1
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
2
|
Kato S, Shindo A. Direct quantitative perturbations of physical parameters in vivo to elucidate vertebrate embryo morphogenesis. Curr Opin Cell Biol 2024; 90:102420. [PMID: 39182374 DOI: 10.1016/j.ceb.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia in vivo. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.
Collapse
Affiliation(s)
- Soichiro Kato
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Asako Shindo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Lui CC, Kulpa M, Verocai GG, Armién AG, Edwards EE, Wiener DJ, Rech RR. Reassessing Stephanofilaria stilesi dermatitis in cattle, with characterization of molecular markers for confirming diagnosis. Parasit Vectors 2023; 16:278. [PMID: 37573424 PMCID: PMC10422776 DOI: 10.1186/s13071-023-05905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Stephanofilaria stilesi is a vector-borne filarioid nematode of cattle in North America that is transmitted via the hematophagous horn fly (Haematobia irritans) intermediate host. Despite being relatively common, little attention has been given to a thorough description of S. stilesi lesions and the potential integration of pathological and molecular diagnostic findings to confirm infection. METHODS To characterize the cutaneous lesions caused by S. stilesi in cattle (Bos taurus taurus and Bos taurus indicus), skin of the ventral abdominal midline was collected from 22 animals during postmortem examination. Skin samples were processed for histology, transmission electron microscopy (TEM), DNA extraction, PCR, and Sanger sequencing targeting molecular markers cytochrome oxidase c subunit 1 (cox1), 12S, 18S rDNA, and 28S rDNA. RESULTS Macroscopically, lesions ranged from 5 × 4 cm to 36 × 10 cm, consisting of one large single lesion, or two to four ovoid areas at the ventral abdominal midline, surrounding the umbilicus. Each lesion presented as ulcerative dermatitis with dry, serocellular crusts, or alopecic and lichenified areas. Histologically, eosinophilic, neutrophilic, and ulcerative dermatitis with furunculosis, folliculitis, and epidermal hyperplasia was observed. Cross sections of adult nematodes were identified in ~ 60% of the cases (n = 13) within intact follicles, sebaceous ducts, crusts, and areas of furunculosis. Stephanofilaria first-stage larvae (L1) were observed in five cases within "vitelline membranes" in the superficial dermis and crusts. Ultrastructurally, the L1 cross sections were compounded of smooth multilayered cuticle and somatic cells. The "vitelline membrane" is a tri-layered membrane where L1 are suspended in a matrix. Stephanofilaria stilesi DNA was found in 5 out of the 13 cases in which adults or L1 were histologically observed (38%) and in 1 out of the 9 cases without adults or L1 present (11%). Phylogenetic analyses suggest a closer relationship of the genus Stephanofilaria with Thelazioidea, instead of the family Filariidae (Filarioidea), in which it has been historically allocated. CONCLUSIONS Our study improved the characterization of lesions and described ultrastructural findings of S. stilesi and highlights that molecular tools should be utilized in combination with histology for improved diagnostic resolution.
Collapse
Affiliation(s)
- Clinson C Lui
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Matthew Kulpa
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Guilherme G Verocai
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Aníbal G Armién
- California Animal Health & Food Safety Laboratory System, Davis, CA, USA
| | - Erin E Edwards
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Raquel R Rech
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Cuvelier M, Vangheel J, Thiels W, Ramon H, Jelier R, Smeets B. Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans. Biophys J 2023; 122:1858-1867. [PMID: 37085996 PMCID: PMC10209142 DOI: 10.1016/j.bpj.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.
Collapse
Affiliation(s)
- Maxim Cuvelier
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| | - Jef Vangheel
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Wim Thiels
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Herman Ramon
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Rob Jelier
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Bart Smeets
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Pan P, Qin Z, Sun W, Zhou Y, Wang S, Song P, Wang Y, Ru C, Wang X, Calarco J, Liu X. A spiral microfluidic device for rapid sorting, trapping, and long-term live imaging of Caenorhabditis elegans embryos. MICROSYSTEMS & NANOENGINEERING 2023; 9:17. [PMID: 36844938 PMCID: PMC9943735 DOI: 10.1038/s41378-023-00485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
Caenorhabditis elegans embryos have been widely used to study cellular processes and developmental regulation at early stages. However, most existing microfluidic devices focus on the studies of larval or adult worms rather than embryos. To accurately study the real-time dynamics of embryonic development under different conditions, many technical barriers must be overcome; these can include single-embryo sorting and immobilization, precise control of the experimental environment, and long-term live imaging of embryos. This paper reports a spiral microfluidic device for effective sorting, trapping, and long-term live imaging of single C. elegans embryos under precisely controlled experimental conditions. The device successfully sorts embryos from a mixed population of C. elegans at different developmental stages via Dean vortices generated inside a spiral microchannel and traps the sorted embryos at single-cell resolution through hydrodynamic traps on the sidewall of the spiral channel for long-term imaging. Through the well-controlled microenvironment inside the microfluidic device, the response of the trapped C. elegans embryos to mechanical and chemical stimulation can be quantitatively measured. The experimental results show that a gentle hydrodynamic force would induce faster growth of embryos, and embryos developmentally arrested in the high-salinity solution could be rescued by the M9 buffer. The microfluidic device provides new avenues for easy, rapid, high-content screening of C. elegans embryos.
Collapse
Affiliation(s)
- Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - William Sun
- Upper Canada College, 200 Lonsdale Road, Toronto, Ontario M4V 1W6 Canada
| | - Yuxiao Zhou
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Pengfei Song
- School of Advanced Technology, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, 215000 China
| | - Yong Wang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
| | - Xin Wang
- Department of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130012 China
| | - John Calarco
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario M5S 3G5 Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9 Canada
| |
Collapse
|
6
|
Characterisation of chemical damage on tissue structures by multispectral imaging and machine learning procedures: Alkaline hypochlorite effect in C. elegans. Comput Biol Med 2022; 145:105477. [DOI: 10.1016/j.compbiomed.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
|
7
|
Seirin-Lee S, Yamamoto K, Kimura A. The extra-embryonic space and the local contour are crucial geometric constraints regulating cell arrangement. Development 2022; 149:275369. [PMID: 35552395 PMCID: PMC9148568 DOI: 10.1242/dev.200401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
In multicellular systems, cells communicate with adjacent cells to determine their positions and fates, an arrangement important for cellular development. Orientation of cell division, cell-cell interactions (i.e. attraction and repulsion) and geometric constraints are three major factors that define cell arrangement. In particular, geometric constraints are difficult to reveal in experiments, and the contribution of the local contour of the boundary has remained elusive. In this study, we developed a multicellular morphology model based on the phase-field method so that precise geometric constraints can be incorporated. Our application of the model to nematode embryos predicted that the amount of extra-embryonic space, the empty space within the eggshell that is not occupied by embryonic cells, affects cell arrangement in a manner dependent on the local contour and other factors. The prediction was validated experimentally by increasing the extra-embryonic space in the Caenorhabditis elegans embryo. Overall, our analyses characterized the roles of geometrical contributors, specifically the amount of extra-embryonic space and the local contour, on cell arrangements. These factors should be considered for multicellular systems. Summary: The local contour and the extra-embryonic space, the empty space within the eggshell not occupied by embryonic cells, are important geometric constraints in cell arrangement of nematode embryos.
Collapse
Affiliation(s)
- Sungrim Seirin-Lee
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8315, Japan.,JST CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazunori Yamamoto
- Department of Applied Bioscience, Faculty of Applied Bioscience, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima 411-8540, Japan
| |
Collapse
|
8
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Nuez-Martinez M, Pinto CIG, Guerreiro JF, Mendes F, Marques F, Muñoz-Juan A, Xavier JAM, Laromaine A, Bitonto V, Protti N, Crich SG, Teixidor F, Viñas C. Cobaltabis(dicarbollide) ([ o-COSAN] -) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers (Basel) 2021; 13:6367. [PMID: 34944987 PMCID: PMC8699431 DOI: 10.3390/cancers13246367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.
Collapse
Affiliation(s)
- Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Catarina I. G. Pinto
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Joana F. Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Jewel Ann Maria Xavier
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | | | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| |
Collapse
|
10
|
Zhang W, Pan P, Wang X, Chen Y, Rao Y, Liu X. Force-Controlled Mechanical Stimulation and Single-Neuron Fluorescence Imaging of Drosophila Larvae. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3061874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|