. Our results suggest that these magnetic microactuator-embedded smart catheters can expedite the removal of blood from the ventricles and potentially improve the outcomes of critical patients suffering from often deadly IVH.
Collapse
Affiliation(s)
- Qi Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillon Devathasan
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig A Thompson
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillan Nayee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan Harris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas Satoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Barnabas Obeng-Gyasi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Albert Lee
- Goodman Campbell Brain and Spine, Indianapolis, IN, 46202, USA
| | - R Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Libring S, Enríquez Á, Lee H, Solorio L. In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers (Basel) 2021; 13:4440. [PMID: 34503250 PMCID: PMC8430481 DOI: 10.3390/cancers13174440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.
Collapse
Affiliation(s)
- Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Artigues M, Gilabert-Porres J, Texidó R, Borrós S, Abellà J, Colominas S. Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique. SENSORS (BASEL, SWITZERLAND) 2021; 21:4185. [PMID: 34207185 PMCID: PMC8235154 DOI: 10.3390/s21124185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Joan Gilabert-Porres
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 500018 Zaragoza, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| |
Collapse
|
6
|
Lubricin as a tool for controlling adhesion in vivo and ex vivo. Biointerphases 2021; 16:020802. [PMID: 33736436 DOI: 10.1116/6.0000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Collapse
|
7
|
Xu J, Xu J, Moon H, Sintim HO, Lee H. Zwitterionic liquid crystalline polythiophene as an antibiofouling biomaterial. J Mater Chem B 2021; 9:349-356. [PMID: 33242321 PMCID: PMC8176281 DOI: 10.1039/d0tb02264k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To address a key challenge of conjugated polymers in biomedical applications having poor antifouling properties that eventually leads to the failure and reduced lifetime of bioelectronics in the body, herein we describe the design, synthesis, and evaluation of our newly designed multifunctional zwitterionic liquid crystalline polymer PCBTh-C8C10, which is facilely synthesized using oxidative polymerization. A conjugated polythiophene backbone, a multifunctional zwitterionic side chain, and a mesogenic unit are integrated into one segment. By DSC and POM characterization, we verify that the introduction of 3,5-bis(2-octyl-1-dodecyloxy)benzene as a mesogenic unit into the polythiophene backbone allows the formation of the liquid crystalline mesophase of the resulting polymer. We also demonstrate that the PCBTh-C8C10 coated surface exhibits good conductivity, stability, hydrophilicity, and remarkable antibiofouling properties against protein adsorption, cell growth, and bacteria attachment. This new zwitterionic liquid crystalline polymer having good antibiofouling features will be widely recognized as a promising biomaterial that is applicable in implantable organic bioelectronics via inhibiting the foreign body response. A deep understanding of structure-property relationships of zwitterionic conjugated polymers has also been provided in this study.
Collapse
Affiliation(s)
- Jinjia Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47906, USA.
| | - Jian Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47906, USA.
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47906, USA.
| | - Herman O Sintim
- Department of Chemistry, Center for Drug Discovery, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47906, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
8
|
Enríquez Á, Libring S, Field TC, Jimenez J, Lee T, Park H, Satoski D, Wendt MK, Calve S, Tepole AB, Solorio L, Lee H. High-Throughput Magnetic Actuation Platform for Evaluating the Effect of Mechanical Force on 3D Tumor Microenvironment. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2005021. [PMID: 34764824 PMCID: PMC8577425 DOI: 10.1002/adfm.202005021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 05/03/2023]
Abstract
Accurately replicating and analyzing cellular responses to mechanical cues is vital for exploring metastatic disease progression. However, many of the existing in vitro platforms for applying mechanical stimulation seed cells on synthetic substrates. To better recapitulate physiological conditions, a novel actuating platform is developed with the ability to apply tensile strain on cells at various amplitudes and frequencies in a high-throughput multi-well culture plate using a physiologically-relevant substrate. Suspending fibrillar fibronectin across the body of the magnetic actuator provides a matrix representative of early metastasis for 3D cell culture that is not reliant on a synthetic substrate. This platform enables the culturing and analysis of various cell types in an environment that mimics the dynamic stretching of lung tissue during normal respiration. Metabolic activity, YAP activation, and morphology of breast cancer cells are analyzed within one week of cyclic stretching or static culture. Further, matrix degradation is significantly reduced in breast cancer cell lines with metastatic potential after actuation. These new findings demonstrate a clear suppressive cellular response due to cyclic stretching that has implications for a mechanical role in the dormancy and reactivation of disseminated breast cancer cells to macrometastases.
Collapse
Affiliation(s)
- Ángel Enríquez
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Libring
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler C. Field
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Julian Jimenez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Taeksang Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas Satoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael K. Wendt
- Purdue Center for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Luis Solorio
- Purdue Center for Cancer Research, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|
10
|
Xu J, Xu J, Moon H, Sintim HO, Lee H. Zwitterionic Porous Conjugated Polymers as a Versatile Platform for Antibiofouling Implantable Bioelectronics. ACS APPLIED POLYMER MATERIALS 2020; 2:528-536. [PMID: 32490375 PMCID: PMC7266170 DOI: 10.1021/acsapm.9b00950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we describe the design, synthesis, and evaluation of two kinds of multifunctional zwitterionic linear poly(carboxybetaine thiophene) (PCBTh) and porous poly(carboxybetaine thiophene-co-9,9'-bifluoreneylidene) (PCBTh-coBF) polymers, which can be facilely synthesized using Yamamoto and Suzuki polycondensation, respectively. The integrations of zwitterionic polymer-based biomaterials that consist of conjugated polymer backbones, multifunctional zwitterionic side chains, and distorted units are designed and studied to address a key challenge of conjugated polymers in biomedical applications: biofouling phenomena that eventually lead to the failure and reduced lifetime of bioelectronics in the body. The introduction of a twisting unit into the polymer backbone allows us to tune the porosity, morphology, optical properties, and efficiency of antibiofouling features of resulting polymers. The PCBTh-coBF coated surface exhibits good conductivity, stability, hydrophilicity, and antibiofouling properties against protein adsorption, cell growth, and bacteria attachment, which may be useful for chronic in vivo bioelectronics applications by minimizing the foreign body response.
Collapse
Affiliation(s)
- Jinjia Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jian Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47906, United States
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47906, United States
| | - Herman O Sintim
- Department of Chemistry, Center for Drug Discovery, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47906, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
11
|
Nolan JK, Nguyen TNH, Le KVH, DeLong LE, Lee H. Simple Fabrication of Flexible Biosensor Arrays Using Direct Writing for Multianalyte Measurement from Human Astrocytes. SLAS Technol 2020; 25:33-46. [PMID: 31766939 PMCID: PMC7263197 DOI: 10.1177/2472630319888442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simultaneous measurements of glucose, lactate, and neurotransmitters (e.g., glutamate) in cell culture over hours and days can provide a more dynamic and longitudinal perspective on ways neural cells respond to various drugs and environmental cues. Compared with conventional microfabrication techniques, direct writing of conductive ink is cheaper, faster, and customizable, which allows rapid iteration for different applications. Using a simple direct writing technique, we printed biosensor arrays onto cell culture dishes, flexible laminate, and glass to enable multianalyte monitoring. The ink was a composite of PEDOT:PSS conductive polymer, silicone, activated carbon, and Pt microparticles. We applied 0.5% Nafion to the biosensors for selectivity and functionalized them with oxidase enzymes. We characterized biosensors in phosphate-buffered saline and in cell culture medium supplemented with fetal bovine serum. The biosensor arrays measured glucose, lactate, and glutamate simultaneously and continued to function after incubation in cell culture at 37 °C for up to 2 days. We cultured primary human astrocytes on top of the biosensor arrays and placed arrays into astrocyte cultures. The biosensors simultaneously measured glucose, glutamate, and lactate from astrocyte cultures. Direct writing can be integrated with microfluidic organ-on-a-chip platforms or as part of a smart culture dish system. Because we print extrudable and flexible components, sensing elements can be printed on any 3D or flexible substrate.
Collapse
Affiliation(s)
- James K. Nolan
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Tran N. H. Nguyen
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Khanh Vy H. Le
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Luke E. DeLong
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Yang Q, Lee A, Bentley RT, Lee H. Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter. IEEE SENSORS JOURNAL 2019; 19:1373-1378. [PMID: 31579395 PMCID: PMC6774376 DOI: 10.1109/jsen.2018.2880576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Indwelling catheters are used widely in medicine to treat various chronic medical conditions. However, chronic implantation of catheters often leads to a premature failure due to biofilm accumulation. Previously we reported on the development of a self-clearing catheter by integrating polymer-based microscale magnetic actuators. The microactuator provides an active anti-biofouling mechanism to disrupt and remove adsorbed biofilm on demand using an externally applied stimulus. During an in vivo evaluation of self-clearing catheter, we realized that it is important to periodically monitor the performance of implanted microactuators. Here we integrate gold-based piezoresistive strain-gauge on our magnetic microactuators to directly monitor the device deflection with good sensitivity (0.035%/Deg) and linear range (±30°). With the integrated strain-gauge, we demonstrate the multi-functional capabilities of our magnetic microactuators that enable device alignment, flow-rate measurement, and obstruction detection and removal towards the development of chronically implantable self-clearing smart catheter.
Collapse
Affiliation(s)
- Qi Yang
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Albert Lee
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University, Indianapolis, IN 46202 USA
| | - R Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
13
|
Nguyen TNH, Nolan JK, Park H, Lam S, Fattah M, Page JC, Joe HE, Jun MBG, Lee H, Kim SJ, Shi R, Lee H. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosens Bioelectron 2019; 131:257-266. [PMID: 30849725 DOI: 10.1016/j.bios.2019.01.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 01/23/2023]
Abstract
Glutamate excitotoxicity is a pathology in which excessive glutamate can cause neuronal damage and degeneration. It has also been linked to secondary injury mechanisms in traumatic spinal cord injury. Conventional bioanalytical techniques used to characterize glutamate levels in vivo, such as microdialysis, have low spatiotemporal resolution, which has impeded our understanding of this dynamic event. In this study, we present an amperometric biosensor fabricated using a simple direct ink writing technique for the purpose of in vivo glutamate monitoring. The biosensor is fabricated by immobilizing glutamate oxidase on nanocomposite electrodes made of platinum nanoparticles, multi-walled carbon nanotubes, and a conductive polymer on a flexible substrate. The sensor is designed to measure extracellular dynamics of glutamate and other potential biomarkers during a traumatic spinal cord injury event. Here we demonstrate good sensitivity and selectivity of these rapidly prototyped implantable biosensors that can be inserted into a spinal cord and measure extracellular glutamate concentration. We show that our biosensors exhibit good flexibility, linear range, repeatability, and stability that are suitable for future in vivo evaluation.
Collapse
Affiliation(s)
- Tran N H Nguyen
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Stephanie Lam
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Mara Fattah
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jessica C Page
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hang-Eun Joe
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Martin B G Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hyungwoo Lee
- Samsung Advanced Institute of Technology, Suwon, South Korea
| | - Sang Joon Kim
- Samsung Advanced Institute of Technology, Suwon, South Korea
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA; College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|