1
|
Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes B, Kim J, Liu X, Terao C, O.’Connell KS, Adams M, Rolf A, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Florio AD, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre D, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt C, Nöthen MM, Nurnberger J, O.’Donovan M, O’Donovan C, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, Ribasés M, Rietschel M, Schall U, Schofield PR, Schulze TG, Scott L, Scott RJ, Serretti A, Weickert CS, Smoller JW, Artigas MS, Stein DJ, Streit F, Toma C, Tooney P, Vawter MP, Vieta E, Vincent JB, Waldman ID, Weickert T, Witt SH, Hong KS, Ikeda M, Iwata N, Świątkowska B, Won HH, Edenberg HJ, Ripke S, Raj T, Coleman JRI, Mullins N. Fine-mapping genomic loci refines bipolar disorder risk genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.12.24302716. [PMID: 38405768 PMCID: PMC10889003 DOI: 10.1101/2024.02.12.24302716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 17 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, CRTC3, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of BD polygenic risk scores across diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).
Collapse
Affiliation(s)
- Maria Koromina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brian M. Schilder
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | | | | | - Brandon Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaeyoung Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kevin S. O.’Connell
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Mark Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Adolfsson Rolf
- Department of Clinical Sciences, Psychiatry, Umeå, University Medical Faculty, Umeå, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Till F. M. Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Anastasia Antoniou
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Susanne Bengesser
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Joanna Biernacka
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michael Boehnke
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rosa Bosch
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Programa SJD MIND Escoles, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | | - Vaughan J. Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Miquel Casas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Programa SJD MIND Escoles, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Dept of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicholas Craddock
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Konstantinos Dafnas
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Nina Dalkner
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Arianna Di Florio
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Department of Psychiatry, University of North Caroli at Chapel Hill, Chapel Hill, NC, USA
| | - Dimitris Dikeos
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | | | - Panagiotis Ferentinos
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Liz Forty
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Melissa J. Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Lisa Jones
- Psychological Medicine, University of Worcester, Worcester, UK
| | - Ian Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Mikael Landén
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Leboyer
- University of Paris Est Créteil, INSERM, IMRB, Translatiol Neuropsychiatry, Créteil, France
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Melanie Lenger
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Dept of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Donald MacIntyre
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Nicholas G. Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Eirini Maratou
- National and Kapodistrian University of Athens, Medical School, Clinical Biochemistry Laboratory, Attikon General Hospital, Athens, Greece
| | - Carol A. Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | | | - Nathaniel W. McGregor
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Paraskevi Moutsatsou
- National Kapodistrian University of Athens, Medical School, Clinical Biochemistry Laboratory, Attikon General Hospital, Athens, Greece
| | - Bryan Mowry
- University of Queensland, Brisbane, QLD, Australia
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Caroline Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research/Psychiatry, Veterans Affairs San, Diego Healthcare System, San Diego, CA, USA
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - John Nurnberger
- Stark Neurosciences Research Institute, Indiana University School of Medicine
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine
- Indiana University School of Medicine
| | - Michael O.’Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Claire O’Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J. Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Michele T. Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - George P. Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Genetics and Genomics, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, United Arab Emirates
- Erasmus University Medical Center, Faculty of Medicina and Health Sciences, Department of Pathology, Clinical Bioinformatics Unit, Rotterdam, The Netherlands
| | - Joanna M. Pawlak
- Department of Psychiatry, Departmet of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Roy H. Perlis
- Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA
| | - Evgenia Porichi
- tiol and Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelo, Barcelo, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Z. Reininghaus
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Marta Ribasés
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Thomas G. Schulze
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Cynthia Shannon Weickert
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jordan W. Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Maria Soler Artigas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelo, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelo, Barcelo, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelo, Barcelo, Spain. Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelo, Barcelo, Catalonia, Spain
| | - Dan J. Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Dept of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Claudio Toma
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and CSIC, Madrid, Spain
| | - Paul Tooney
- University of Newcastle, Newcastle, NSW, Australia
| | - Marquis P. Vawter
- Functional Genomics Laboratory, School of Medicine, University of California, Irvine Canada
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine Canada
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - John B. Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Thomas Weickert
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kyung Sue Hong
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Howard J. Edenberg
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan R. I. Coleman
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Schuster J, Lu X, Dang Y, Klar J, Wenz A, Dahl N, Chen X. Epigenetic insights into GABAergic development in Dravet Syndrome iPSC and therapeutic implications. eLife 2024; 12:RP92599. [PMID: 39190448 PMCID: PMC11349296 DOI: 10.7554/elife.92599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Dravet syndrome (DS) is a devastating early-onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. Induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors were used to model disease-associated epigenetic abnormalities of GABAergic development. Chromatin accessibility was assessed at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility were elucidated in GABAergic cells. The distinct dynamics in the chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development of some DS iPSC-GABA. The comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC offers valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, the detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve the development of personalized and targeted anti-epileptic therapies.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Amelie Wenz
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| |
Collapse
|
3
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
García-Rodríguez C, Duarte Y, Ardiles ÁO, Sáez JC. The antiseizure medication valproate increases hemichannel activity found in brain cells, which could worsen disease outcomes. J Neurochem 2024; 168:1045-1059. [PMID: 38291613 DOI: 10.1111/jnc.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Glial cells play relevant roles in neuroinflammation caused by epilepsy. Elevated hemichannel (HC) activity formed by connexins (Cxs) or pannexin1 (Panx1) largely explains brain dysfunctions commonly caused by neuroinflammation. Glia express HCs formed by Cxs 43, 30, or 26, while glia and neurons both express HCs formed by Panx1. Cx43 HCs allow for the influx of Ca2+, which promotes glial reactivity, enabling the release of the gliotransmitters that contribute to neuronal over-stimulation. Valproate (VPA), an antiseizure medication, has pleiotropic actions on neuronal molecular targets, and their action on glial cell HCs remains elusive. We used HeLa cells transfected with Cx43, Cx30, Cx26, or Panx1 to determine the effect of VPA on HC activity in the brain. VPA slightly increased HC activity under basal conditions, but significantly enhanced it in cells pre-exposed to conditions that promoted HC activity. Furthermore, VPA increased ATP release through Cx43 HCs. The increased HC activity caused by VPA was resistant to washout, being consistent with in silico studies, which predicted the binding site for VPA and Cx43, as well as for Panx1 HCs on the intracellular side, suggesting that VPA first enters through HCs, after which their activity increases.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Yorley Duarte
- Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Abdul-Wasay S, Ouanounou A. Dental and medical management of the patient with bipolar disorder. SPECIAL CARE IN DENTISTRY 2024; 44:3-11. [PMID: 36922158 DOI: 10.1111/scd.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE The objective of this literature review is to understand the appropriate medical management of patients with bipolar disorder (BD) which subsequently can translate into the effective dental management of patients suffering with this illness METHODS: This study was completed using three databases which included PubMed, Google Scholar and Cochrane library. Additionally, relevant dental and medical textbooks were also used to summarize more complex topics regarding BD. Descriptors used to find relevant articles included "Bipolar Disorder", "Adverse drug effects of bipolar medications", and "Orofacial findings with patients with bipolar disorder". A total of 49 relevant articles and textbooks were found which were included in this literature review. RESULTS BD is a mental illness which affects millions worldwide. It is characterized by alternating episodes of mania and depression. During the manic phase there is an abnormal elevation in mood whereas the depressive episodes consist of the opposite. The medical management of BD involves pharmacotherapy and psychotherapy. Common dental findings in patients with BD include caries, periodontal disease, xerostomia and adverse oral effects from the medications used to manage this illness. CONCLUSION BD has a significant burden on society and to effectively manage their medical and dental needs, the clinician must be well versed in their illness.
Collapse
Affiliation(s)
- Syed Abdul-Wasay
- Oral and Maxillofacial Surgery Intern in Cook County, Chicago, Illinois, USA
| | - Aviv Ouanounou
- Associate Professor, Department of Clinical Sciences (Pharmacology and Preventive Dentistry), Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Detera-Wadleigh SD, Kassem L, Besancon E, Lopes F, Akula N, Sung H, Blattner M, Sheridan L, Lacbawan LN, Garcia J, Gordovez F, Hosey K, Donner C, Salvini C, Schulze T, Chen DTW, England B, Cross J, Jiang X, Corona W, Russ J, Mallon B, Dutra A, Pak E, Steiner J, Malik N, de Guzman T, Horato N, Mallmann MB, Mendes V, Dűck AL, Nardi AE, McMahon FJ. A resource of induced pluripotent stem cell (iPSC) lines including clinical, genomic, and cellular data from genetically isolated families with mood and psychotic disorders. Transl Psychiatry 2023; 13:397. [PMID: 38104115 PMCID: PMC10725500 DOI: 10.1038/s41398-023-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Genome-wide (GWAS) and copy number variant (CNV) association studies have reproducibly identified numerous risk alleles associated with bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ), but biological characterization of these alleles lags gene discovery, owing to the inaccessibility of live human brain cells and inadequate animal models for human psychiatric conditions. Human-derived induced pluripotent stem cells (iPSCs) provide a renewable cellular reagent that can be differentiated into living, disease-relevant cells and 3D brain organoids carrying the full complement of genetic variants present in the donor germline. Experimental studies of iPSC-derived cells allow functional characterization of risk alleles, establishment of causal relationships between genes and neurobiology, and screening for novel therapeutics. Here we report the creation and availability of an iPSC resource comprising clinical, genomic, and cellular data obtained from genetically isolated families with BD and related conditions. Results from the first 324 study participants, 61 of whom have validated pluripotent clones, show enrichment of rare single nucleotide variants and CNVs overlapping many known risk genes and pathogenic CNVs. This growing iPSC resource is available to scientists pursuing functional genomic studies of BD and related conditions.
Collapse
Affiliation(s)
- Sevilla D Detera-Wadleigh
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| | - Layla Kassem
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| | - Emily Besancon
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Fabiana Lopes
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Nirmala Akula
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Heejong Sung
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Meghan Blattner
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Laura Sheridan
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Ley Nadine Lacbawan
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Joshua Garcia
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Francis Gordovez
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Katherine Hosey
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Cassandra Donner
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Claudio Salvini
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Thomas Schulze
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Institute of Psychiatric Phenomics and Genomics, LMU Munich, 80336, München, Germany
- Department of Psychiatry and Behavioral Sciences, Upstate University Hospital, Syracuse, NY, 13210, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - David T W Chen
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Bryce England
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Joanna Cross
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Xueying Jiang
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Winston Corona
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Jill Russ
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Barbara Mallon
- Center for Scientific Review, Neurotechnology and Vision Branch, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joe Steiner
- Neurotherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Neurotherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa de Guzman
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Natia Horato
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Mariana B Mallmann
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Victoria Mendes
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Amanda L Dűck
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Antonio E Nardi
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Francis J McMahon
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
8
|
Hamper M, Schmidt-Kastner R. Sleep Disorder Kleine-Levin Syndrome (KLS) Joins the List of Polygenic Brain Disorders Associated with Obstetric Complications. Cell Mol Neurobiol 2023; 43:3393-3403. [PMID: 37553546 DOI: 10.1007/s10571-023-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Kleine-Levin Syndrome is a rare neurological disorder with onset typically during adolescence that is characterized by recurrent episodes of hypersomnia, behavioral changes, and cognitive abnormalities, in the absence of structural changes in neuroimaging. As for many functional brain disorders, the exact disease mechanism in Kleine-Levin Syndrome is presently unknown, preventing the development of specific treatment approaches or protective measures. Here we review the pathophysiology and genetics of this functional brain disorder and then present a specific working hypothesis. A neurodevelopmental mechanism has been suspected based on associations with obstetric complications. Recent studies have focused on genetic factors whereby the first genome-wide association study (GWAS) in Kleine-Levin Syndrome has defined a linkage at the TRANK1 locus. A Gene x Environment interaction model involving obstetric complications was proposed based on concepts developed for other functional brain disorders. To stimulate future research, we here performed annotations of the genes under consideration for Kleine-Levin Syndrome in relation to factors expected to be associated with obstetric complications. Annotations used data-mining of gene/protein lists related to for hypoxia, ischemia, and vascular factors and targeted literature searches. Tentative links for TRANK1, four additional genes in the TRANK1 locus, and LMOD3-LMO2 are described. Protein interaction data for TRANK1 indicate links to CBX2, CBX4, and KDM3A, that in turn can be tied to hypoxia. Taken together, the neurological sleep disorder, Kleine-Levin Syndrome, shows genetic and mechanistic overlap with well analyzed brain disorders such as schizophrenia, autism spectrum disorder and ADHD in which polygenic predisposition interacts with external events during brain development, including obstetric complications.
Collapse
Affiliation(s)
- Michael Hamper
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA
| | - Rainald Schmidt-Kastner
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA.
- Dept. Clinical Neurosciences, CE Schmidt College of Medicine, Florida Atlantic University (FAU), 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
9
|
Wu Y, Zhang CY, Wang L, Li Y, Xiao X. Genetic Insights of Schizophrenia via Single Cell RNA-Sequencing Analyses. Schizophr Bull 2023; 49:914-922. [PMID: 36805283 PMCID: PMC10318862 DOI: 10.1093/schbul/sbad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BACKGROUND Schizophrenia is a complex and heterogeneous disorder involving multiple regions and types of cells in the brain. Despite rapid progress made by genome-wide association studies (GWAS) of schizophrenia, the mechanisms of the illness underlying the GWAS significant loci remain less clear. STUDY DESIGN We investigated schizophrenia risk genes using summary-data-based Mendelian randomization based on single-cell sequencing data, and explored the types of brain cells involved in schizophrenia through the expression weighted cell-type enrichment analysis. RESULTS We identified 54 schizophrenia risk genes (two-thirds of these genes were not identified using sequencing data of bulk tissues) using single-cell RNA-sequencing data. Further cell type enrichment analysis showed that schizophrenia risk genes were highly expressed in excitatory neurons and caudal ganglionic eminence interneurons, suggesting putative roles of these cells in the pathogenesis of schizophrenia. We also found that these risk genes identified using single-cell sequencing results could form a large protein-protein interaction network with genes affected by disease-causing rare variants. CONCLUSIONS Through integrative analyses using expression data at single-cell levels, we identified 54 risk genes associated with schizophrenia. Notably, many of these genes were only identified using single-cell RNA-sequencing data, and their altered expression levels in particular types of cells, rather than in the bulk tissues, were related to the increased risk of schizophrenia. Our results provide novel insight into the biological mechanisms of schizophrenia, and future single-cell studies are necessary to further facilitate the understanding of the disorder.
Collapse
Affiliation(s)
- Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi Li
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
10
|
Lake J, Warly Solsberg C, Kim JJ, Acosta-Uribe J, Makarious MB, Li Z, Levine K, Heutink P, Alvarado CX, Vitale D, Kang S, Gim J, Lee KH, Pina-Escudero SD, Ferrucci L, Singleton AB, Blauwendraat C, Nalls MA, Yokoyama JS, Leonard HL. Multi-ancestry meta-analysis and fine-mapping in Alzheimer's disease. Mol Psychiatry 2023; 28:3121-3132. [PMID: 37198259 PMCID: PMC10615750 DOI: 10.1038/s41380-023-02089-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and the department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Zizheng Li
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin Levine
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- Alector, Inc. 131 Oyster Point Blvd, Suite 600, South San Francisco, CA, 94080, USA
| | - Chelsea X Alvarado
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sarang Kang
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
- Korea Brain Research Institute, Daegu, 41062, Korea
| | - Stefanie D Pina-Escudero
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
11
|
Lacbawan LN, McMahon FJ. Genome-wide Association Study in a Dish Provides New Insights Into an Old Medication. Biol Psychiatry 2023; 93:2-3. [PMID: 36456076 DOI: 10.1016/j.biopsych.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ley Nadine Lacbawan
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Due to bipolar disorder clinical heterogeneity, a plethora of studies have provided new genetic, epigenetic, molecular, and cellular findings associated with its pathophysiology. RECENT FINDINGS Genome-wide association studies and epigenetic evidence points to genotype-phenotype interactions associated with inflammation, oxidative stress, abnormalities in signaling pathways, hypothalamic-pituitary-adrenal axis, and circadian rhythm linked to mitochondrial dysfunction in bipolar disorder. Although the literature is constantly increasing, most of the genetic variants proposed as biomarkers remain to be validated by independent groups and use bigger samples and longitudinal approaches to enhance their power and predictive ability. SUMMARY Regardless of which of the mechanisms described here plays a primary or secondary role in the pathophysiology of bipolar disorder, all of these interact to worsen clinical outcomes for patients. Identifying new biomarkers for early detection, prognosis, and response to treatment might provide novel targets to prevent progression and promote general well being.
Collapse
|
13
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
The rapid progress in psychiatric genetics over the past 10 years, while exciting from a research perspective, has not yet had an impact on clinical practice. How will we really be able to put genetics to work in the psychiatric clinic? This overview will attempt to answer this question. A survey of widely used methods and major study designs highlights key findings that have emerged so far. These findings inform a broad conceptual model of how genetic risk may act to influence dimensions of psychopathology and clinical presentations. The overview concludes with highlights of some of the most clinically relevant findings to date and their implications for psychiatric practice in the near future.
Collapse
Affiliation(s)
- Francis J McMahon
- Human Genetics Branch, NIMH Intramural Research Program, Bethesda, Md
| |
Collapse
|
15
|
Chang H, Cai X, Yang ZH, Xiao X, Li M. Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Mol Psychiatry 2021; 26:6109-6111. [PMID: 33931729 DOI: 10.1038/s41380-021-01120-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Hui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the TRANK1 gene loci. Proc Natl Acad Sci U S A 2021; 118:2005753118. [PMID: 33737391 DOI: 10.1073/pnas.2005753118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48, P = 8.6 × 10-9) within the 3'region of TRANK1 gene locus, previously associated with bipolar disorder and schizophrenia. Strikingly, KLS cases with rs71947865 variant had significantly increased reports of a difficult birth. As perinatal outcomes have dramatically improved over the last 40 y, we further stratified our sample by birth years and found that recent cases had a significantly reduced rs71947865 association. While the rs71947865 association did not replicate in the entire follow-up sample of 171 KLS cases, rs71947865 was significantly associated with KLS in the subset follow-up sample of 59 KLS cases who reported birth difficulties (OR = 1.54, P = 0.01). Genetic liability of KLS as explained by polygenic risk scores was increased (pseudo R 2 = 0.15; P < 2.0 × 10-22 at P = 0.5 threshold) in the follow-up sample. Pathway analysis of genetic associations identified enrichment of circadian regulation pathway genes in KLS cases. Our results suggest links between KLS, circadian regulation, and bipolar disorder, and indicate that the TRANK1 polymorphisms in conjunction with reported birth difficulties may predispose to KLS.
Collapse
|
17
|
Nayak R, Rosh I, Kustanovich I, Stern S. Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int J Mol Sci 2021; 22:9315. [PMID: 34502224 PMCID: PMC8431659 DOI: 10.3390/ijms22179315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease's phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/β-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant advances using these novel models, much more work remains to fully understand the mechanisms by which these disorders affect the patients' brains.
Collapse
Affiliation(s)
| | | | | | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; (R.N.); (I.R.); (I.K.)
| |
Collapse
|
18
|
Mullins N, Forstner AJ, O'Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW, Drange OK, Gandal MJ, Hagenaars SP, Ikeda M, Kamitaki N, Kim M, Krebs K, Panagiotaropoulou G, Schilder BM, Sloofman LG, Steinberg S, Trubetskoy V, Winsvold BS, Won HH, Abramova L, Adorjan K, Agerbo E, Al Eissa M, Albani D, Alliey-Rodriguez N, Anjorin A, Antilla V, Antoniou A, Awasthi S, Baek JH, Bækvad-Hansen M, Bass N, Bauer M, Beins EC, Bergen SE, Birner A, Bøcker Pedersen C, Bøen E, Boks MP, Bosch R, Brum M, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Bybjerg-Grauholm J, Byerley W, Cairns M, Casas M, Cervantes P, Clarke TK, Cruceanu C, Cuellar-Barboza A, Cunningham J, Curtis D, Czerski PM, Dale AM, Dalkner N, David FS, Degenhardt F, Djurovic S, Dobbyn AL, Douzenis A, Elvsåshagen T, Escott-Price V, Ferrier IN, Fiorentino A, Foroud TM, Forty L, Frank J, Frei O, Freimer NB, Frisén L, Gade K, Garnham J, Gelernter J, Giørtz Pedersen M, Gizer IR, Gordon SD, Gordon-Smith K, Greenwood TA, Grove J, Guzman-Parra J, Ha K, Haraldsson M, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hoffmann P, Holmans PA, Huckins L, Jamain S, Johnson JS, Kalman JL, Kamatani Y, Kennedy JL, Kittel-Schneider S, Knowles JA, Kogevinas M, Koromina M, Kranz TM, Kranzler HR, Kubo M, Kupka R, Kushner SA, Lavebratt C, Lawrence J, Leber M, Lee HJ, Lee PH, Levy SE, Lewis C, Liao C, Lucae S, Lundberg M, MacIntyre DJ, Magnusson SH, Maier W, Maihofer A, Malaspina D, Maratou E, Martinsson L, Mattheisen M, McCarroll SA, McGregor NW, McGuffin P, McKay JD, Medeiros H, Medland SE, Millischer V, Montgomery GW, Moran JL, Morris DW, Mühleisen TW, O'Brien N, O'Donovan C, Olde Loohuis LM, Oruc L, Papiol S, Pardiñas AF, Perry A, Pfennig A, Porichi E, Potash JB, Quested D, Raj T, Rapaport MH, DePaulo JR, Regeer EJ, Rice JP, Rivas F, Rivera M, Roth J, Roussos P, Ruderfer DM, Sánchez-Mora C, Schulte EC, Senner F, Sharp S, Shilling PD, Sigurdsson E, Sirignano L, Slaney C, Smeland OB, Smith DJ, Sobell JL, Søholm Hansen C, Soler Artigas M, Spijker AT, Stein DJ, Strauss JS, Świątkowska B, Terao C, Thorgeirsson TE, Toma C, Tooney P, Tsermpini EE, Vawter MP, Vedder H, Walters JTR, Witt SH, Xi S, Xu W, Yang JMK, Young AH, Young H, Zandi PP, Zhou H, Zillich L, Adolfsson R, Agartz I, Alda M, Alfredsson L, Babadjanova G, Backlund L, Baune BT, Bellivier F, Bengesser S, Berrettini WH, Blackwood DHR, Boehnke M, Børglum AD, Breen G, Carr VJ, Catts S, Corvin A, Craddock N, Dannlowski U, Dikeos D, Esko T, Etain B, Ferentinos P, Frye M, Fullerton JM, Gawlik M, Gershon ES, Goes FS, Green MJ, Grigoroiu-Serbanescu M, Hauser J, Henskens F, Hillert J, Hong KS, Hougaard DM, Hultman CM, Hveem K, Iwata N, Jablensky AV, Jones I, Jones LA, Kahn RS, Kelsoe JR, Kirov G, Landén M, Leboyer M, Lewis CM, Li QS, Lissowska J, Lochner C, Loughland C, Martin NG, Mathews CA, Mayoral F, McElroy SL, McIntosh AM, McMahon FJ, Melle I, Michie P, Milani L, Mitchell PB, Morken G, Mors O, Mortensen PB, Mowry B, Müller-Myhsok B, Myers RM, Neale BM, Nievergelt CM, Nordentoft M, Nöthen MM, O'Donovan MC, Oedegaard KJ, Olsson T, Owen MJ, Paciga SA, Pantelis C, Pato C, Pato MT, Patrinos GP, Perlis RH, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, Ribasés M, Rietschel M, Ripke S, Rouleau GA, Saito T, Schall U, Schalling M, Schofield PR, Schulze TG, Scott LJ, Scott RJ, Serretti A, Shannon Weickert C, Smoller JW, Stefansson H, Stefansson K, Stordal E, Streit F, Sullivan PF, Turecki G, Vaaler AE, Vieta E, Vincent JB, Waldman ID, Weickert TW, Werge T, Wray NR, Zwart JA, Biernacka JM, Nurnberger JI, Cichon S, Edenberg HJ, Stahl EA, McQuillin A, Di Florio A, Ophoff RA, Andreassen OA. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 2021; 53:817-829. [PMID: 34002096 PMCID: PMC8192451 DOI: 10.1038/s41588-021-00857-4] [Citation(s) in RCA: 626] [Impact Index Per Article: 208.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
Collapse
Affiliation(s)
- Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Kevin S O'Connell
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Brandon Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Zhen Qiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas D Als
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ole Kristian Drange
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Saskia P Hagenaars
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Brian M Schilder
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura G Sloofman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Bendik S Winsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Liliya Abramova
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Esben Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Mariam Al Eissa
- Division of Psychiatry, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
| | - Adebayo Anjorin
- Psychiatry, Berkshire Healthcare NHS Foundation Trust, Bracknell, UK
| | - Verneri Antilla
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Marie Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nicholas Bass
- Division of Psychiatry, University College London, London, UK
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carsten Bøcker Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Erlend Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Marco P Boks
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - Rosa Bosch
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - William Byerley
- Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Murray Cairns
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Miquel Casas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Cervantes
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Cristiana Cruceanu
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alfredo Cuellar-Barboza
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Curtis
- Centre for Psychiatry, Queen Mary University of London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Piotr M Czerski
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, Departments of Neurosciences, Radiology, and Psychiatry, University of California, San Diego, CA, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda L Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Athanassios Douzenis
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - I Nicol Ferrier
- Academic Psychiatry, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Liz Forty
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oleksandr Frei
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Gade
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marianne Giørtz Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Scott D Gordon
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Martin Hautzinger
- Department of Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis Hellgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter A Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Laura Huckins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stéphane Jamain
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
| | - Jessica S Johnson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - James A Knowles
- Cell Biology, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | | | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ralph Kupka
- Psychiatry, Altrecht, Utrecht, the Netherlands
- Psychiatry, GGZ inGeest, Amsterdam, the Netherlands
- Psychiatry, VU Medisch Centrum, Amsterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Lawrence
- Psychiatry, North East London NHS Foundation Trust, Ilford, UK
| | - Markus Leber
- Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Catrin Lewis
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Calwing Liao
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Donald J MacIntyre
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dolores Malaspina
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini Maratou
- Clinical Biochemistry Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mattheisen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Peter McGuffin
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - James D McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Helena Medeiros
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Sarah E Medland
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Niamh O'Brien
- Division of Psychiatry, University College London, London, UK
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Loes M Olde Loohuis
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Lilijana Oruc
- Medical Faculty, School of Science and Technology, University Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Antonio F Pardiñas
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Amy Perry
- Psychological Medicine, University of Worcester, Worcester, UK
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evgenia Porichi
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Digby Quested
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark H Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eline J Regeer
- Outpatient Clinic for Bipolar Disorder, Altrecht, Utrecht, the Netherlands
| | - John P Rice
- Department of Psychiatry, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Fabio Rivas
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Julian Roth
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas M Ruderfer
- Medicine, Psychiatry, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristina Sánchez-Mora
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sally Sharp
- Division of Psychiatry, University College London, London, UK
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Engilbert Sigurdsson
- Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, Department of Psychiatry, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Olav B Smeland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Janet L Sobell
- Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christine Søholm Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Maria Soler Artigas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - John S Strauss
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Claudio Toma
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and CSIC, Madrid, Spain
| | - Paul Tooney
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Evangelia-Eirini Tsermpini
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Helmut Vedder
- Psychiatry, Psychiatrisches Zentrum Nordbaden, Wiesloch, Germany
| | - James T R Walters
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Simon Xi
- Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Mei Kay Yang
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Hannah Young
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine and Diakonhjemmet Hospital, University of Oslo, Oslo, Norway
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gulja Babadjanova
- Institute of Pulmonology, Russian State Medical University, Moscow, Russian Federation
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Bellivier
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Michael Boehnke
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Stanley Catts
- University of Queensland, Brisbane, Queensland, Australia
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicholas Craddock
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dimitris Dikeos
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Tõnu Esko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | - Bruno Etain
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Panagiotis Ferentinos
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa J Green
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Frans Henskens
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kyung Sue Hong
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Assen V Jablensky
- University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lisa A Jones
- Psychological Medicine, University of Worcester, Worcester, UK
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - George Kirov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Marion Leboyer
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | | | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Francis J McMahon
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Patricia Michie
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Gunnar Morken
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Psychiatry, St Olavs University Hospital, Trondheim, Norway
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
| | - Preben Bo Mortensen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Bryan Mowry
- University of Queensland, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Liverpool, Liverpool, UK
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Michael C O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Ketil J Oedegaard
- Division of Psychiatry, Haukeland Universitetssjukehus, Bergen, Norway
- Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sara A Paciga
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
| | | | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Roy H Perlis
- Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marta Ribasés
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Takeo Saito
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ulrich Schall
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rodney J Scott
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eystein Stordal
- Department of Psychiatry, Hospital Namsos, Namsos, Norway
- Department of Neuroscience, Norges Teknisk Naturvitenskapelige Universitet Fakultet for Naturvitenskap og Teknologi, Trondheim, Norway
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Arne E Vaaler
- Department of Psychiatry, Sankt Olavs Hospital Universitetssykehuset i Trondheim, Trondheim, Norway
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - John B Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - John-Anker Zwart
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - John I Nurnberger
- Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Arianna Di Florio
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roel A Ophoff
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- NORMENT, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Li W, Cai X, Li HJ, Song M, Zhang CY, Yang Y, Zhang L, Zhao L, Liu W, Wang L, Shao M, Zhang Y, Zhang C, Cai J, Zhou DS, Li X, Hui L, Jia QF, Qu N, Zhong BL, Zhang SF, Chen J, Xia B, Li Y, Song X, Fan W, Tang W, Tang W, Tang J, Chen X, Yue W, Zhang D, Fang Y, Xiao X, Li M, Lv L, Chang H. Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology 2021; 46:1103-1112. [PMID: 32791513 PMCID: PMC8114920 DOI: 10.1038/s41386-020-00788-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Genetic analyses for bipolar disorder (BD) have achieved prominent success in Europeans in recent years, whereas its genetic basis in other populations remains relatively less understood. We herein report that the leading risk locus for BD in European genome-wide association studies (GWAS), the single-nucleotide polymorphism (SNP) rs9834970 near TRANK1 at 3p22 region, is also genome-wide significantly associated with BD in a meta-analysis of four independent East Asian samples including 5748 cases and 65,361 controls (p = 2.27 × 10-8, odds ratio = 1.136). Expression quantitative trait loci (eQTL) analyses and summary data-based Mendelian randomization (SMR) analyses in multiple human brain samples suggest that lower TRANK1 mRNA expression is a principal BD risk factor explaining its genetic risk signals at 3p22. We also identified another SNP rs4789 in the 3' untranslated region (3'UTR) of TRANK1 showing stronger eQTL associations as well as genome-wide significant association with BD. Despite the relatively unclear neuronal function of TRANK1, our mRNA expression analyses in the human brains and in rat primary cortical neurons reveal that genes highly correlated with TRANK1 are significantly enriched in the biological processes related to dendritic spine, synaptic plasticity, axon guidance and circadian entrainment, and are also more likely to exhibit strong associations in psychiatric GWAS (e.g., the CACNA1C gene). Overall, our results support that TRANK1 is a potential BD risk gene. Further studies elucidating its roles in this illness are needed.
Collapse
Affiliation(s)
- Wenqiang Li
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Xin Cai
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Hui-Juan Li
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Meng Song
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Chu-Yi Zhang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yongfeng Yang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Luwen Zhang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Lijuan Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Weipeng Liu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Lu Wang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Minglong Shao
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Chen Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Sheng Zhou
- grid.452715.00000 0004 1782 599XDepartment of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang China
| | - Xingxing Li
- grid.452715.00000 0004 1782 599XDepartment of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang China
| | - Li Hui
- grid.263761.70000 0001 0198 0694Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Qiu-Fang Jia
- grid.263761.70000 0001 0198 0694Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Na Qu
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Bao-Liang Zhong
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Shu-Fang Zhang
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Jing Chen
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Bin Xia
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Yi Li
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Xueqin Song
- grid.412633.1The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang China
| | - Wei Tang
- grid.268099.c0000 0001 0348 3990Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Wenxin Tang
- grid.469604.90000 0004 1765 5222Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang China
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang China
| | - Xiaogang Chen
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,National Clinical Research Center for Mental Disorders, Changsha, Hunan China ,National Technology Institute of Mental Disorders, Changsha, Hunan China ,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan China ,grid.489086.bMental Health Institute of Central South University, Changsha, Hunan China ,Hunan Medical Center for Mental Health, Changsha, Hunan China
| | - Weihua Yue
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Dai Zhang
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yiru Fang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Province People's Hospital, Zhengzhou, Henan, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Lavin KM, Bell MB, McAdam JS, Peck BD, Walton RG, Windham ST, Tuggle SC, Long DE, Kern PA, Peterson CA, Bamman MM. Muscle transcriptional networks linked to resistance exercise training hypertrophic response heterogeneity. Physiol Genomics 2021; 53:206-221. [PMID: 33870722 DOI: 10.1152/physiolgenomics.00154.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Margaret B Bell
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy S McAdam
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - R Grace Walton
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Samuel T Windham
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - S Craig Tuggle
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas E Long
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Marcas M Bamman
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida
| |
Collapse
|
21
|
Kunkle BW, Schmidt M, Klein HU, Naj AC, Hamilton-Nelson KL, Larson EB, Evans DA, De Jager PL, Crane PK, Buxbaum JD, Ertekin-Taner N, Barnes LL, Fallin MD, Manly JJ, Go RCP, Obisesan TO, Kamboh MI, Bennett DA, Hall KS, Goate AM, Foroud TM, Martin ER, Wang LS, Byrd GS, Farrer LA, Haines JL, Schellenberg GD, Mayeux R, Pericak-Vance MA, Reitz C. Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel: A Meta-analysis. JAMA Neurol 2021; 78:102-113. [PMID: 33074286 PMCID: PMC7573798 DOI: 10.1001/jamaneurol.2020.3536] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Importance Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, Setting, and Participants This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main Outcomes and Measures Diagnosis of Alzheimer disease. Results A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and Relevance While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.
Collapse
Affiliation(s)
- Brian W. Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida
| | - Michael Schmidt
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
| | - Adam C. Naj
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle
- Group Health Research Institute, Group Health, Seattle, Washington
| | - Denis A. Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Phil L. De Jager
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
| | - Paul K. Crane
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Joe D. Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
- Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, New York
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Lisa L. Barnes
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - M. Daniele Fallin
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Jennifer J. Manly
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
| | - Rodney C. P. Go
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham
| | | | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Kathleen S. Hall
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Alison M. Goate
- Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, New York
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis
| | - Eden R. Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida
| | - Li-Sao Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Goldie S. Byrd
- Maya Angelou Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Epidemiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
- Epidemiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | | |
Collapse
|
22
|
Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Mol Psychiatry 2020; 25:2672-2684. [PMID: 32826963 DOI: 10.1038/s41380-020-00866-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3's roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.
Collapse
|
23
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
24
|
Xu L, Yang K, Fan Q, Gu Y, Zhang B, Pang C, Ren S. Exome sequencing identification of susceptibility genes in Chinese patients with keratoconus. Ophthalmic Genet 2020; 41:518-525. [PMID: 32744102 DOI: 10.1080/13816810.2020.1799415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Keratoconus (KC) is a corneal ectasia disease with complex genetic heterogeneity. The present study aimed to identify susceptibility genes in Chinese patients with KC. METHODS Exome sequencing (ES) was performed in 28 Chinese KC patients to search for susceptibility genes of the disease. The candidate variants were filtered out by multi-step bioinformatics analysis and validated by Sanger sequencing. Another 100 individuals with KC were also recruited to verify those variants by Sanger sequencing. RESULTS By filtering out nonsynonymous variants located in exon, selecting variants which were presented in two or more samples and applying public databases to remove common variants, along with the inclusion of missense SNVs located in differential expressed genes and protein damaging variants (stop gain/stop loss SNVs and InDels), we have identified 6 SNVs (4 missense SNVs: c.1168 T > C in TRANK1, c.341A>T in ERMP1, c.4346 T > C in SDK2, c.1730A>C in COL6A1; 2 stop gain SNVs: c.1138 C > T in CNBD1, c.241 C > T in KRT82) and 2 InDels (c.193_195del in NSUN5, c.1690_1698del in COL9A3) as candidate variants for KC. The verifying results showed that c.341A>T in ERMP1 and c.193_195del in NSUN5 was found in one and two samples, respectively. CONCLUSIONS Our study suggested that a total of six SNVs in six genes and two InDels in two genes might be considered as candidate variants in Chinese patients with KC.
Collapse
Affiliation(s)
- Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Bo Zhang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Chenjiu Pang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| |
Collapse
|
25
|
Fernando MB, Ahfeldt T, Brennand KJ. Modeling the complex genetic architectures of brain disease. Nat Genet 2020; 52:363-369. [PMID: 32203467 PMCID: PMC7909729 DOI: 10.1038/s41588-020-0596-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25:544-559. [PMID: 31907381 DOI: 10.1038/s41380-019-0634-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is one of the most heritable mental illnesses, but the elucidation of its genetic basis has proven to be a very challenging endeavor. Genome-Wide Association Studies (GWAS) have transformed our understanding of BD, providing the first reproducible evidence of specific genetic markers and a highly polygenic architecture that overlaps with that of schizophrenia, major depression, and other disorders. Individual GWAS markers appear to confer little risk, but common variants together account for about 25% of the heritability of BD. A few higher-risk associations have also been identified, such as a rare copy number variant on chromosome 16p11.2. Large scale next-generation sequencing studies are actively searching for other alleles that confer substantial risk. As our understanding of the genetics of BD improves, there is growing optimism that some clear biological pathways will emerge, providing a basis for future studies aimed at molecular diagnosis and novel therapeutics.
Collapse
Affiliation(s)
- Francis James A Gordovez
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.,College of Medicine, University of the Philippines Manila, 1000, Ermita, Manila, Philippines
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Duan J, Sanders AR, Gejman PV. From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190014. [PMID: 31555746 PMCID: PMC6760308 DOI: 10.20900/jpbs.20190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Pablo V. Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Drange OK, Smeland OB, Shadrin AA, Finseth PI, Witoelar A, Frei O, Wang Y, Hassani S, Djurovic S, Dale AM, Andreassen OA. Genetic Overlap Between Alzheimer's Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes. Front Neurosci 2019; 13:220. [PMID: 30930738 PMCID: PMC6425305 DOI: 10.3389/fnins.2019.00220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR = 0.022, opposite direction of effect). Conclusion: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP.
Collapse
Affiliation(s)
- Ole Kristian Drange
- Department of Research and Development, Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olav Bjerkehagen Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey A. Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Ivar Finseth
- Department of Brøset, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Aree Witoelar
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sahar Hassani
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|