1
|
Yu L, Guo Q, Li Y, Mao M, Liu Z, Li T, Wang L, Zhang X. CHMP4C promotes pancreatic cancer progression by inhibiting necroptosis via the RIPK1/RIPK3/MLKL pathway. J Adv Res 2025:S2090-1232(25)00058-X. [PMID: 39870301 DOI: 10.1016/j.jare.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) cannot currently be completely cured and has a poor prognosis. Necroptosis is a distinct form of regulated cell death that differs from both necrosis and apoptosis. Understanding the role of necroptosis during PC progression would open new avenues for targeted therapy. OBJECTIVES The purpose of this study is to examine the impact of necroptosis on the progression of PC and related mechanisms. METHODS RNA sequencing was performed to identify necroptosis-related genes that are differentially expressed in PC tissues. The biological functions of CHMP4C and its necroptosis effects were determined in vitro and in vivo. RNA immunoprecipitation, MeRIP-qPCR, Co-immunoprecipitation assays were conducted to evaluate the interaction among CHMP4C, YBX1 and caspase-8 mRNA. Extracellular vesicles were isolated using the differential ultracentrifugation method. The expression of CHMP4C, p-MLKL and CD117 were detected on a PC tissue microarray using multiplex immunofluorescence staining. RESULTS CHMP4C was significantly overexpressed in PC cells and tissues. It promoted cell growth and suppressed necroptosis of PC cells in both in vivo and in vitro settings. Mechanistically, CHMP4C interacted with YBX1 to mediate m5C modification of caspase-8 mRNA, resulting in increased caspase-8 expression and inhibition of RIPK1/RIPK3/MLKL pathway phosphorylation. Furthermore, CHMP4C promoted extracellular exocytosis of p-MLKL to further suppress necroptosis. Additionally, PC cells used CHMP4C within extracellular vesicles to recruit and stimulate mast cells (MCs), which in turn promoted PC cell proliferation. In PC tissues, the expression of CHMP4C showed a negative correlation with p-MLKL and a positive association with CD117. High expression levels of CHMP4C in patients were associated with poorer overall survival outcomes. CONCLUSIONS CHMP4C promotes PC progression by inhibiting necroptosis, which has potential as a biomarker and therapeutic target in PC.
Collapse
Affiliation(s)
- Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Zhenping Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Lei Wang
- Department of Orthodontics, Qilu Hospital of Shandong University, Jinan 250012 China.
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China.
| |
Collapse
|
2
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
3
|
He X, Jiang X, Guo J, Sun H, Yang J. PANoptosis in Bacterial Infections: A Double-Edged Sword Balancing Host Immunity and Pathogenesis. Pathogens 2025; 14:43. [PMID: 39861004 PMCID: PMC11768250 DOI: 10.3390/pathogens14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
PANoptosis is a newly identified programmed cell death pathway that integrates characteristics of apoptosis, pyroptosis, and necroptosis. It plays a dual role in the host immune response to bacterial infections. On one hand, PANoptosis acts as a protective mechanism by inducing the death of infected cells to eliminate pathogens and releasing pro-inflammatory cytokines to amplify the immune response. On the other hand, bacteria can exploit PANoptosis to evade host immune defenses. This dual nature underscores the potential of PANoptosis as a target for developing novel therapies against bacterial infections. This review summarizes the molecular mechanisms of PANoptosis, along with the crosstalk and integration of different cell death pathways in response to various bacterial pathogens. We also discuss the dual roles of PANoptosis in bacterial infectious diseases, including sepsis, pulmonary infections, and intestinal infections. Elucidating the molecular mechanisms underlying PANoptosis and how bacteria manipulate this pathway offers critical insights into host-pathogen interactions. These insights provide a foundation for designing targeted antibacterial strategies, modulating inflammation, and advancing precision medicine to improve clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (X.H.); (X.J.); (J.G.); (H.S.)
| |
Collapse
|
4
|
Zhao C, Lin S. PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products. Front Immunol 2025; 15:1507065. [PMID: 39840043 PMCID: PMC11747037 DOI: 10.3389/fimmu.2024.1507065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount. Consequently, excessive IEC death advances intestinal permeability and as a consequence thereof the translocation of bacteria into the lamina propria, subsequently triggering an inflammatory response, which underpins the clinical disease trajectory of inflammatory bowel disease (IBD). A burgeoning body of evidence illustrates a landscape where IEC undergoes several the model of programmed cell death (PCD) in the pathophysiology and pathogenesis of IBD. Apoptosis, necroptosis, and pyroptosis represent the principal modalities of PCD with intricate specific pathways and molecules. Ample evidence has revealed substantial mechanistic convergence and intricate crosstalk among these three aforementioned forms of cell death, expanding the conceptualization of PANoptosis orchestrated by the PNAoptosome complex. This review provides a concise overview of the molecular mechanisms of apoptosis, necroptosis, and pyroptosis. Furthermore, based on the crosstalk between three cell deaths in IEC, this review details the current knowledge regarding PANoptosis in IEC and its regulation by natural products. Our objective is to broaden the comprehension of innovative molecular mechanisms underlying the pathogenesis of IBD and to furnish a foundation for developing more natural drugs in the treatment of IBD, benefiting both clinical practitioners and research workers.
Collapse
|
5
|
Chen J, Jiang WD, Feng L, Wu P, Liu Y, Jin XW, Ren HM, Tang JY, Zhang RN, Zhou XQ. Myo-inositol: A potential game-changer in preventing gill cell death and alleviating "gill rot" in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109850. [PMID: 39179187 DOI: 10.1016/j.fsi.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1β) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1β signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.
Collapse
Affiliation(s)
- Jie Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui-Nan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
6
|
Shaw C, Weimer BC, Gann R, Desai PT, Shah JD. The Yin and Yang of pathogens and probiotics: interplay between Salmonella enterica sv. Typhimurium and Bifidobacterium infantis during co-infection. Front Microbiol 2024; 15:1387498. [PMID: 38812689 PMCID: PMC11133690 DOI: 10.3389/fmicb.2024.1387498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.
Collapse
Affiliation(s)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
7
|
Deng Q, Yang S, Huang K, Zhu Y, Sun L, Cao Y, Dong K, Li Y, Wu S, Huang R. NLRP6 induces RIP1 kinase-dependent necroptosis via TAK1-mediated p38 MAPK/MK2 phosphorylation in S. typhimurium infection. iScience 2024; 27:109339. [PMID: 38500819 PMCID: PMC10945251 DOI: 10.1016/j.isci.2024.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Programmed cell death (PCD) is tightly orchestrated by molecularly defined executors and signaling pathways. NLRP6, a member of cytoplasmic pattern recognition receptors, has a multifaceted role in host resistance to bacterial infection. However, whether and how NLRP6 may contribute to regulate host PCD during Gram-negative bacterial infection remain to be illuminated. Here, we report that NLRP6 promotes RIP1 kinase-mediated necroptosis, a form of lytic PCD, in both an in vitro and in vivo model of Salmonella typhimurium infection. By downregulating TAK1-mediated p38MAPK/MK2 phosphorylation, NLRP6 decreased RIP1 phosphorylation at residue S321 and subsequently increased RIP1 kinase-dependent MLKL phosphorylation. Suppression of p38MAPK/MK2 cascade not only reduced the number of dead cells caused by NLRP6 but also decreased the systemic dissemination of S. typhimurium resulting from NLRP6. Taken together, our findings provide new insights into the role and regulatory mechanism of NLRP6-associated antimicrobial responses by revealing a function for NLRP6 in regulating necroptosis.
Collapse
Affiliation(s)
- Qifeng Deng
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, P.R. China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Yuan Zhu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Lanqing Sun
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Yu Cao
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Kedi Dong
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Yuanyuan Li
- Experimental Center, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Shuyan Wu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Rui Huang
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
8
|
Wang Y, Gao Y, Su X, Hao Y, Zhang Y, Yang R. LNCGM1082 in Gut Epithelial Cells Promotes Expulsion of Infected Epithelial Cells and Release of IL-18. Immunohorizons 2024; 8:35-46. [PMID: 38189743 PMCID: PMC10835649 DOI: 10.4049/immunohorizons.2300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammasome NLRC4 (NLR family CARD domain containing 4) can protect mucosal barriers such as intestine from invading bacterial pathogens. However, it was incompletely clear how NLRC4 was activated in intestinal epithelial cells. In this study, we demonstrated that LNCGM1082 could mediate the activation of NLRC4 via binding NLRC4 with protein kinase C (PKC)δ. LNCGM1082 knockout (KO) mice had reduced resistance against Salmonella Typhimurium infection, as well as impaired expulsion of infected gut epithelial cells and release of IL-18 upon exposure to S. Typhimurium. Similar to NLRC4 KO and PKCδ knockdown gut organoids, there also was impaired expulsion of gut epithelial cells and release of IL-18 in LNCGM1082 KO gut organoids. Furthermore, there also was reduced activation of caspase-1 and caspase-8 in these LNCGM1082 KO, NLRC4 KO, and PKCδ knockdown gut organoids upon exposure to S. Typhimurium. Our results show that LNCGM1082 in the ICEs plays a critical role in mediating activation of NLRC4 through binding NLRC4 and PKCδ and promoting expulsion of infected epithelial cells and release of IL-18 upon exposure to bacteria such as S. Typhimurium.
Collapse
Affiliation(s)
- Ya Wang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yang Hao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuan Zhang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Liu H, Fan W, Fan B. Necroptosis in apical periodontitis: A programmed cell death with multiple roles. J Cell Physiol 2023; 238:1964-1981. [PMID: 37431828 DOI: 10.1002/jcp.31073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Programmed cell death (PCD) has been a research focus for decades and different mechanisms of cell death, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis have been discovered. Necroptosis, a form of inflammatory PCD, has gained increasing attention in recent years due to its critical role in disease progression and development. Unlike apoptosis, which is mediated by caspases and characterized by cell shrinkage and membrane blebbing, necroptosis is mediated by mixed lineage kinase domain-like protein (MLKL) and characterized by cell enlargement and plasma membrane rupture. Necroptosis can be triggered by bacterial infection, which on the one hand represents a host defense mechanism against the infection, but on the other hand can facilitate bacterial escape and worsen inflammation. Despite its importance in various diseases, a comprehensive review on the involvement and roles of necroptosis in apical periodontitis is still lacking. In this review, we tried to provide an overview of recent progresses in necroptosis research, summarized the pathways involved in apical periodontitis (AP) activation, and discussed how bacterial pathogens induce and regulated necroptosis and how necroptosis would inhibit bacteria. Furthermore, the interplay between various types of cell death in AP and the potential treatment strategy for AP by targeting necroptosis were also discussed.
Collapse
Affiliation(s)
- Hui Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
McGuckin MA, Davies JM, Felgner P, Wong KY, Giri R, He Y, Moniruzzaman M, Kryza T, Sajiir H, Hooper JD, Florin TH, Begun J, Oussalah A, Hasnain SZ, Hensel M, Sheng YH. MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2023; 16:985-1009. [PMID: 37660948 PMCID: PMC10630632 DOI: 10.1016/j.jcmgh.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND & AIMS MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Julie M Davies
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pascal Felgner
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rabina Giri
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Md Moniruzzaman
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Haressh Sajiir
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - John D Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jakob Begun
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Abderrahim Oussalah
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy, France
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michael Hensel
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Laboratory of B-Lymphocytes in Autoimmunity and Malignancies, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
12
|
Liu J, Liu H, Teng Y, Qin N, Ren X, Xia X. A high-sucrose diet causes microbiota composition shift and promotes the susceptibility of mice to Salmonella Typhimurium infection. Food Funct 2023; 14:2836-2846. [PMID: 36880221 DOI: 10.1039/d2fo03467k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A westernized diet characterized by high fat and sugar is tightly associated with the development of metabolic diseases and inflammatory bowel disease. Although a high-fat diet has been extensively studied for its involvement in various diseases, fewer studies have examined the impact of a high-sugar diet on the development of certain diseases, particularly enteric infections. This study aimed to explore the effect of a high sucrose diet on Salmonella Typhimurium-induced infection. C57BL/6 mice received a normal diet (Control) or a high sucrose diet (HSD) for eight weeks and then were infected by Salmonella Typhimurium. The high-sugar diet profoundly altered the relative abundance of certain microbial taxa. Bacteroidetes and Verrucomicrobiota were more abundant in normal diet-fed mice than in HSD-fed mice. Moreover, short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were significantly higher in mice from the control group than the HSD group. More S. Typhimurium counts in feces and other tissues were observed in HSD-fed mice after infection. Tight junction proteins and antimicrobial peptides were significantly decreased in HSD-fed mice. Fecal microbiota transplantation (FMT) demonstrated that mice that received normal fecal microbiota had lower Salmonella Typhimurium burdens compared with mice that received HSD fecal microbiota, indicating that the altered microbial communities are associated with the severity of infection. Together, these findings suggest that the excessive intake of sucrose disturbs intestinal homeostasis and predisposes mice to Salmonella-induced infection.
Collapse
Affiliation(s)
| | | | - Yue Teng
- Dalian Polytechnic University, China.
| | | | | | | |
Collapse
|
13
|
Li J, Li Q, Wu Q, Gao N, Wang Z, Yang Y, Shan A. Exopolysaccharides of Lactobacillus rhamnosus GG ameliorate Salmonella typhimurium-induced intestinal inflammation via the TLR4/NF-κB/MAPK pathway. J Anim Sci Biotechnol 2023; 14:23. [PMID: 36872332 PMCID: PMC9987055 DOI: 10.1186/s40104-023-00830-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/03/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Salmonella typhimurium (S.T), as an important foodborne bacterial pathogen, can cause diarrhea and gastroenteritis in humans and animals. Numerous studies have confirmed that exopolysaccharides (EPSs) have various biological functions, but the mechanism through which EPSs improve the immunity of animals against the invasion of pathogenic bacteria is unclear. Here, we explored the protective effect of EPSs of Lactobacillus rhamnosus GG (LGG) on the S.T-infected intestine. METHODS Mice received adequate food and drinking water for one week before the start of the experiment. After 7 d of prefeeding, 2×108 CFU/mL S.T solution and an equivalent volume of saline (control group) were given orally for 1 d. On the fourth day, the mice were treated with 0.5 mg/mL EPSs, 1.0 mg/mL EPSs, 2.0 mg/mL EPSs, or 2.0 mg/mL penicillin for 7 d. Finally, the body and relative organ weight, histological staining, and the levels of antioxidant enzyme activity and inflammatory cytokines were determined. RESULTS The S.T-infected mice exhibited symptoms of decreased appetite, somnolence, diarrhea and flagging spirit. Treatment with EPSs and penicillin improved the weight loss of the mice, and the high dose of EPSs showed the best therapeutic effect. EPSs significantly ameliorated S.T-induced ileal injury in mice. High-dose EPSs were more effective than penicillin for alleviating ileal oxidative damage induced by S.T. The mRNA levels of inflammatory cytokines in the ileum of mice showed that the regulatory effects of EPSs on inflammatory cytokines were better than those of penicillin. EPSs could inhibit the expression and activation of key proteins of the TLR4/NF-κB/MAPK pathway and thereby suppress the level of S.T-induced ileal inflammation. CONCLUSIONS EPSs attenuate S.T-induced immune responses by inhibiting the expression of key proteins in the TLR4/NF-κB/MAPK signaling pathway. Moreover, EPSs could promote bacterial aggregation into clusters, which may be a potential strategy for reducing the bacterial invasion of intestinal epithelial cells.
Collapse
Affiliation(s)
- Jinze Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qiuke Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qianhui Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhihua Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yang Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
14
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
15
|
Geiser P, van Rijn JM, Sellin ME. Time-Lapse Imaging of Inflammasome-Dependent Cell Death and Extrusion in Enteroid-Derived Intestinal Epithelial Monolayers. Methods Mol Biol 2023; 2641:203-221. [PMID: 37074653 DOI: 10.1007/978-1-0716-3040-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Inflammasome-induced cell death is an epithelium-intrinsic innate immune response to pathogenic onslaught on epithelial barriers, caused by invasive microbes such as Salmonella Typhimurium (S.Tm). Pattern recognition receptors detect pathogen- or damage-associated ligands and elicit inflammasome formation. This ultimately restricts bacterial loads within the epithelium, limits breaching of the barrier, and prevents detrimental inflammatory tissue damage. Pathogen restriction is mediated via the specific extrusion of dying intestinal epithelial cells (IECs) from the epithelial tissue, accompanied by membrane permeabilization at some stage of the process. These inflammasome-dependent mechanisms can be studied in real time in intestinal epithelial organoids (enteroids), which allow imaging at high temporal and spatial resolution in a stable focal plane when seeded as 2D monolayers. The protocols described here involve the establishment of murine and human enteroid-derived monolayers, as well as time-lapse imaging of IEC extrusion and membrane permeabilization following inflammasome activation by S.Tm infection. The protocols can be adapted to also study other pathogenic insults or combined with genetic and pharmacological manipulation of the involved pathways.
Collapse
Affiliation(s)
- Petra Geiser
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jorik M van Rijn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Current address: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Ai LS, Yu YB. Role of Paneth cells-associated Crohn's disease susceptibility genes in development of Crohn's disease. Shijie Huaren Xiaohua Zazhi 2022; 30:1009-1015. [DOI: 10.11569/wcjd.v30.i23.1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory digestive tract disease, and its pathogenesis involves many factors such as genetics, environment, and flora. In terms of genetic factors, many susceptibility genes and pathogenic pathways of CD are associated with Paneth cells (PCs). Numerous studies have demonstrated that PCs are involved in the pathogenesis of CD by affecting the gut microbiota and inducing intestinal epithelial barrier dysfunction and immune abnormalities. These advances provide new ideas for the prevention of CD and potential therapeutic targets for this disease. This article reviews the role of PCs-associated CD susceptibility genes in the pathogenesis of CD.
Collapse
Affiliation(s)
- Li-Si Ai
- Qilu Hospital of Shandong University (First Clinical College), Jinan 250012, Shandong Province, China
| | - Yan-Bo Yu
- Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
17
|
Mei-Lin Zhou, Ma JN, Xue L. Effect of Protein Arginine Methyltransferase 1 Gene Knockout on the Proliferation of Human Embryonic Kidney 293T Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
19
|
Kogut MH, Genovese KJ, Byrd JA, Swaggerty CL, He H, Farnell Y, Arsenault RJ. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:899395. [PMID: 35846741 PMCID: PMC9279939 DOI: 10.3389/fcimb.2022.899395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Poultry is a major source of human foodborne illness caused by broad host range Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest interventions to reduce these pathogens would be valuable to the industry and consumer. Host responses to infectious agents are often regulated through phosphorylation. However, proteomic mechanisms of Salmonella acute infection biology and host responses to the bacteria have been limited concentrating predominately on the genomic responses of the host to infection. Our recent development of chicken-specific peptide arrays for kinome analysis of host phosphorylation-based cellular signaling responses provided us with the opportunity to develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen interactions during the initial colonization of the cecum by Salmonella. Using the chicken-specific kinomic immune peptide array, biological pathway analysis showed infection with S. Enteritidis increased signaling related to the innate immune response, relative to the non-infected control ceca. Notably, the acute innate immune signaling pathways were characterized by increased peptide phosphorylation (activation) of the Toll-like receptor and NOD-like receptor signaling pathways, the activation of the chemokine signaling pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling pathway demonstrating the initiation of the acquired immune response to Salmonella infection. Based on the individual phosphorylation events altered by the early Salmonella infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized by both TLR and NOD receptors that initiated the innate immune response; (2) activation of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6, IFN-α, and IFN-γ; (3) Salmonella infection targeted the JAK-STAT pathway as a means of evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and (5) the T cell receptor signaling pathway activates the AP-1 and NF-κB transcription factor cascades, but not NFAT.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
- *Correspondence: Michael H. Kogut,
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Haiqi He
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Yuhua Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
20
|
Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front Microbiol 2022; 13:906238. [PMID: 35733975 PMCID: PMC9207452 DOI: 10.3389/fmicb.2022.906238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
Collapse
Affiliation(s)
- Sandrine Ménard
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- *Correspondence: Agnès Wiedemann,
| |
Collapse
|
21
|
Stolzer I, Schickedanz L, Chiriac MT, López-Posadas R, Grassl GA, Mattner J, Wirtz S, Winner B, Neurath MF, Günther C. STAT1 coordinates intestinal epithelial cell death during gastrointestinal infection upstream of Caspase-8. Mucosal Immunol 2022; 15:130-142. [PMID: 34497340 PMCID: PMC8732278 DOI: 10.1038/s41385-021-00450-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Intestinal homeostasis and the maintenance of the intestinal epithelial barrier are essential components of host defense during gastrointestinal Salmonella Typhimurium infection. Both require a strict regulation of cell death. However, the molecular pathways regulating epithelial cell death have not been completely understood. Here, we elucidated the contribution of central mechanisms of regulated cell death and upstream regulatory components during gastrointestinal infection. Mice lacking Caspase-8 in the intestinal epithelium are highly sensitive towards bacterial induced enteritis and intestinal inflammation, resulting in an enhanced lethality of these mice. This phenotype was associated with an increased STAT1 activation during Salmonella infection. Cell death, barrier breakdown and systemic infection were abrogated by an additional deletion of STAT1 in Casp8ΔIEC mice. In the absence of epithelial STAT1, loss of epithelial cells was abolished which was accompanied by a reduced Caspase-8 activation. Mechanistically, we demonstrate that epithelial STAT1 acts upstream of Caspase-8-dependent as well as -independent cell death and thus might play a major role at the crossroad of several central cell death pathways in the intestinal epithelium. In summary, we uncovered that transcriptional control of STAT1 is an essential host response mechanism that is required for the maintenance of intestinal barrier function and host survival.
Collapse
Affiliation(s)
- Iris Stolzer
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Laura Schickedanz
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Mircea T. Chiriac
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Rocío López-Posadas
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jochen Mattner
- grid.5330.50000 0001 2107 3311Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Stefan Wirtz
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Claudia Günther
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
23
|
Tan CY, Ramirez ZE, Surana NK. A Modern-World View of Host-Microbiota-Pathogen Interactions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1710-1718. [PMID: 34544813 DOI: 10.4049/jimmunol.2100215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The microbiota-the diverse set of commensal microbes that normally colonize humans-represents the first line of defense against infectious diseases. In this review, we summarize the direct and indirect mechanisms by which the microbiota modulates susceptibility to, and severity of, infections, with a focus on immunological mechanisms. Moreover, we highlight some of the ways that modern-world lifestyles have influenced the structure-function relationship between the microbiota and infectious diseases. Ultimately, understanding how the microbiota influences infectious risks will facilitate development of microbiota-derived therapeutics that bolster host defenses.
Collapse
Affiliation(s)
- Chin Yee Tan
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Zeni E Ramirez
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Neeraj K Surana
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC; .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and.,Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
24
|
Günther C, Rothhammer V, Karow M, Neurath M, Winner B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms22168870. [PMID: 34445575 PMCID: PMC8396333 DOI: 10.3390/ijms22168870] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The gut–brain axis is a bidirectional communication system driven by neural, hormonal, metabolic, immunological, and microbial signals. Signaling events from the gut can modulate brain function and recent evidence suggests that the gut–brain axis may play a pivotal role in linking gastrointestinal and neurological diseases. Accordingly, accumulating evidence has suggested a link between inflammatory bowel diseases (IBDs) and neurodegenerative, as well as neuroinflammatory diseases. In this context, clinical, epidemiological and experimental data have demonstrated that IBD predisposes a person to pathologies of the central nervous system (CNS). Likewise, a number of neurological disorders are associated with changes in the intestinal environment, which are indicative for disease-mediated gut–brain inter-organ communication. Although this axis was identified more than 20 years ago, the sequence of events and underlying molecular mechanisms are poorly defined. The emergence of precision medicine has uncovered the need to take into account non-intestinal symptoms in the context of IBD that could offer the opportunity to tailor therapies to individual patients. The aim of this review is to highlight recent findings supporting the clinical and biological link between the gut and brain, as well as its clinical significance for IBD as well as neurodegeneration and neuroinflammation. Finally, we focus on novel human-specific preclinical models that will help uncover disease mechanisms to better understand and modulate the function of this complex system.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| |
Collapse
|
25
|
Organoids in modelling infectious diseases. Drug Discov Today 2021; 27:223-233. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Collapse
|
26
|
Chong A, Cooper KG, Kari L, Nilsson OR, Hillman C, Fleming BA, Wang Q, Nair V, Steele-Mortimer O. Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium. Cell Host Microbe 2021; 29:1177-1185.e6. [PMID: 34043959 DOI: 10.1016/j.chom.2021.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Persistent and intermittent fecal shedding, hallmarks of Salmonella infections, are important for fecal-oral transmission. In the intestine, Salmonella enterica serovar Typhimurium (STm) actively invades intestinal epithelial cells (IECs) and survives in the Salmonella-containing vacuole (SCV) and the cell cytosol. Cytosolic STm replicate rapidly, express invasion factors, and induce extrusion of infected epithelial cells into the intestinal lumen. Here, we engineered STm that self-destruct in the cytosol (STmCytoKill), but replicates normally in the SCV, to examine the role of cytosolic STm in infection. Intestinal expansion and fecal shedding of STmCytoKill are impaired in mouse models of infection. We propose a model whereby repeated rounds of invasion, cytosolic replication, and release of invasive STm from extruded IECs fuels the high luminal density required for fecal shedding.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kendal G Cooper
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olof R Nilsson
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Chad Hillman
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brittany A Fleming
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinod Nair
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
27
|
Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 2021; 12:2105. [PMID: 33833232 PMCID: PMC8032791 DOI: 10.1038/s41467-021-22212-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbiota-derived metabolites have biological importance for the host. Polyamines, such as putrescine and spermidine, are produced by the intestinal microbiota and regulate multiple biological processes. Increased colonic luminal polyamines promote longevity in mice. However, no direct evidence has shown that microbial polyamines are incorporated into host cells to regulate cellular responses. Here, we show that microbial polyamines reinforce colonic epithelial proliferation and regulate macrophage differentiation. Colonisation by wild-type, but not polyamine biosynthesis-deficient, Escherichia coli in germ-free mice raises intracellular polyamine levels in colonocytes, accelerating epithelial renewal. Commensal bacterium-derived putrescine increases the abundance of anti-inflammatory macrophages in the colon. The bacterial polyamines ameliorate symptoms of dextran sulfate sodium-induced colitis in mice. These effects mainly result from enhanced hypusination of eukaryotic initiation translation factor. We conclude that bacterial putrescine functions as a substrate for symbiotic metabolism and is further absorbed and metabolised by the host, thus helping maintain mucosal homoeostasis in the intestine.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masayoshi Onuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Aiko Kume
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Kurokawa, Toyama, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- The Francis Crick Institute, London, UK
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Shinji Saiki
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
29
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
30
|
Place DE, Lee S, Kanneganti TD. PANoptosis in microbial infection. Curr Opin Microbiol 2021; 59:42-49. [PMID: 32829024 PMCID: PMC7438227 DOI: 10.1016/j.mib.2020.07.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
The immune system has evolved multiple mechanisms to restrict microbial infections and regulate inflammatory responses. Without appropriate regulation, infection-induced inflammatory pathology can be deadly. The innate immune system recognizes the microbial molecules conserved in many pathogens and engages a rapid response by producing inflammatory mediators and activating programmed cell death pathways, including pyroptosis, apoptosis, and necroptosis. Activation of pattern recognition receptors, in combination with inflammatory cytokine-induced signaling through death domain-containing receptors, initiates a highly interconnected cell death process called PANoptosis (pyroptosis, apoptosis, necroptosis). Broadly speaking, PANoptosis is critical for restricting a wide range of pathogens (including bacteria, viruses, fungi, and parasites), which we describe in this review. We propose that re-examining the role of cell death and inflammatory cytokines through the lens of PANoptosis will advance our understanding of host-pathogen evolution and may reveal new treatment strategies for controlling a wide range of infectious diseases.
Collapse
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
31
|
Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol 2021; 14:615-629. [PMID: 33731826 PMCID: PMC8075861 DOI: 10.1038/s41385-021-00381-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023]
Abstract
The gut epithelium is a critical protective barrier. Its NAIP/NLRC4 inflammasome senses infection by Gram-negative bacteria, including Salmonella Typhimurium (S.Tm) and promotes expulsion of infected enterocytes. During the first ~12-24 h, this reduces mucosal S.Tm loads at the price of moderate enteropathy. It remained unknown how this NAIP/NLRC4-dependent tradeoff would develop during subsequent infection stages. In NAIP/NLRC4-deficient mice, S.Tm elicited severe enteropathy within 72 h, characterized by elevated mucosal TNF (>20 pg/mg) production from bone marrow-derived cells, reduced regeneration, excessive enterocyte loss, and a collapse of the epithelial barrier. TNF-depleting antibodies prevented this destructive pathology. In hosts proficient for epithelial NAIP/NLRC4, a heterogeneous enterocyte death response with both apoptotic and pyroptotic features kept S.Tm loads persistently in check, thereby preventing this dire outcome altogether. Our results demonstrate that immediate and selective removal of infected enterocytes, by locally acting epithelium-autonomous NAIP/NLRC4, is required to avoid a TNF-driven inflammatory hyper-reaction that otherwise destroys the epithelial barrier.
Collapse
|
32
|
Type I interferon remodels lysosome function and modifies intestinal epithelial defense. Proc Natl Acad Sci U S A 2020; 117:29862-29871. [PMID: 33172989 DOI: 10.1073/pnas.2010723117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organelle remodeling is critical for cellular homeostasis, but host factors that control organelle function during microbial infection remain largely uncharacterized. Here, a genome-scale CRISPR/Cas9 screen in intestinal epithelial cells with the prototypical intracellular bacterial pathogen Salmonella led us to discover that type I IFN (IFN-I) remodels lysosomes. Even in the absence of infection, IFN-I signaling modified the localization, acidification, protease activity, and proteomic profile of lysosomes. Proteomic and genetic analyses revealed that multiple IFN-I-stimulated genes including IFITM3, SLC15A3, and CNP contribute to lysosome acidification. IFN-I-dependent lysosome acidification was associated with elevated intracellular Salmonella virulence gene expression, rupture of the Salmonella-containing vacuole, and host cell death. Moreover, IFN-I signaling promoted in vivo Salmonella pathogenesis in the intestinal epithelium where Salmonella initiates infection, indicating that IFN-I signaling can modify innate defense in the epithelial compartment. We propose that IFN-I control of lysosome function broadly impacts host defense against diverse viral and microbial pathogens.
Collapse
|
33
|
Fattinger SA, Sellin ME, Hardt WD. Epithelial inflammasomes in the defense against Salmonella gut infection. Curr Opin Microbiol 2020; 59:86-94. [PMID: 33128958 DOI: 10.1016/j.mib.2020.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens.
Collapse
Affiliation(s)
- Stefan A Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Necroptosis in Intestinal Inflammation and Cancer: New Concepts and Therapeutic Perspectives. Biomolecules 2020; 10:biom10101431. [PMID: 33050394 PMCID: PMC7599789 DOI: 10.3390/biom10101431] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Necroptosis is a caspases-independent programmed cell death displaying intermediate features between necrosis and apoptosis. Albeit some physiological roles during embryonic development such tissue homeostasis and innate immune response are documented, necroptosis is mainly considered a pro-inflammatory cell death. Key actors of necroptosis are the receptor-interacting-protein-kinases, RIPK1 and RIPK3, and their target, the mixed-lineage-kinase-domain-like protein, MLKL. The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. Altered necroptosis at the intestinal epithelium leads to uncontrolled microbial translocation and deleterious inflammation. Indeed, necroptosis plays a role in many disease conditions and inhibiting necroptosis is currently considered a promising therapeutic strategy. In this review, we focus on the molecular mechanisms of necroptosis as well as its involvement in human diseases. We also discuss the present developing therapies that target necroptosis machinery.
Collapse
|
35
|
RIPK3-Dependent Recruitment of Low-Inflammatory Myeloid Cells Does Not Protect from Systemic Salmonella Infection. mBio 2020; 11:mBio.02588-20. [PMID: 33024046 PMCID: PMC7542371 DOI: 10.1128/mbio.02588-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages employ multiple strategies to limit pathogen infection. For example, macrophages may undergo regulated cell death, including RIPK3-dependent necroptosis, as a means of combatting intracellular bacterial pathogens. However, bacteria have evolved mechanisms to evade or exploit immune responses. Salmonella is an intracellular pathogen that avoids and manipulates immune detection within macrophages. We examined the contribution of RIPK3 to Salmonella-induced macrophage death. Our findings indicate that noninvasive Salmonella does not naturally induce necroptosis, but it does so when caspases are inhibited. Moreover, RIPK3 induction (following caspase inhibition) does not impact host survival following Salmonella systemic infection. Finally, our data show that RIPK3 induction results in recruitment of low-inflammatory myeloid cells, which was unexpected, as necroptosis is typically described as highly inflammatory. Collectively, these data improve our understanding of pathogen-macrophage interactions, including outcomes of regulated cell death during infection in vivo, and reveal a potential new role for RIPK3 in resolving inflammation. Regulated macrophage death has emerged as an important mechanism to defend against intracellular pathogens. However, the importance and consequences of macrophage death during bacterial infection are poorly resolved. This is especially true for the recently described RIPK3-dependent lytic cell death, termed necroptosis. Salmonella enterica serovar Typhimurium is an intracellular pathogen that precisely regulates virulence expression within macrophages to evade and manipulate immune responses, which is a key factor in its ability to cause severe systemic infections. We combined genetic and pharmacological approaches to examine the importance of RIPK3 for S. Typhimurium-induced macrophage death using conditions that recapitulate bacterial gene expression during systemic infection in vivo. Our findings indicate that noninvasive S. Typhimurium does not naturally induce macrophage necroptosis but does so in the presence of pan-caspase inhibition. Moreover, our data suggest that RIPK3 induction (following caspase inhibition) does not impact host survival following S. Typhimurium infection, which differs from previous findings based on inert lipopolysaccharide (LPS) injections. Finally, although necroptosis is typically characterized as highly inflammatory, our data suggest that RIPK3 skews the peritoneal myeloid population away from an inflammatory profile to that of a classically noninflammatory profile. Collectively, these data improve our understanding of S. Typhimurium-macrophage interactions, highlight the possibility that purified bacterial components may not accurately recapitulate the complexity of host-pathogen interactions, and reveal a potential and unexpected role for RIPK3 in resolving inflammation.
Collapse
|
36
|
Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 2020; 17:543-556. [PMID: 32651553 DOI: 10.1038/s41575-020-0326-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.
Collapse
|
37
|
Wehkamp J, Stange EF. An Update Review on the Paneth Cell as Key to Ileal Crohn's Disease. Front Immunol 2020; 11:646. [PMID: 32351509 PMCID: PMC7174711 DOI: 10.3389/fimmu.2020.00646] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn, intermingled with stem cells, and provide a niche for their neighbors by secreting growth and Wnt-factors as well as different antimicrobial peptides including defensins, lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and 6 that keep the crypt sterile and control the local microbiome. In ileal Crohn's disease various mechanisms including established genetic risk factors contribute to defects in the production and ordered secretion of these peptides. In addition, life-style risk factors for Crohn's disease like tobacco smoking also impact on Paneth cell function. Taken together, current evidence suggest that defective Paneth cells may play the key role in initiating inflammation in ileal, and maybe ileocecal, Crohn's disease by allowing bacterial attachment and invasion.
Collapse
Affiliation(s)
- Jan Wehkamp
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| | - Eduard F Stange
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| |
Collapse
|
38
|
Stolzer I, Kaden-Volynets V, Ruder B, Letizia M, Bittel M, Rausch P, Basic M, Bleich A, Baines JF, Neurath MF, Wirtz S, Weidinger C, Bischoff SC, Becker C, Günther C. Environmental Microbial Factors Determine the Pattern of Inflammatory Lesions in a Murine Model of Crohn's Disease-Like Inflammation. Inflamm Bowel Dis 2020; 26:66-79. [PMID: 31276162 DOI: 10.1093/ibd/izz142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Crohn's disease (CD) patients can be grouped into patients suffering from ileitis, ileocolitis, jejunoileitis, and colitis. The pathophysiological mechanism underlying this regional inflammation is still unknown. Although most murine models of inflammatory bowel disease (IBD) develop inflammation in the colon, there is an unmet need for novel models that recapitulate the spontaneous and fluctuating nature of inflammation as seen in CD. Recently, mice with an intestinal epithelial cell-specific deletion for Caspase-8 (Casp8ΔIEC mice), which are characterized by cell death-driven ileitis and disrupted Paneth cell homeostasis, have been identified as a novel model of CD-like ileitis. Here we uncovered that genetic susceptibility alone is sufficient to drive ileitis in Casp8ΔIEC mice. In sharp contrast, environmental factors, such as a disease-relevant microbial flora, determine colonic inflammation. Accordingly, depending on the microbial environment, isogenic Casp8ΔIEC mice either exclusively developed ileitis or suffered from pathologies in several parts of the gastrointestinal tract. Colitis in these mice was characterized by massive epithelial cell death, leading to spread of commensal gut microbes to the extra-intestinal space and hence an aberrant activation of the systemic immunity. We further uncovered that Casp8ΔIEC mice show qualitative and quantitative changes in the intestinal microbiome associated with an altered mucosal and systemic immune response. In summary, we identified that inflammation in this murine model of CD-like inflammation is characterized by an immune reaction, presumably directed against a disease-relevant microbiota in a genetically susceptible host, with impaired mucosal barrier function and bacterial clearance at the epithelial interface.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Barbara Ruder
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marilena Letizia
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Miriam Bittel
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Rausch
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany.,Institute for Experimental Medicine, Evolutionary Genomics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany.,Institute for Experimental Medicine, Evolutionary Genomics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Günther C, Ruder B, Stolzer I, Dorner H, He GW, Chiriac MT, Aden K, Strigli A, Bittel M, Zeissig S, Rosenstiel P, Atreya R, Neurath MF, Wirtz S, Becker C. Interferon Lambda Promotes Paneth Cell Death Via STAT1 Signaling in Mice and Is Increased in Inflamed Ileal Tissues of Patients With Crohn's Disease. Gastroenterology 2019; 157:1310-1322.e13. [PMID: 31352002 DOI: 10.1053/j.gastro.2019.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Interferon lambda (IFNL) is expressed at high levels by intestinal epithelial cells (IECs) and mucosal immune cells in response to infection and inflammation. We investigated whether IFNL might contribute to pathogenesis of Crohn's disease (CD). METHODS We obtained serum samples and terminal ileum biopsies from 47 patients with CD and 16 healthy individuals (controls). We measured levels of IFNL by enzyme-linked immunosorbent assay and immunohistochemistry and location of expression by confocal microscopy. Activation of IFNL signaling via STAT1 was measured in areas of no, mild, moderate, and severe inflammation and correlated with Paneth cell homeostasis and inflammation. IFNL expression and function were studied in wild-type mice and mice with intestinal epithelial cell-specific (ΔIEC) disruption or full-body disruption of specific genes (Mlkl-/-, Stat1ΔIEC, Casp8ΔIEC, Casp8ΔIECRipk3-/-, Casp8ΔIECTnfr-/-, Casp8ΔIECMlkl-/-, and Nod2-/- mice). Some mice were given tail vein injections of a vector encoding a secreted form of IFNL. Intestinal tissues were collected from mice and analyzed by immunohistochemistry and immunoblots. We generated 3-dimensional small intestinal organoids from mice and studied the effects of IFNL and inhibitors of STAT-signaling pathway. RESULTS Patients with CD had significant increases in serum and ileal levels of IFNL compared with controls. Levels of IFNL were highest in ileum tissues with severe inflammation. High levels of IFNL associated with a reduced number of Paneth cells and increased cell death at the crypt bottom in inflamed ileum samples. Intestinal tissues from the ileum of wild-type mice injected with a vector expressing IFNL had reduced numbers of Paneth cells. IFNL-induced death of Paneth cells in mice did not occur via apoptosis, but required Mixed Lineage Kinase Domain Like (MLKL) and activation of Signal transducer and activator of transcription 1 (STAT1). In organoids, inhibitors of Janus kinase (JAK) signaling via STAT1 (glucocorticoids, tofacitinib, or filgotinib) reduced expression of proteins that mediate cell death and prevented Paneth cell death. CONCLUSIONS Levels of IFNL are increased in serum and inflamed ileal tissues from patients with CD and associated with a loss of Paneth cells. Expression of a secreted form of IFNL in mice results in loss of Paneth cells from intestinal tissues, via STAT1 and MLKL, controlled by caspase 8. Strategies to reduce IFNL or block its effects might be developed for treatment of patients with CD affecting the terminal ileum.
Collapse
Affiliation(s)
- Claudia Günther
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany.
| | - Barbara Ruder
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Iris Stolzer
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Heidrun Dorner
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Gui-Wei He
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Mircea Teodor Chiriac
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Strigli
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany; Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Miriam Bittel
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany; Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Raja Atreya
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany
| | - Christoph Becker
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen, Germany.
| |
Collapse
|
40
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
41
|
Hu GQ, Yang YJ, Qin XX, Qi S, Zhang J, Yu SX, Du CT, Chen W. Salmonella Outer Protein B Suppresses Colitis Development via Protecting Cell From Necroptosis. Front Cell Infect Microbiol 2019; 9:87. [PMID: 31024858 PMCID: PMC6465518 DOI: 10.3389/fcimb.2019.00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/12/2019] [Indexed: 12/30/2022] Open
Abstract
Salmonella effectors translocated into epithelial cells contribute to the pathogenesis of infection. They mediate epithelial cell invasion and subsequent intracellular replication. However, their functions in vivo have not been well-identified. In this study, we uncovered a role for Salmonella outer protein B (SopB) in modulating necroptosis to facilitate bacteria escape epithelial cell and spread to systemic sites through a Salmonella-induced colitis model. Mice infected with SopB deleted strain ΔsopB displayed increased severity to colitis, reduced mucin expression and increased bacterial translocation. In vitro study, we found there was an increased goblet cell necroptosis following ΔsopB infection. Consistently, mice infected with ΔsopB had a strong upregulation of mixed lineage kinase domain-like (MLKL) phosphorylation. Deletion of MLKL rescued severity of tissue inflammatory, improved mucin2 expression and abolished the increased bacterial translocation in mice infected with ΔsopB. Intriguingly, the expression of sopB in LS174T cells was downregulated. The temporally regulated SopB expression potentially switched the role from epithelial cell invasion to bacterial transmission. Collectively, these results indicated a role for SopB in modulating the onset of necroptosis to increased bacteria pathogenesis and translocated to systemic sites.
Collapse
Affiliation(s)
- Gui-Qiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Xia Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuai Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jie Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shui-Xing Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
42
|
Hausmann A, Hardt WD. The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0004-2019. [PMID: 30953432 PMCID: PMC11588296 DOI: 10.1128/microbiolspec.bai-0004-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection results in a dynamic interplay between the pathogen and its host. The underlying interactions are multilayered, and the cellular responses are modulated by the local environment. The intestine is a particularly interesting tissue regarding host-pathogen interaction. It is densely colonized by commensal microbes and a portal of entry for ingested pathogens. This necessitates constant monitoring of microbial stimuli in order to maintain homeostasis during encounters with benign microbiota and to trigger immune defenses in response to bacterial pathogens. Homeostasis is maintained by physical barriers (the mucus layer and epithelium), chemical defenses (antimicrobial peptides), and innate immune responses (NLRC4 inflammasome), which keep the bacteria from reaching the sterile lamina propria. Intestinal pathogens represent potent experimental tools to probe these barriers and decipher how pathogens can circumvent them. The streptomycin mouse model of oral Salmonella enterica serovar Typhimurium infection provides a well-characterized, robust experimental system for such studies. Strikingly, each stage of the gut tissue infection poses a different set of challenges to the pathogen and requires tight control of virulence factor expression, host response modulation, and cooperation between phenotypic subpopulations. Therefore, successful infection of the intestinal tissue relies on a delicate and dynamic balance between responses of the pathogen and its host. These mechanisms can be deciphered to their full extent only in realistic in vivo infection models.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, D-BIOL ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
43
|
Li S, Ning LG, Lou XH, Xu GQ. Necroptosis in inflammatory bowel disease and other intestinal diseases. World J Clin Cases 2018; 6:745-752. [PMID: 30510938 PMCID: PMC6265005 DOI: 10.12998/wjcc.v6.i14.745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
For a long time, it was believed that apoptosis and necrosis were the main pathways for cell death, but a growing body of research has shown that there are other pathways. Among these, necroptosis, a regulatory caspase-independent, programmed cell death pathway, is supposed to be of importance in the pathogenesis of many diseases. The mechanism of regulating, inducing and blocking necroptosis is a complex process that involves expression and regulation of a series of molecules including receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase like protein. By blocking or downregulating expression of key molecules in the necroptotic pathway, intestinal inflammation can be affected to some extent. In this paper, we introduce the concept of necroptosis, its main pathway, and its impact on the pathogenesis of inflammatory bowel disease (IBD) and other intestinal diseases, to explore new drug targets for intestinal diseases, including IBD.
Collapse
Affiliation(s)
- Sha Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Long-Gui Ning
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-He Lou
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Guo-Qiang Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
44
|
Ghimire L, Paudel S, Jin L, Baral P, Cai S, Jeyaseelan S. NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS Pathog 2018; 14:e1007308. [PMID: 30248149 PMCID: PMC6171945 DOI: 10.1371/journal.ppat.1007308] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Gram-positive bacteria, including Staphylococcus aureus are endemic in the U.S., which cause life-threatening necrotizing pneumonia. Neutrophils are known to be critical for clearance of S. aureus infection from the lungs and extrapulmonary organs. Therefore, we investigated whether the NLRP6 inflammasome regulates neutrophil-dependent host immunity during pulmonary S. aureus infection. Unlike their wild-type (WT) counterparts, NLRP6 knockout (KO) mice were protected against pulmonary S. aureus infection as evidenced by their higher survival rate and lower bacterial burden in the lungs and extrapulmonary organs. In addition, NLRP6 KO mice displayed increased neutrophil recruitment following infection, and when neutrophils were depleted the protective effect was lost. Furthermore, neutrophils from the KO mice demonstrated enhanced intracellular bacterial killing and increased NADPH oxidase-dependent ROS production. Intriguingly, we found higher NK cell-mediated IFN-γ production in KO mouse lungs, and treatment with IFN-γ was found to enhance the bactericidal ability of WT and KO neutrophils. The NLRP6 KO mice also displayed decreased pyroptosis and necroptosis in the lungs following infection. Blocking of pyroptosis and necroptosis in WT mice resulted in increased survival, reduced bacterial burden in the lungs, and attenuated cytokine production. Taken together, these novel findings show that NLRP6 serves as a negative regulator of neutrophil-mediated host defense during Gram-positive bacterial infection in the lungs through regulating both neutrophil influx and function. These results also suggest that blocking NLRP6 to augment neutrophil-associated bacterial clearance should be considered as a potential therapeutic intervention strategy for treatment of S. aureus pneumonia.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Inflammasomes/immunology
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lung/immunology
- Lung/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/immunology
- Pneumonia, Necrotizing/immunology
- Pneumonia, Necrotizing/microbiology
- Pneumonia, Staphylococcal/immunology
- Pneumonia, Staphylococcal/microbiology
- Pyroptosis/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Staphylococcus aureus/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Laxman Ghimire
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Sagar Paudel
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Liliang Jin
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Pankaj Baral
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Shanshan Cai
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Samithamby Jeyaseelan
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Science Center, New Orleans, LA, United States of America
| |
Collapse
|