1
|
Liu Y, Zhang J, Peng X, Yan S. Deciphering the Evolution of Inertial Migration in Serpentine Channels. Anal Chem 2024; 96:14306-14314. [PMID: 39165174 PMCID: PMC11375625 DOI: 10.1021/acs.analchem.4c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Serpentine channels coupling inertial and secondary flows enable effective particle focusing and separation, showing great potential in clinical diagnostics and drug screening. However, the nonsteady secondary flows in the serpentine channel make the evolution of inertial migration unclear, hindering the development and application of the serpentine channel. Herein, to refine the inertial migration mechanism, we established a model with varying curvature ratios to study the effect of secondary flow on particle migration in the serpentine channel. This method used direct numerical simulation (DNS) to calculate inertial lift, mapped the inertial lift to cross sections of the serpentine channel, and deciphered the inertial migration by using the Lagrangian particle tracking (LPT) method. The inertial migration of microparticles is experimentally investigated to validate the established numerical model. The results indicate that particle migration in serpentine channels follows a two-stage migration. An increase in secondary flow accelerates the second stage of the migration process while slowing the first stage process. Subsequently, we investigated the effects of different parameters, including Reynolds number, aspect ratio, and blockage ratio, on the equilibrium positions of particles, providing guidelines for the high-resolution separation of particles. Taking flow resistance into account, the dimensionless study makes the separation of arbitrary-sized particles possible. This work reveals the migration mechanism in serpentine channels, paving the way for the inertial separation of the particles.
Collapse
Affiliation(s)
- Yong Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Xiaobo Peng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
3
|
Tabarhoseini SM, Kale AS, Koniers PM, Boone AC, Bentor J, Boies A, Zhao H, Xuan X. Charge-Based Separation of Microparticles Using AC Insulator-Based Dielectrophoresis. Anal Chem 2024; 96:13672-13678. [PMID: 39126704 DOI: 10.1021/acs.analchem.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Surface charge is an important property of particles. It has been utilized to separate particles in microfluidic devices, where dielectrophoresis (DEP) is often the driving force. However, current DEP-based particle separations based on the charge differences work only for particles of similar sizes. They become less effective and may even fail for a mixture of particles differing in both charge and size. We demonstrate that our recently developed AC insulator-based dielectrophoresis (AC iDEP) technique can direct microparticles toward charge-dependent equilibrium positions in a ratchet microchannel. Such charge-based particle separation is controlled by the imposed AC voltage frequency and amplitude but is nearly unaffected by the size of either type of particle in the mixture except for the time required to achieve an effective separation. This AC iDEP technique may potentially be used to focus and separate submicron or even nanoparticles because of its virtually "infinite" channel length.
Collapse
Affiliation(s)
| | - Akshay Shridhar Kale
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Peter Michael Koniers
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Anna Claire Boone
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Adam Boies
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Hui Zhao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Yan S, Jia Z, Zhang Z, Liu Y, Liu B, Ren Y, Yang X. Continuously tunable separation of light-induced Haematococcus pluvialis using an ultrastretchable, sheath-flow-assisted elasto-inertial microchannel. Anal Chim Acta 2024; 1317:342884. [PMID: 39030017 DOI: 10.1016/j.aca.2024.342884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND A proportion of Haematococcus pluvialis under the light stress can effectively conduct astaxanthin biosynthesis, leading to the increase in cell size. Although the size is a critical indicator for identifying the astaxanthin-rich H. pluvialis cells, the cut-off size to be separated varies from sample to sample. RESULTS Here, we report an ultrastretchable, straight elasto-inertial microchannel with tunable separation threshold to continuously separate the light-induced H. pluvialis cells by size. The symmetrical sheath flows confine the particles to the channel sidewalls, and large particles can cross the interface of viscoelastic fluids to the equilibrium position at the channel centerline. By stretching the microfluidic chip, the medium-sized particles can gradually migrate to the channel centerline in the narrower and longer channel, bringing the tunable separation threshold. Results show that the separation performance of the ultrastretchable microfluidic device is affected by total flow rate, flow rate ratio of sheath to sample, polyethylene oxide (PEO) solution configuration. Lastly, size-tunable separation of light-induced H. pluvialis cells is demonstrated. SIGNIFICANCE To the best of our knowledge, this is the first report on cell migration in co-flow configurations in the ultra-stretchable microfluidics. Separation of H. pluvialis is not only a relevant end application in harvesting the astaxanthin-rich species, but the separated populations of highly productive microalgal cells will open a venue for cellular directed evolution.
Collapse
Affiliation(s)
- Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China; College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China.
| | - Zixuan Jia
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhikai Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yong Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China; College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China; Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
5
|
Chen D, Huang Q, Ni Z, Xiang N. Particle focusing mechanisms in λ-DNA solution flowing in a straight microchannel. Electrophoresis 2024; 45:1379-1388. [PMID: 38343171 DOI: 10.1002/elps.202300295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 08/22/2024]
Abstract
Most biological fluids (such as blood, saliva, and lymph) in nature have certain viscoelasticity and are beginning to be used as the carrying fluids for viscoelastic microfluidics. However, the particle-focusing mechanisms in these new biological viscoelastic fluids are still unclear. In this work, the particle-focusing mechanisms in λ-DNA solutions were systematically explored. We first explored the particle focusing dynamics in a square cross-section under varied flow rates to uncover the effects of flow rate on particle focusing. Three focusing stages, from the classic five-position viscoelastic focusing to single-stream focusing and finally to multiplex-stream focusing, were clearly demonstrated. In addition, the particle focusing process along the channel length was demonstrated, and a first-fast-and-then-slow focusing process was clearly observed. Then, the effects of λ-DNA concentrations on particle focusing were explored and compared using the solutions with 0-25 ppm λ-DNA. Finally, we discussed the inferences of blockage ratio on particle focusing by changing the particle diameter and cross-sectional dimensions. Our work may provide a deeper understanding on the particle focusing mechanisms in biological viscoelastic fluids and lays a foundation for the subsequent particle counting and analysis and the development of low-cost portable flow cytometers.
Collapse
Affiliation(s)
- Dalin Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Qiang Huang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
6
|
Raihan MK, Kim N, Song Y, Xuan X. Elasto-inertial instabilities in the merging flow of viscoelastic fluids. SOFT MATTER 2024. [PMID: 39036949 DOI: 10.1039/d4sm00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Many engineering and natural phenomena involve the merging of two fluid streams through a T-junction. Previous studies of such merging flows have been focused primarily upon Newtonian fluids. We observed in our recent experiment with five different polymer solutions a direct change from an undisturbed to either a steady vortical or unsteady three-dimensional flow at the T-junction with increasing inertia. The transition state(s) in between these two types of merging flow patterns is, however, yet to be known. We present here a systematic experimental study of the merging flow of polyethylene oxide (PEO) solutions with varying polymer concentrations and molecular weights. Two new paths of flow development are identified with the increase of Reynolds number: one is the transition in very weakly viscoelastic fluids first to steady vortical flow and then to a juxtaposition state with an unsteady elastic eddy zone in the middle and a steady inertial vortex on each side, and the other is the transition in weakly viscoelastic fluids first to a steady vortical and/or a juxtaposition state and then to a fully unsteady flow. Interestingly, the threshold Reynolds number for the onset of elastic instabilities in the merging flow is not a monotonic function of the elasticity number, but instead follows a power-law dependence on the polymer concentration relative to its overlap value. Such a dependence turns out qualitatively consistent with the prediction of the McKinley-Pakdel criterion.
Collapse
Affiliation(s)
- Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Nayoung Kim
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
7
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
8
|
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. MICROMACHINES 2024; 15:893. [PMID: 39064404 PMCID: PMC11278910 DOI: 10.3390/mi15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.
Collapse
Affiliation(s)
| | | | - Dengxin Hua
- Center for Lidar Remote Sensing Research, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China.; (H.Z.); (Y.Z.)
| |
Collapse
|
9
|
Yun HG, Cadierno YA, Kim TW, Muñoz-Barrutia A, Garica-Gonzalez D, Choi S. Computational Hyperspectral Microflow Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400019. [PMID: 38770741 DOI: 10.1002/smll.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Miniaturized flow cytometry has significant potential for portable applications, such as cell-based diagnostics and the monitoring of therapeutic cell manufacturing, however, the performance of current techniques is often limited by the inability to resolve spectrally-overlapping fluorescence labels. Here, the study presents a computational hyperspectral microflow cytometer (CHC) that enables accurate discrimination of spectrally-overlapping fluorophores labeling single cells. CHC employs a dispersive optical element and an optimization algorithm to detect the full fluorescence emission spectrum from flowing cells, with a high spectral resolution of ≈3 nm in the range from 450 to 650 nm. CHC also includes a dedicated microfluidic device that ensures in-focus imaging through viscoelastic sheathless focusing, thereby enhancing the accuracy and reliability of microflow cytometry analysis. The potential of CHC for analyzing T lymphocyte subpopulations and monitoring changes in cell composition during T cell expansion is demonstrated. Overall, CHC represents a major breakthrough in microflow cytometry and can facilitate its use for immune cell monitoring.
Collapse
Affiliation(s)
- Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoel Alonso Cadierno
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Tae Won Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Daniel Garica-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Recktenwald SM, Rashidi Y, Graham I, Arratia PE, Del Giudice F, Wagner C. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement. SOFT MATTER 2024; 20:4950-4963. [PMID: 38873747 DOI: 10.1039/d4sm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yazdan Rashidi
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Ian Graham
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
11
|
Tanriverdi S, Cruz J, Habibi S, Amini K, Costa M, Lundell F, Mårtensson G, Brandt L, Tammisola O, Russom A. Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation. MICROSYSTEMS & NANOENGINEERING 2024; 10:87. [PMID: 38919163 PMCID: PMC11196675 DOI: 10.1038/s41378-024-00724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
The combination of flow elasticity and inertia has emerged as a viable tool for focusing and manipulating particles using microfluidics. Although there is considerable interest in the field of elasto-inertial microfluidics owing to its potential applications, research on particle focusing has been mostly limited to low Reynolds numbers (Re<1), and particle migration toward equilibrium positions has not been extensively examined. In this work, we thoroughly studied particle focusing on the dynamic range of flow rates and particle migration using straight microchannels with a single inlet high aspect ratio. We initially explored several parameters that had an impact on particle focusing, such as the particle size, channel dimensions, concentration of viscoelastic fluid, and flow rate. Our experimental work covered a wide range of dimensionless numbers (0.05 < Reynolds number < 85, 1.5 < Weissenberg number < 3800, 5 < Elasticity number < 470) using 3, 5, 7, and 10 µm particles. Our results showed that the particle size played a dominant role, and by tuning the parameters, particle focusing could be achieved at Reynolds numbers ranging from 0.2 (1 µL/min) to 85 (250 µL/min). Furthermore, we numerically and experimentally studied particle migration and reported differential particle migration for high-resolution separations of 5 µm, 7 µm and 10 µm particles in a sheathless flow at a throughput of 150 µL/min. Our work elucidates the complex particle transport in elasto-inertial flows and has great potential for the development of high-throughput and high-resolution particle separation for biomedical and environmental applications.
Collapse
Affiliation(s)
- Selim Tanriverdi
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65 Sweden
| | - Javier Cruz
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65 Sweden
- Division of Microsystems Technology, Department of Materials Science and Engineering, Uppsala University, Uppsala, 752 37 Sweden
| | - Shahriar Habibi
- FLOW and SeRC (Swedish e-Science Research Centre), Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, SE 100 44 Sweden
| | - Kasra Amini
- FLOW and Fluid Physics Laboratory, Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, Sweden
| | - Martim Costa
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65 Sweden
| | - Fredrik Lundell
- FLOW and Fluid Physics Laboratory, Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center, Royal Institute of Technology, Stockholm, SE 100 44 Sweden
| | - Gustaf Mårtensson
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65 Sweden
| | - Luca Brandt
- FLOW and SeRC (Swedish e-Science Research Centre), Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, SE 100 44 Sweden
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Outi Tammisola
- FLOW and SeRC (Swedish e-Science Research Centre), Department of Engineering Mechanics, Royal Institute of Technology, Stockholm, SE 100 44 Sweden
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65 Sweden
- AIMES Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Chu PY, Wu AY, Tsai KY, Hsieh CH, Wu MH. Combination of an Optically Induced Dielectrophoresis (ODEP) Mechanism and a Laminar Flow Pattern in a Microfluidic System for the Continuous Size-Based Sorting and Separation of Microparticles. BIOSENSORS 2024; 14:297. [PMID: 38920601 PMCID: PMC11201910 DOI: 10.3390/bios14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Optically induced dielectrophoresis (ODEP)-based microparticle sorting and separation is regarded as promising. However, current methods normally lack the downstream process for the transportation and collection of separated microparticles, which could limit its applications. To address this issue, an ODEP microfluidic chip encompassing three microchannels that join only at the central part of the microchannels (i.e., the working zone) was designed. During operation, three laminar flows were generated in the zone, where two dynamic light bar arrays were designed to sort and separate PS (polystyrene) microbeads of different sizes in a continuous manner. The separated PS microbeads were then continuously transported in laminar flows in a partition manner for the final collection. The results revealed that the method was capable of sorting and separating PS microbeads in a high-purity manner (e.g., the microbead purity values were 89.9 ± 3.7, 88.0 ± 2.5, and 92.8 ± 6.5% for the 5.8, 10.8, and 15.8 μm microbeads harvested, respectively). Overall, this study demonstrated the use of laminar flow and ODEP to achieve size-based sorting, separation, and collection of microparticles in a continuous and high-performance manner. Apart from the demonstration, this method can also be utilized for size-based sorting and the separation of other biological or nonbiological microparticles.
Collapse
Affiliation(s)
- Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ai-Yun Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yu Tsai
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
13
|
Chavez-Pineda OG, Rodriguez-Moncayo R, Gonzalez-Suarez AM, Guevara-Pantoja PE, Maravillas-Montero JL, Garcia-Cordero JL. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD. LAB ON A CHIP 2024; 24:2575-2589. [PMID: 38646820 DOI: 10.1039/d4lc00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 μL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.
Collapse
Affiliation(s)
- Oriana G Chavez-Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Roberto Rodriguez-Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Alan M Gonzalez-Suarez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City14080, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4058, Switzerland.
| |
Collapse
|
14
|
Gurkan UA, Wood DK, Carranza D, Herbertson LH, Diamond SL, Du E, Guha S, Di Paola J, Hines PC, Papautsky I, Shevkoplyas SS, Sniadecki NJ, Pamula VK, Sundd P, Rizwan A, Qasba P, Lam WA. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies. LAB ON A CHIP 2024; 24:1867-1874. [PMID: 38487919 PMCID: PMC10964744 DOI: 10.1039/d3lc00796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - E Du
- Florida Atlantic University, USA
| | | | | | - Patrick C Hines
- Wayne State University School of Medicine, USA
- Functional Fluidics, Inc., USA
| | | | | | | | | | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, USA
| | - Asif Rizwan
- National Heart, Lung, and Blood Institute, USA
| | | | | |
Collapse
|
15
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
16
|
Fedorowicz K, Prosser R. Electrically-driven modulation of flow patterns in liquid crystal microfludics. Sci Rep 2024; 14:4875. [PMID: 38418449 PMCID: PMC10901866 DOI: 10.1038/s41598-024-53436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
The flow of liquid crystals in the presence of electric fields is investigated as a possible means of flow control. The Beris-Edwards model is coupled to a free energy incorporating electric field effects. Simulations are conducted in straight channels and in junctions. Our findings reveal that local flow mediation can be achieved by the application of spatially varying electric fields. In rectangular straight channels, we report a two-stream velocity profile arising in response to the imposed electric field. Furthermore, we observe that the flow rate in each stream scales inversely with the Miesowicz viscosities, leading to the confinement of 70% of the throughput to one half of the channel. Similar flow partitioning is also demonstrated in channel junction geometries, where we show that using external fields provides a novel avenue for flow modulation in microfluidic circuits.
Collapse
Affiliation(s)
- Kamil Fedorowicz
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | - Robert Prosser
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Pittman TW, Zhang X, Punyadeera C, Henry CS. Electrochemical Immunosensor for the Quantification of Galectin-3 in Saliva. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 400:134811. [PMID: 38046365 PMCID: PMC10688601 DOI: 10.1016/j.snb.2023.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Heart failure (HF) is an emerging epidemic and remains a major clinical and public health problem. Advances in the healthcare management of HF may lead to lower morbidity and mortality rates but require diagnostics to guide the process. Current diagnostics/prognostics approaches rely on expensive equipment, centralized facilities and trained personnel, marginalizing healthcare access in developing countries and rural communities. These issues have led researchers to focus on developing portable and affordable diagnostics that can be deployed at the point-of-care (POC). Typically, HF biomarkers are measured in blood not saliva. Recently, our team correlated concentrations of salivary Galectin-3 (Gal-3) to outcomes in patients with HF. We have developed an analytical device which consists of an immunoassay based on a screen-printed carbon electrode (SPCE) to quantify Gal-3 levels in saliva samples. Using 10 μL of saliva, the proposed electrochemical immunoassay achieved a concentration dependent signal response in the clinically relevant range with a limit of detection of 9.66 ng/mL. In addition, the storage stability of the modified electrode was investigated, and only a 10.9% loss in current response over a 35-day period. The results of the immunoassay on the modified SPCEs suggest validity as a POC biosensor system for the management of HF.
Collapse
Affiliation(s)
- Trey W. Pittman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Xi Zhang
- Griffith Institute for Drug Discover, Griffith University, Nathan, Australia
| | - Chamindie Punyadeera
- Griffith Institute for Drug Discover, Griffith University, Nathan, Australia
- Menzies Health Institute, Griffith University, Gold Coast, Australia
- Translational Research Institute, Woolloongabba, Australia
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Hashemiesfahan M, Gelin P, Maisto A, Gardeniers H, De Malsche W. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control. MICROMACHINES 2024; 15:191. [PMID: 38398921 PMCID: PMC10892017 DOI: 10.3390/mi15020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Acoustofluidics is an emerging research field wherein either mixing or (bio)-particle separation is conducted. High-power acoustic streaming can produce more intense and rapid flow patterns, leading to faster and more efficient liquid mixing. However, without cooling, the temperature of the piezoelectric element that is used to supply acoustic power to the fluid could rise above 50% of the Curie point of the piezomaterial, thereby accelerating its aging degradation. In addition, the supply of excessive heat to a liquid may lead to irreproducible streaming effects and gas bubble formation. To control these phenomena, in this paper, we present a feedback temperature control system integrated into an acoustofluidic setup using bulk acoustic waves (BAWs) to elevate mass transfer and manipulation of particles. The system performance was tested by measuring mixing efficiency and determining the average velocity magnitude of acoustic streaming. The results show that the integrated temperature control system keeps the temperature at the set point even at high acoustic powers and improves the reproducibility of the acoustofluidic setup performance when the applied voltage is as high as 200 V.
Collapse
Affiliation(s)
- Mehrnaz Hashemiesfahan
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Pierre Gelin
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| | - Antonio Maisto
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Wim De Malsche
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| |
Collapse
|
19
|
Aslan MK, Meng Y, Zhang Y, Weiss T, Stavrakis S, deMello AJ. Ultrahigh-Throughput, Real-Time Flow Cytometry for Rare Cell Quantification from Whole Blood. ACS Sens 2024; 9:474-482. [PMID: 38171016 DOI: 10.1021/acssensors.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an ultrahigh-throughput, real-time fluorescence cytometer comprising a viscoelastic microfluidic system and a complementary metal-oxide-semiconductor (CMOS) linear image sensor-based detection system. The flow cytometer allows for real-time quantification of a variety of fluorescence species, including micrometer-sized particles and cells, at analytical throughputs in excess of 400,000 species per second. The platform integrates a custom C++ control program and graphical user interface (GUI) to allow for the processing of raw signals, adjustment of processing parameters, and display of fluorescence intensity histograms in real time. To demonstrate the efficacy of the platform for rare event detection and its utility as a basic clinical tool, we measure and quantify patient-derived circulating tumor cells (CTCs) in peripheral blood, realizing that detection has a sensitivity of 6 CTCs per million blood cells (0.000006%) with a volumetric throughput of over 3 mL/min.
Collapse
Affiliation(s)
- Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| |
Collapse
|
20
|
Jeon H, Lee SH, Shin J, Song K, Ahn N, Park J. Elasto-inertial microfluidic separation of microspheres with submicron resolution at high-throughput. MICROSYSTEMS & NANOENGINEERING 2024; 10:15. [PMID: 38264707 PMCID: PMC10803301 DOI: 10.1038/s41378-023-00633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
Elasto-inertial microfluidic separation offers many advantages including high throughput and separation resolution. Even though the separation efficiency highly depends on precise control of the flow conditions, no concrete guidelines have been reported yet in elasto-inertial microfluidics. Here, we propose a dimensionless analysis for precise estimation of the microsphere behaviors across the interface of Newtonian and viscoelastic fluids. Reynolds number, modified Weissenberg number, and modified elastic number are used to investigate the balance between inertial and elastic lift forces. Based on the findings, we introduce a new dimensionless number defined as the width of the Newtonian fluid stream divided by microsphere diameter. The proposed dimensionless analysis allows us to predict whether the microspheres migrate across the co-flow interface. The theoretical estimation is found to be in good agreement with the experimental results using 2.1- and 3.2-μm-diameter polystyrene microspheres in a co-flow of water and polyethylene oxide solution. Based on the theoretical estimation, we also realize submicron separation of the microspheres with 2.1 and 2.5 μm in diameter at high throughput, high purity (>95%), and high recovery rate (>97%). The applicability of the proposed method was validated by separation of platelets from similar-sized Escherichia coli (E.coli).
Collapse
Affiliation(s)
- Hyunwoo Jeon
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 Republic of Korea
| | - Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 Republic of Korea
| | - Jongho Shin
- Analytical Engineering Team, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do, 31454 Republic of Korea
| | - Kicheol Song
- Analytical Engineering Team, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do, 31454 Republic of Korea
| | - Nari Ahn
- Analytical Engineering Team, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do, 31454 Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 Republic of Korea
| |
Collapse
|
21
|
Peng T, Qiang J, Yuan S. Sheathless inertial particle focusing methods within microfluidic devices: a review. Front Bioeng Biotechnol 2024; 11:1331968. [PMID: 38260735 PMCID: PMC10801244 DOI: 10.3389/fbioe.2023.1331968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The ability to manipulate and focus particles within microscale fluidic environments is crucial to advancing biological, chemical, and medical research. Precise and high-throughput particle focusing is an essential prerequisite for various applications, including cell counting, biomolecular detection, sample sorting, and enhancement of biosensor functionalities. Active and sheath-assisted focusing techniques offer accuracy but necessitate the introduction of external energy fields or additional sheath flows. In contrast, passive focusing methods exploit the inherent fluid dynamics in achieving high-throughput focusing without external actuation. This review analyzes the latest developments in strategies of sheathless inertial focusing, emphasizing inertial and elasto-inertial microfluidic focusing techniques from the channel structure classifications. These methodologies will serve as pivotal benchmarks for the broader application of microfluidic focusing technologies in biological sample manipulation. Then, prospects for future development are also predicted. This paper will assist in the understanding of the design of microfluidic particle focusing devices.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Jun Qiang
- The School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Shuai Yuan
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
A L, G F, P L M, D L, G D. Dynamics of non-spherical particles in viscoelastic fluids flowing in a microchannel. SOFT MATTER 2023. [PMID: 38050735 DOI: 10.1039/d3sm01399e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The migration and orientation dynamics of prolate spheroidal particles suspended in a viscoelastic liquid flowing in a square microchannel is experimentally investigated under inertialess flow conditions. The suspending fluid is an aqueous solution of PolyEthylene Oxyde at relatively high concentration characterized by a high level of elasticity and shear-thinning. Fluid viscoelasticity drives the spheroids towards the channel central region at relatively low flow rates when the particles explore the constant viscosity region of the fluid, without showing a preferential orientation. As the flow rate increases and the fluid enters in the shear-thinning region, a smaller fraction of particles migrates at the central channel region, reducing the focusing efficiency. The focused spheroids rotate sufficiently fast to attain a stable orientation with major axis aligned along the flow direction.
Collapse
Affiliation(s)
- Langella A
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - Franzino G
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Napoli, 80055 Portici, Italy
| | - Maffettone P L
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - Larobina D
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Napoli, 80055 Portici, Italy
| | - D'Avino G
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
23
|
Hossein F, Angeli P. A review of acoustofluidic separation of bioparticles. Biophys Rev 2023; 15:2005-2025. [PMID: 38192342 PMCID: PMC10771489 DOI: 10.1007/s12551-023-01112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 01/08/2024] Open
Abstract
Acoustofluidics is an emerging interdisciplinary research field that involves the integration of acoustics and microfluidics to address challenges in various scientific areas. This technology has proven to be a powerful tool for separating biological targets from complex fluids due to its label-free, biocompatible, and contact-free nature. Considering a careful designing process and tuning the acoustic field particles can be separated with high yield. Recently the advancement of acoustofluidics led to the development of point-of-care devices for separations of micro particles which address many of the limitations of conventional separation tools. This review article discusses the working principles and different approaches of acoustofluidic separation and provides a synopsis of its traditional and emerging applications, including the theory and mechanism of acoustofluidic separation, blood component separation, cell washing, fluorescence-activated cell sorting, circulating tumor cell isolation, and exosome isolation. The technology offers great potential for solving clinical problems and advancing scientific research.
Collapse
Affiliation(s)
- Fria Hossein
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| |
Collapse
|
24
|
Raihan MK, Baghdady M, Dort H, Bentor J, Xuan X. Fluid Elasticity-Enhanced Insulator-Based Dielectrophoresis for Sheath-Free Particle Focusing in Very Dilute Polymer Solutions. Anal Chem 2023; 95:16013-16020. [PMID: 37856245 DOI: 10.1021/acs.analchem.3c03311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Focusing particles into a narrow stream is usually a necessary step in microfluidic flow cytometry and particle sorting. We demonstrate that the addition of a small amount of poly(ethylene oxide) (PEO) polymer into a buffer solution can reduce by almost 1 order of magnitude the threshold DC electric field for single-line dielectrophoretic focusing of particles in a constricted microchannel. The particle focusing effectiveness of this fluid elasticity-enhanced insulator-based dielectrophoresis (E-iDEP) in very dilute PEO solutions gets enhanced with the increase of the PEO molecular weight and particle size. These two trends are consistent with a theoretical analysis that accounts for the fluid elasticity effects on the electrokinetic and dielectrophoretic particle motions. Surprisingly, the particle-focusing effectiveness of E-iDEP is observed to first increase and then decrease with an increase in the PEO concentration.
Collapse
Affiliation(s)
- Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Micah Baghdady
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Heston Dort
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
25
|
Meng Y, Zhang Y, Bühler M, Wang S, Asghari M, Stürchler A, Mateescu B, Weiss T, Stavrakis S, deMello AJ. Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics. SCIENCE ADVANCES 2023; 9:eadi5296. [PMID: 37801500 PMCID: PMC10558121 DOI: 10.1126/sciadv.adi5296] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Small extracellular vesicles (sEVs; <200 nm) that contain lipids, nucleic acids, and proteins are considered promising biomarkers for a wide variety of diseases. Conventional methods for sEV isolation from blood are incompatible with routine clinical workflows, significantly hampering the utilization of blood-derived sEVs in clinical settings. Here, we present a simple, viscoelastic-based microfluidic platform for label-free isolation of sEVs from human blood. The separation performance of the device is assessed by isolating fluorescent sEVs from whole blood, demonstrating purities and recovery rates of over 97 and 87%, respectively. Significantly, our viscoelastic-based microfluidic method also provides for a remarkable increase in sEV yield compared to gold-standard ultracentrifugation, with proteomic profiles of blood-derived sEVs purified by both methods showing similar protein compositions. To demonstrate the clinical utility of the approach, we isolate sEVs from blood samples of 20 patients with cancer and 20 healthy donors, demonstrating that elevated sEV concentrations can be observed in blood derived from patients with cancer.
Collapse
Affiliation(s)
- Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Marcel Bühler
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Shuchen Wang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Mohammad Asghari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Stürchler
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Bogdan Mateescu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
26
|
Suzuki T, Kalyan S, Berlinicke C, Yoseph S, Zack DJ, Hur SC. Deciphering viscoelastic cell manipulation in rectangular microchannels. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2023; 35:103117. [PMID: 37849975 PMCID: PMC10577600 DOI: 10.1063/5.0167285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Viscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections. In this work, we delve into inertial, elastic, and viscoelastic focusing of biological cells in rectangular cross-section microchannels. By systematically varying degrees of fluid elasticity and inertia, we investigate the underlying mechanisms behind cell focusing. Our approach involves injecting cells into devices with a fixed, non-unity aspect ratio and capturing their images from two orientations, enabling the extrapolation of cross-sectional equilibrium positions from two dimensional (2D) projections. We characterized the changes in hydrodynamic focusing behaviors of cells based on factors, such as cell size, flow rate, and fluid characteristics. These findings provide insights into the flow characteristics driving changes in equilibrium positions. Furthermore, they indicate that viscoelastic focusing can enhance the detection accuracy in flow cytometry and the sorting resolution for size-based particle sorting applications. By contributing to the advancement of understanding viscoelastic focusing in rectangular microchannels, this work provides valuable insight and design guidelines for the development of devices that harness viscoelastic focusing. The knowledge gained from this study can aid in the advancement of viscoelastic particle manipulation technique and their application in various fields.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Samantha Yoseph
- Department of Architecture, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
27
|
Jia Z, Wu J, Wu X, Yuan Q, Chan Y, Liu B, Zhang J, Yan S. Size-Tunable Elasto-Inertial Sorting of Haematococcus pluvialis in the Ultrastretchable Microchannel. Anal Chem 2023; 95:13338-13345. [PMID: 37585740 DOI: 10.1021/acs.analchem.3c02648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Haematococcus pluvialis is a good source of astaxanthin, which reduces oxidation in the human body, treats inflammation, and slows the growth of breast and skin cancer cells. Since the size of H. pluvialis is often closely related to astaxanthin yield, size-based microalgal separation has far-reaching significance for high-value algae extraction and algal directed evolution. In this work, we report a novel size-tunable elasto-inertial sorting of H. pluvialis in the Ecoflex ultrastretchable microfluidic devices. Ecoflex microfluidic chips can deform and be flexible, bringing flexibility and stretchability to microchannels as well as new possibilities for large-scale modulation of channel geometry. Here, the effects of velocity, channel elongation, and particle size on the elasto-inertial migration of particles are systematically studied. We found that channel elongation has a strong regulating effect on particle focusing. In addition, we verified the continuous regulation of the sorting threshold of microalgal cells by stretching the channel, providing technical support for the extraction and directed evolution of high-yield microalgae.
Collapse
Affiliation(s)
- Zixuan Jia
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiuru Wu
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Qingwei Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
28
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
29
|
Gao H, Zhou J, Naderi MM, Peng Z, Papautsky I. Evolution of focused streams for viscoelastic flow in spiral microchannels. MICROSYSTEMS & NANOENGINEERING 2023; 9:73. [PMID: 37288322 PMCID: PMC10241945 DOI: 10.1038/s41378-023-00520-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/09/2023]
Abstract
Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications.
Collapse
Affiliation(s)
- Hua Gao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Mohammad Moein Naderi
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| |
Collapse
|
30
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
31
|
Lu Y, Tan W, Liu Z, Mu S, Zhu G. Degeneration of flow pattern in acousto-elastic flow through sharp-edge microchannels. ULTRASONICS SONOCHEMISTRY 2023; 95:106390. [PMID: 37003213 PMCID: PMC10457586 DOI: 10.1016/j.ultsonch.2023.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Acoustic streaming (AS) is the steady time-averaged flow generated by acoustic field, which has been widely used in enhancing mixing and particle manipulation. Current researches on acoustic streaming mainly focus on Newtonian fluids, while many biological and chemical solutions exhibit non-Newtonian properties. The acoustic streaming in viscoelastic fluids has been studied experimentally for the first time in this paper. We found that the addition of polyethylene oxide (PEO) polymer to the Newtonian fluid significantly altered the flow characteristics in the microchannel. The resulting acousto-elastic flow showed two modes: positive mode and negative mode. Specifically, the viscoelastic fluids under acousto-elastic flow exhibit mixing hysteresis features at low flow rates, and degeneration of flow pattern at high flow rates. Through quantitative analysis, the degeneration of flow pattern is further summarized as time fluctuation and spatial disturbance range reduction. The positive mode in acousto-elastic flow can be used for the mixing enhancement of viscoelastic fluids in the micromixer, while the negative mode provides a potential method for particle/cell manipulation in viscoelastic body fluids such as saliva by suppressing unstable flow.
Collapse
Affiliation(s)
- Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Zhifang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Shuoshuo Mu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
32
|
Wang T, Yuan D, Wan W, Zhang B. Numerical Study of Viscoelastic Microfluidic Particle Manipulation in a Microchannel with Asymmetrical Expansions. MICROMACHINES 2023; 14:mi14050915. [PMID: 37241539 DOI: 10.3390/mi14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Microfluidic microparticle manipulation is currently widely used in environmental, bio-chemical, and medical applications. Previously we proposed a straight microchannel with additional triangular cavity arrays to manipulate microparticles with inertial microfluidic forces, and experimentally explored the performances within different viscoelastic fluids. However, the mechanism remained poorly understood, which limited the exploration of the optimal design and standard operation strategies. In this study, we built a simple but robust numerical model to reveal the mechanisms of microparticle lateral migration in such microchannels. The numerical model was validated by our experimental results with good agreement. Furthermore, the force fields under different viscoelastic fluids and flow rates were carried out for quantitative analysis. The mechanism of microparticle lateral migration was revealed and is discussed regarding the dominant microfluidic forces, including drag force, inertial lift force, and elastic force. The findings of this study can help to better understand the different performances of microparticle migration under different fluid environments and complex boundary conditions.
Collapse
Affiliation(s)
- Tiao Wang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wuyi Wan
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Boran Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
33
|
Patel K, Stark H. Fluid interfaces laden by force dipoles: towards active matter-driven microfluidic flows. SOFT MATTER 2023; 19:2241-2253. [PMID: 36912619 DOI: 10.1039/d3sm00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.
Collapse
Affiliation(s)
- Kuntal Patel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
34
|
Kashaninejad N, Nguyen NT. Microfluidic solutions for biofluids handling in on-skin wearable systems. LAB ON A CHIP 2023; 23:913-937. [PMID: 36628970 DOI: 10.1039/d2lc00993e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-skin wearable systems for biofluid sampling and biomarker sensing can revolutionize the current practices in healthcare monitoring and personalized medicine. However, there is still a long path toward complete market adoption and acceptance of this fascinating technology. Accordingly, microfluidic science and technology can provide excellent solutions for bridging the gap between basic research and clinical research. The research gap has led to the emerging field of epidermal microfluidics. Moreover, recent advances in the fabrication of highly flexible and stretchable microfluidic systems have revived the concept of micro elastofluidics, which can provide viable solutions for on-skin wearable biofluid handling. In this context, this review highlights the current state-of-the-art platforms in this field and discusses the potential technologies that can be used for on-skin wearable devices. Toward this aim, we first compare various microfluidic platforms that could be used for on-skin wearable devices. These platforms include semiconductor-based, polymer-based, liquid metal-based, paper-based, and textile-based microfluidics. Next, we discuss how these platforms can enhance the stretchability of on-skin wearable biosensors at the device level. Next, potential microfluidic solutions for collecting, transporting, and controlling the biofluids are discussed. The application of finger-powered micropumps as a viable solution for precise and on-demand biofluid pumping is highlighted. Finally, we present the future directions of this field by emphasizing the applications of droplet-based microfluidics, stretchable continuous-flow micro elastofluidics, stretchable superhydrophobic surfaces, liquid beads as a form of digital micro elastofluidics, and topological liquid diodes that received less attention but have enormous potential to be integrated into on-skin wearable devices.
Collapse
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
35
|
Büyükurgancı B, Basu SK, Neuner M, Guck J, Wierschem A, Reichel F. Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates. SOFT MATTER 2023; 19:1739-1748. [PMID: 36779239 DOI: 10.1039/d2sm01515c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methyl cellulose (MC) is a widely used material in various microfluidic applications in biology. Due to its biocompatibility, it has become a popular crowding agent for microfluidic cell deformability measurements, which usually operate at high shear rates (>10 000 s-1). However, a full rheological characterization of methyl cellulose solutions under these conditions has not yet been reported. With this study, we provide a full shear-rheological description for solutions of up to 1% MC dissolved in phosphate-buffered saline (PBS) that are commonly used in real-time deformability cytometry (RT-DC). We characterized three different MC-PBS solutions used for cell mechanical measurements in RT-DC with three different shear rheometer setups to cover a range of shear rates from 0.1-150 000 s-1. We report viscosities and normal stress differences in this regime. Viscosity functions can be well described using a Carreau-Yasuda model. Furthermore, we present the temperature dependency of shear viscosity and first normal stress difference of these solutions. Our results show that methyl cellulose solutions behave like power-law liquids in viscosity and exhibit first normal stress difference at shear rates between 5000-150 000 s-1. We construct a general viscosity equation for each MC solution at a certain shear rate and temperature. Furthermore, we investigated how MC concentration influences the rheology of the solutions and found the entanglement concentration at around 0.64 w/w%. Our results help to better understand the viscoelastic behavior of MC solutions, which can now be considered when modelling stresses in microfluidic channels.
Collapse
Affiliation(s)
- Beyza Büyükurgancı
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Markus Neuner
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Wierschem
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Felix Reichel
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
36
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
37
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
38
|
Determination of the characteristic curves of a nonlinear first order system from Fourier analysis. Sci Rep 2023; 13:1955. [PMID: 36732351 PMCID: PMC9895081 DOI: 10.1038/s41598-023-29151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Based on Fourier analysis, we develop an expression for modeling and simulating nonlinear first order systems. This expression is associated to a nonlinear first order differential equation [Formula: see text], where [Formula: see text] is the dynamical variable, [Formula: see text] is the driving force, and the f and g functions are the characteristic curves which are associated to dissipative and memory elements, respectively. The model is obtained from the sinusoidal response, specifically by calculating the Fourier analysis of y(t) for [Formula: see text], where the model parameters are the Fourier coefficients of the response, and the values of [Formula: see text], [Formula: see text] and [Formula: see text]. The same expression is used for two kinds of time-domain simulations: to calculate other driving force [Formula: see text] based on a dynamical variable [Formula: see text]; and, to calculate the dynamical variable [Formula: see text] based on a driving force [Formula: see text]. In both cases, the dynamical variable must remain in the range [Formula: see text]. By analyzing this expression, we found an equivalence between the Fourier coefficients and the polynomial regressions of the characteristic curves of f and g. This result allows us to obtain the system modeling and simulation based on the amplitude and phase Fourier spectrum obtained from the Fast Fourier Transform (FFT) of the sampled [Formula: see text] version of y(t). It is shown that this technique has a low computational complexity, and it is expected to be suitable for real-time applications for system modeling, simulation and control, in particular when the explicit expressions of the characteristic curves are unknown. Fourier analysis is a fundamental tool in electronics, mathematics and physics, but to the best of the author's knowledge, no work has found this clear evidence of the connection between the Fourier analysis and a first order differential equation. The aim of this work is to initiate a systematic study on this topic.
Collapse
|
39
|
Fang W, Xiong T, Pak OS, Zhu L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205382. [PMID: 36538743 PMCID: PMC9929134 DOI: 10.1002/advs.202205382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Indexed: 05/30/2023]
Abstract
Automated manipulation of small particles using external (e.g., magnetic, electric and acoustic) fields has been an emerging technique widely used in different areas. The manipulation typically necessitates a reduced-order physical model characterizing the field-driven motion of particles in a complex environment. Such models are available only for highly idealized settings but are absent for a general scenario of particle manipulation typically involving complex nonlinear processes, which has limited its application. In this work, the authors present a data-driven architecture for controlling particles in microfluidics based on hydrodynamic manipulation. The architecture replaces the difficult-to-derive model by a generally trainable artificial neural network to describe the kinematics of particles, and subsequently identifies the optimal operations to manipulate particles. The authors successfully demonstrate a diverse set of particle manipulations in a numerically emulated microfluidic chamber, including targeted assembly of particles and subsequent navigation of the assembled cluster, simultaneous path planning for multiple particles, and steering one particle through obstacles. The approach achieves both spatial and temporal controllability of high precision for these settings. This achievement revolutionizes automated particle manipulation, showing the potential of data-driven approaches and machine learning in improving microfluidic technologies for enhanced flexibility and intelligence.
Collapse
Affiliation(s)
- Wen‐Zhen Fang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
- Key Laboratory of Thermo‐Fluid Science and EngineeringMOE, Xi'an Jiaotong UniversityXi'an710049China
| | - Tongzhao Xiong
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - On Shun Pak
- Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraCA95053USA
| | - Lailai Zhu
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
40
|
Bai JJ, Zhang X, Wei X, Wang Y, Du C, Wang ZJ, Chen ML, Wang JH. Dean-Flow-Coupled Elasto-Inertial Focusing Accelerates Exosome Purification to Facilitate Single Vesicle Profiling. Anal Chem 2023; 95:2523-2531. [PMID: 36657481 DOI: 10.1021/acs.analchem.2c04898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.
Collapse
Affiliation(s)
- Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning110819, P. R. China
| | - Ze-Jun Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| |
Collapse
|
41
|
Zhang T, Cain AK, Semenec L, Liu L, Hosokawa Y, Inglis DW, Yalikun Y, Li M. Microfluidic Separation and Enrichment of Escherichia coli by Size Using Viscoelastic Flows. Anal Chem 2023; 95:2561-2569. [PMID: 36656064 DOI: 10.1021/acs.analchem.2c05084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we achieve the separation and enrichment of Escherichia coli clusters from its singlets in a viscoelastic microfluidic device. E. coli, an important prokaryotic model organism and a widely used microbial factory, can aggregate in clusters, leading to biofilm development that can be detrimental to human health and industrial processes. The ability to obtain high-purity populations of E. coli clusters is of significance for biological, biomedical, and industrial applications. In this study, polystyrene particles of two different sizes, 1 and 4.8 μm, are used to mimic E. coli singlets and clusters, respectively. Experimental results show that particles migrate toward the channel center in a size-dependent manner, due to the combined effects of inertial and elastic forces; 4.8 and 1 μm particles are found to have lateral equilibrium positions closer to the channel centerline and sidewalls, respectively. The size-dependent separation performance of the microdevice is demonstrated to be affected by three main factors: channel length, the ratio of sheath to sample flow rate, and poly(ethylene oxide) (PEO) concentration. Further, the separation of E. coli singlets and clusters is achieved at the outlets, and the separation efficiency is evaluated in terms of purity and enrichment factor.
Collapse
Affiliation(s)
- Tianlong Zhang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ling Liu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
42
|
Abdelkarim M, Perez-Davalos L, Abdelkader Y, Abostait A, Labouta HI. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin Drug Deliv 2023; 20:13-30. [PMID: 36440475 DOI: 10.1080/17425247.2023.2152000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs1 and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages. AREAS COVERED The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility. EXPERT OPINION We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.
Collapse
Affiliation(s)
- Mahmoud Abdelkarim
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Luis Perez-Davalos
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Yasmin Abdelkader
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Amr Abostait
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Hagar I Labouta
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, R3E 3P4, Winnipeg, Manitoba, Canada.,Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| |
Collapse
|
43
|
Naderi MM, Barilla L, Zhou J, Papautsky I, Peng Z. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels. MICROMACHINES 2022; 13:mi13122131. [PMID: 36557430 PMCID: PMC9781382 DOI: 10.3390/mi13122131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime. Experiments and 3D simulations were performed to study the effects of flowrate, particle size, and the shear-thinning extent of the fluid on the focusing patterns. The Giesekus constitutive equation was used in the simulations to capture the shear-thinning and viscoelastic behaviors of the solution used in the experiments. At low flowrate, with Weissenberg number Wi ~ O(1), both the elastic force and secondary flow effects push particles towards the channel center. However, at a high flowrate, Wi ~ O(10), the elastic force direction is reversed in the central regions. This remarkable behavior of the elastic force, combined with the enhanced shear-gradient lift at the high flowrate, pushes particles away from the channel center. Additionally, a precise prediction of the focusing position can only be made when the shear-thinning extent of the fluid is correctly estimated in the modeling. The shear-thinning also gives rise to the unique behavior of the inertial forces near the channel walls which is linked with the ‘warped’ velocity profile in such fluids.
Collapse
Affiliation(s)
| | | | | | - Ian Papautsky
- Correspondence: (I.P.); (Z.P.); Tel.: +1-312-413-3800 (I.P.); +1-312-996-7467 (Z.P.)
| | - Zhangli Peng
- Correspondence: (I.P.); (Z.P.); Tel.: +1-312-413-3800 (I.P.); +1-312-996-7467 (Z.P.)
| |
Collapse
|
44
|
Singh N, Vladisavljević GT, Nadal F, Cottin-Bizonne C, Pirat C, Bolognesi G. Enhanced Accumulation of Colloidal Particles in Microgrooved Channels via Diffusiophoresis and Steady-State Electrolyte Flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14053-14062. [PMID: 36350104 PMCID: PMC9686125 DOI: 10.1021/acs.langmuir.2c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The delivery of colloidal particles in dead-end microstructures is very challenging, since these geometries do not allow net flows of particle-laden fluids; meanwhile, diffusive transport is slow and inefficient. Recently, we introduced a novel particle manipulation strategy, based on diffusiophoresis, whereby the salt concentration gradient between parallel electrolyte streams in a microgrooved channel induces the rapid (i.e., within minutes) and reversible accumulation, retention, and removal of colloidal particles in the microgrooves. In this study, we investigated the effects of salt contrast and groove depth on the accumulation process in silicon microgrooves and determined the experimental conditions that lead to a particle concentration peak of more than four times the concentration in the channel bulk. Also, we achieved an average particle concentration in the grooves of more than twice the concentration in the flowing streams and almost 2 orders of magnitude larger than the average concentration in the grooves in the absence of a salt concentration gradient. Analytical sufficient and necessary conditions for particle accumulation are also derived. Finally, we successfully tested the accumulation process in polydimethylsiloxane microgrooved channels, as they are less expensive to fabricate than silicon microgrooved substrates. The controlled and enhanced accumulation of colloidal particles in dead-end structures by solute concentration gradients has potential applications in soft matter and living systems, such as drug delivery, synthetic biology, and on-chip diagnostics.
Collapse
Affiliation(s)
- Naval Singh
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - Goran T. Vladisavljević
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - François Nadal
- Wolfson
School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - Cécile Cottin-Bizonne
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1—CNRS, Université de Lyon, Villeurbanne Cedex69622, France
| | - Christophe Pirat
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1—CNRS, Université de Lyon, Villeurbanne Cedex69622, France
| | - Guido Bolognesi
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| |
Collapse
|
45
|
Feng H, Patel D, Magda JJ, Geher S, Sigala PA, Gale BK. Multiple-Streams Focusing-Based Cell Separation in High Viscoelasticity Flow. ACS OMEGA 2022; 7:41759-41767. [PMID: 36406492 PMCID: PMC9670260 DOI: 10.1021/acsomega.2c06021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Viscoelastic flow has been widely used in microfluidic particle separation processes, in which particles get focused on the channel center in diluted viscoelastic flow. In this paper, the transition from single-stream focusing to multiple-streams focusing (MSF) in high viscoelastic flow is observed, which is applied for cell separation processes. Particle focusing stream bifurcation is caused by the balance between elastic force and viscoelastic secondary flow drag force. The influence of cell physical properties, such as cell dimension, shape, and deformability, on the formation of multiple-streams focusing is studied in detail. Particle separation is realized utilizing different separation criteria. The size-based separation of red (RBC) and white (WBC) blood cells is demonstrated in which cells get focused in different streams based on their dimension difference. Cells with different deformabilities get stretched in the viscoelastic flow, leading to the change of focusing streams, and this property is harnessed to separate red blood cells infected with the malaria parasite, Plasmodium falciparum. The achieved results promote our understanding of particle movement in the high viscoelastic flow and enable new particle manipulation and separation processes for sample treatment in biofluids.
Collapse
Affiliation(s)
- Haidong Feng
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah84112, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Dhruv Patel
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah84112, United States
| | - Jules J. Magda
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah84112, United States
| | - Sage Geher
- Department
of Biochemistry, University of Utah School
of Medicine, Salt Lake City, Utah84112, United States
| | - Paul A. Sigala
- Department
of Biochemistry, University of Utah School
of Medicine, Salt Lake City, Utah84112, United States
| | - Bruce K. Gale
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah84112, United States
| |
Collapse
|
46
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractRecent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient’s clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
|
47
|
D'Avino G, Maffettone PL. Effect of wall slip on the viscoelastic particle ordering in a microfluidic channel. Electrophoresis 2022; 43:2206-2216. [PMID: 35689363 PMCID: PMC9796797 DOI: 10.1002/elps.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
The formation of a line of equally spaced particles at the centerline of a microchannel, referred as "particle ordering," is desired in several microfluidic applications. Recent experiments and simulations highlighted the capability of viscoelastic fluids to form a row of particles characterized by a preferential spacing. When dealing with non-Newtonian fluids in microfluidics, the adherence condition of the liquid at the channel wall may be violated and the liquid can slip over the surface, possibly affecting the ordering efficiency. In this work, we investigate the effect of wall slip on the ordering of particles suspended in a viscoelastic liquid by numerical simulations. The dynamics of a triplet of particles in an infinite cylindrical channel is first addressed by solving the fluid and particle governing equations. The relative velocities computed for the three-particle system are used to predict the dynamics of a train of particles flowing in a long microchannel. The distributions of the interparticle spacing evaluated at different slip coefficients, linear particle concentrations, and distances from the channel inlet show that wall slip slows down the self-assembly mechanism. For strong slipping surfaces, no significant change of the initial microstructure is observed at low particle concentrations, whereas strings of particles in contact form at higher concentrations. The detrimental effect of wall slip on viscoelastic ordering suggests care when designing microdevices, especially in case of hydrophobic surfaces that may enhance the slipping phenomenon.
Collapse
Affiliation(s)
- Gaetano D'Avino
- Dipartimento di Ingegneria Chimicadei Materiali e della Produzione IndustrialeUniversità degli Studi di Napoli Federico IIPiazzale Tecchio 80Naples80125Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimicadei Materiali e della Produzione IndustrialeUniversità degli Studi di Napoli Federico IIPiazzale Tecchio 80Naples80125Italy
| |
Collapse
|
48
|
Gomez-Solano JR, Rodríguez RF, Salinas-Rodríguez E. Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys Rev E 2022; 106:054602. [PMID: 36559383 DOI: 10.1103/physreve.106.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico
| | - Rosalío F Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico.,FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, Mexico
| | - Elizabeth Salinas-Rodríguez
- Departamento I. P. H., Universidad Autónoma Metropolitana, Iztapalapa, Apdo. Postal 55-534, 09340 Ciudad de México, Mexico
| |
Collapse
|
49
|
Ni C, Zhou Z, Zhu Z, Jiang D, Xiang N. Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels. Anal Chem 2022; 94:15639-15647. [DOI: 10.1021/acs.analchem.2c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zheng Zhou
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zhixian Zhu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing210037, China
- Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Jiangsu, Danyang212300, China
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| |
Collapse
|
50
|
Raihan MK, Wu S, Dort H, Baghdady M, Song Y, Xuan X. Effects of vertical confinement on the flow of polymer solutions in planar constriction microchannels. SOFT MATTER 2022; 18:7427-7440. [PMID: 36134484 DOI: 10.1039/d2sm01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The flow of polymer solutions under extensional conditions is frequently encountered in numerous engineering fields. Planar contraction and/or expansion microchannels have been a subject of interest for many studies in that regard, which, however, have mostly focused on shallow channel structures. We investigate here the effect of changing the depth of contraction-expansion microchannels on the flow responses of three types of polymer solutions and water. The flow of viscoelastic polyethylene oxide (PEO) solution is found to become more stable with suppressed vortex formation and growth in the contraction part while being less stable in the expansion part with the increase of the channel depth. These opposing trends in the contraction and expansion flows are noted to have similarities with our recent findings of constriction length-dependent instabilities in the same PEO solution (M. K. Raihan, S. Wu, Y. Song and X. Xuan, Soft Matter, 2021, 17, 9198-9209), where the contraction flow gets stabilized while the expansion flow becomes destabilized with the increase of the constriction length. In contrast, the entire flow becomes less stable in deeper channels for the shear-thinning xanthan gum (XG) solution as well as the shear thinning and viscoelastic polyacrylamide (PAA) solution. This observation aligns with that of water flow, which is attributed to the reduced top/bottom wall stabilizing effects.
Collapse
Affiliation(s)
- Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634-0921, USA.
| | - Sen Wu
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634-0921, USA.
- College of Marine Engineering, Dalian Maritime University, Dalian, 116026, P. R. China.
| | - Heston Dort
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634-0921, USA.
| | - Micah Baghdady
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634-0921, USA.
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian, 116026, P. R. China.
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634-0921, USA.
| |
Collapse
|