1
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2024:10.1007/s12035-024-04575-w. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Wu W, Qu X, Hu C, Zhu X, Wan M, Zhou Y, Cheng H. Gypenoside LXXV Alleviates Colitis by Reprograming Macrophage Polarization via the Glucocorticoid Receptor Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20444-20457. [PMID: 39250600 DOI: 10.1021/acs.jafc.4c04784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
An imbalance in the macrophage phenotype is closely related to various inflammatory diseases. Here, we discovered that gypenoside LXXV (GP-75), a type of saponin from Gynostemma pentaphyllum, can reprogram M1-like macrophages into M2-like ones. On a mechanistic level, GP-75 inhibits NF-κB-COX2 signaling by targeting the glucocorticoid receptor (GR). Administration of GP-75, either orally or by intraperitoneal injection, significantly alleviates ulcerative colitis in mice, a pathogenesis associated with macrophage polarization. Clodronate liposomes, which deplete macrophages in mice, as well as GR antagonist RU486, abrogate the anticolitis effect of GP-75, thus confirming the pivotal role of macrophages in GP-75 function. We also showed that GP-75 has no toxicity in mice. Overall, this is the first report that demonstrates the effect of GP-75 on macrophage reprograming and as an agent against colitis. Because G. pentaphyllum is gaining popularity as a functional food, our findings offer new perspectives on the use of gypenosides as potential nutraceuticals for medical purposes.
Collapse
Affiliation(s)
- Wenjing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xian Qu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chenxing Hu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuepeng Zhu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Mengqi Wan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Zhang M, Xu Y, Zhu G, Zeng Q, Gao R, Qiu J, Su W, Wang R. Human C15orf39 Inhibits Inflammatory Response via PRMT2 in Human Microglial HMC3 Cell Line. Int J Mol Sci 2024; 25:6025. [PMID: 38892217 PMCID: PMC11173073 DOI: 10.3390/ijms25116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Tan Y, Xu M, Lin D. Review of research progress on intestinal microbiota based on metabolism and inflammation for depression. Arch Microbiol 2024; 206:146. [PMID: 38462572 DOI: 10.1007/s00203-024-03866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
Depression is a prevalent mental illness, affecting a significant portion of the global population. Recent research has highlighted the crucial role of the gut microbiota in both metabolic and central nervous health. By reviewing literature from various databases, including Pubmed, Science Direct, Web of Science, and Scopus, spanning the years 2005-2023, a comprehensive search was conducted using keywords such as "Depression" and "Gut Microbiota". The gut microbiota acts as a "second brain" in humans and can communicate bidirectionally with the brain through the Brain-gut-microbiota axis pathway. This communication involves the immune and nervous systems. However, there are challenges in detecting and treating depression effectively. To address these limitations, researchers have been exploring the relationship between gut microbiota and depression. Studies have shown that gut microbial metabolites, such as lipopolysaccharides and short-chain fatty acids, can induce pro-inflammatory cytokines that contribute to neuroinflammation and increase the risk of depression. The kynurenine pathway, triggered by gut microbial metabolites, has also been associated with neuroinflammation. Thus, investigating these microbial metabolites can provide insights into depression treatment. This review focuses on analyzing the connection between gut microbial metabolites, inflammation, and depression. It explores novel mechanisms contributing to depression, specifically focusing on the mediation of inflammation through the release of pro-inflammatory cytokines. The objective is to provide valuable insights into the mechanisms underlying depression and to propose potential treatments.
Collapse
Affiliation(s)
- Yunxiang Tan
- School of Life Sciences, Fudan University, Shanghai, 200438, China
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Mengyu Xu
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Deng Lin
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511466, Guangdong, China.
- Beijing Research Center for Chinese Classic Science and Technology, Beijing, 102425, China.
| |
Collapse
|
6
|
Hu M, Yu H, Zhang Y, Xiang B, Wang Q. Gender-specific association of the accumulation of chronic conditions and disability in activities of daily living with depressive symptoms. Arch Gerontol Geriatr 2024; 118:105287. [PMID: 38029545 DOI: 10.1016/j.archger.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND In the era of rapid aging with a rising prevalence of multimorbidity, complex interactions between physical and psychological conditions have challenged the health care system. However, little is known about the association of the accumulation of chronic conditions and disability in activities of daily living with depressive symptoms, especially in developed countries. METHODS This population-based cohort study used data from the Health and Retirement Study. A total of 22,335 middle-aged and older adults participated in the 2014 (T1), 2016 (T2), and 2018 (T3) waves of the cohort were included. The accumulation of chronic conditions and disability were defined as the number of chronic diseases and the five activities of daily living. Depressive symptoms were measured by the Center for Epidemiologic Studies Depression Scale. A longitudinal mediation model with a cross-lagged panel model was run. As robust check, the models were applied with a longer follow-up period (from 2012 to 2018). Additionally, results were estimated in China. RESULTS Bidirectional associations have been found among the accumulation of chronic conditions, disability, and depressive symptoms, especially between disability and depression. Disability (T2) mediated 11.11 % and 16.87 % of the association between the accumulation of chronic conditions (T1) and depression (T3) for men and women in the United States. The results were consistent in robust analysis. CONCLUSIONS This study found that men and women routinely experienced disability and depressive symptoms because of the accumulation of chronic conditions. In terms of depressive symptoms, women were more sensitive to the accumulation of chronic conditions through disability.
Collapse
Affiliation(s)
- Mengxiao Hu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China; National Institute of Health Data Science of China, Shandong University, Jinan, 250012, Shandong, PR China
| | - Haiyang Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China; National Institute of Health Data Science of China, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yike Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China; National Institute of Health Data Science of China, Shandong University, Jinan, 250012, Shandong, PR China
| | - Bowen Xiang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China; National Institute of Health Data Science of China, Shandong University, Jinan, 250012, Shandong, PR China
| | - Qing Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China; National Institute of Health Data Science of China, Shandong University, Jinan, 250012, Shandong, PR China; Yellow River National Strategic Research Institute, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
7
|
Wang C, Cui C, Xu P, Zhu L, Xue H, Chen B, Jiang P. Targeting PDK2 rescues stress-induced impaired brain energy metabolism. Mol Psychiatry 2023; 28:4138-4150. [PMID: 37188779 DOI: 10.1038/s41380-023-02098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, ACT, Australia
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
8
|
Liu P, Song S, Yang P, Rao X, Wang Y, Bai X. Aucubin improves chronic unpredictable mild stress-induced depressive behavior in mice via the GR/NF-κB/NLRP3 axis. Int Immunopharmacol 2023; 123:110677. [PMID: 37523973 DOI: 10.1016/j.intimp.2023.110677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.
Collapse
Affiliation(s)
- Ping Liu
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Shiyuan Song
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Ping Yang
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Xiuming Rao
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Xinyu Bai
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Srinivasan M, Walker C. Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link. ASN Neuro 2022; 14:17590914221120190. [PMID: 36317290 PMCID: PMC9629546 DOI: 10.1177/17590914221120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Provaidya LLC, Indiana Center for Biomedical Innovation, Indianapolis, Indiana, USA,Mythily Srinivasan, Oral Pathology, Radiology and Medicine, Indiana University School of Dentistry, Indianapolis, Indiana, United States; Provaidya LLC, Indiana Center for Biomedical Innovation, 1800 North Capitol Av, Indianapolis, IN 46202, United States.
;
| | - Chandler Walker
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
12
|
Jin Q, Li J, Chen GY, Wu ZY, Liu XY, Liu Y, Chen L, Wu XY, Liu Y, Zhao X, Song YH. Network and Experimental Pharmacology to Decode the Action of Wendan Decoction Against Generalized Anxiety Disorder. Drug Des Devel Ther 2022; 16:3297-3314. [PMID: 36193286 PMCID: PMC9526509 DOI: 10.2147/dddt.s367871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qi Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jie Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guang-Yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zi-Yu Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, People’s Republic of China
| | - Xiao-Yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Lin Chen
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-Yi Wu
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Correspondence: Xin Zhao; Yue-Han Song, Email ;
| | - Yue-Han Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
13
|
Ling-Hu T, Liu SB, Gao Y, Han YM, Tian JS, Qin XM. Stable Isotope-Resolved Metabolomics Reveals the Abnormal Brain Glucose Catabolism in Depression Based on Chronic Unpredictable Mild Stress Rats. J Proteome Res 2021; 20:3549-3558. [PMID: 34077228 DOI: 10.1021/acs.jproteome.1c00155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The severe harm of depression to human life has attracted great attention to neurologists, but its pathogenesis is extremely complicated and has not yet been fully elaborated. Here, we provided a new strategy for revealing the specific pathways of abnormal brain glucose catabolism in depression, based on the supply of energy substrates and the evaluation of the mitochondrial structure and function. By using stable isotope-resolved metabolomics, we discovered that the tricarboxylic acid cycle (TCA cycle) is blocked and gluconeogenesis is abnormally activated in chronic unpredictable mild stress (CUMS) rats. In addition, our results showed an interesting phenomenon that the brain attempted to activate all possible metabolic enzymes in energy-producing pathways, but CUMS rats still exhibited a low TCA cycle activity due to impaired mitochondria. Depression caused the mitochondrial structure and function to be impaired and then led to abnormal brain glucose catabolism. The combination of the stable isotope-resolved metabolomics and mitochondrial structure and function analysis can accurately clarify the mechanism of depression. The mitochondrial pyruvate carrier and acetyl-CoA may be the key targets for depression treatment. The strategy provides a unique insight for exploring the mechanism of depression, the discovery of new targets, and the development of ideal novel antidepressants. Data are available via ProteomeXchange with identifier PXD025548.
Collapse
Affiliation(s)
- Ting Ling-Hu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shao-Bo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yu-Mei Han
- School of Physical Education, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|