1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, Zhan X, Liu B. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol 2024; 140:112650. [PMID: 39079346 DOI: 10.1016/j.intimp.2024.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/01/2024]
Abstract
Periodontitis is a prevalent polymicrobial disease. It damages soft tissues and alveolar bone, and causes a significant public-health burden. Development of an advanced therapeutic approach and exploration of vaccines against periodontitis hold promise as potential treatment avenues. Clinical trials for a periodontitis vaccine are lacking. Therefore, it is crucial to address the urgent need for developing strategies to implement vaccines at the primary level of prevention in public health. A deep understanding of the principles and mechanisms of action of vaccines plays a crucial role in the successful development of vaccines and their clinical translation. This review aims to provide a comprehensive summary of potential directions for the development of highly efficacious periodontitis vaccines. In addition, we address the limitations of these endeavors and explore future possibilities for the development of an efficacious vaccine against periodontitis.
Collapse
Affiliation(s)
- Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yujia Feng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Guojiang Li
- School of Stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, MI, USA
| | - Xiaozhen Zhan
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China.
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Loeurng V, Puth S, Hong SH, Lee YS, Radhakrishnan K, Koh JT, Kook JK, Rhee JH, Lee SE. A Flagellin-Adjuvanted Trivalent Mucosal Vaccine Targeting Key Periodontopathic Bacteria. Vaccines (Basel) 2024; 12:754. [PMID: 39066392 PMCID: PMC11281409 DOI: 10.3390/vaccines12070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontal disease (PD) is caused by microbial dysbiosis and accompanying adverse inflammatory responses. Due to its high incidence and association with various systemic diseases, disease-modifying treatments that modulate dysbiosis serve as promising therapeutic approaches. In this study, to simulate the pathophysiological situation, we established a "temporary ligature plus oral infection model" that incorporates a temporary silk ligature and oral infection with a cocktail of live Tannerella forsythia (Tf), Pophyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) in mice and tested the efficacy of a new trivalent mucosal vaccine. It has been reported that Tf, a red complex pathogen, amplifies periodontitis severity by interacting with periodontopathic bacteria such as Pg and Fn. Here, we developed a recombinant mucosal vaccine targeting a surface-associated protein, BspA, of Tf by genetically combining truncated BspA with built-in adjuvant flagellin (FlaB). To simultaneously induce Tf-, Pg-, and Fn-specific immune responses, it was formulated as a trivalent mucosal vaccine containing Tf-FlaB-tBspA (BtB), Pg-Hgp44-FlaB (HB), and Fn-FlaB-tFomA (BtA). Intranasal immunization with the trivalent mucosal vaccine (BtB + HB + BtA) prevented alveolar bone loss and gingival proinflammatory cytokine production. Vaccinated mice exhibited significant induction of Tf-tBspA-, Pg-Hgp44-, and Fn-tFomA-specific IgG and IgA responses in the serum and saliva, respectively. The anti-sera and anti-saliva efficiently inhibited epithelial cell invasion by Tf and Pg and interfered with biofilm formation by Fn. The flagellin-adjuvanted trivalent mucosal vaccine offers a novel method for modulating dysbiotic bacteria associated with periodontitis. This approach leverages the adjuvant properties of flagellin to enhance the immune response, aiming to restore a balanced microbial environment and improve periodontal health.
Collapse
Affiliation(s)
- Vandara Loeurng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Jeong Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection of Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Tan W, Thiruppathi J, Hong SH, Puth S, Pheng S, Mun BR, Choi WS, Lee KH, Park HS, Nguyen DT, Lee MC, Jeong K, Zheng JH, Kim Y, Lee SE, Rhee JH. Development of an anti-tauopathy mucosal vaccine specifically targeting pathologic conformers. NPJ Vaccines 2024; 9:108. [PMID: 38879560 PMCID: PMC11180213 DOI: 10.1038/s41541-024-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/19/2024] Open
Abstract
Alzheimer's disease (AD) and related tauopathies are associated with pathological tau protein aggregation, which plays an important role in neurofibrillary degeneration and dementia. Targeted immunotherapy to eliminate pathological tau aggregates is known to improve cognitive deficits in AD animal models. The tau repeat domain (TauRD) plays a pivotal role in tau-microtubule interactions and is critically involved in the aggregation of hyperphosphorylated tau proteins. Because TauRD forms the structural core of tau aggregates, the development of immunotherapies that selectively target TauRD-induced pathological aggregates holds great promise for the modulation of tauopathies. In this study, we generated recombinant TauRD polypeptide that form neurofibrillary tangle-like structures and evaluated TauRD-specific immune responses following intranasal immunization in combination with the mucosal adjuvant FlaB. In BALB/C mice, repeated immunizations at one-week intervals induced robust TauRD-specific antibody responses in a TLR5-dependent manner. Notably, the resulting antiserum recognized only the aggregated form of TauRD, while ignoring monomeric TauRD. The antiserum effectively inhibited TauRD filament formation and promoted the phagocytic degradation of TauRD aggregate fragments by microglia. The antiserum also specifically recognized pathological tau conformers in the human AD brain. Based on these results, we engineered a built-in flagellin-adjuvanted TauRD (FlaB-TauRD) vaccine and tested its efficacy in a P301S transgenic mouse model. Mucosal immunization with FlaB-TauRD improved quality of life, as indicated by the amelioration of memory deficits, and alleviated tauopathy progression. Notably, the survival of the vaccinated mice was dramatically extended. In conclusion, we developed a mucosal vaccine that exclusively targets pathological tau conformers and prevents disease progression.
Collapse
Affiliation(s)
- Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Jayalakshmi Thiruppathi
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Sophea Pheng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Bo-Ram Mun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyung-Hwa Lee
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Pathology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hyun-Sun Park
- Department of Pharmacology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Duc Tien Nguyen
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Seegene Inc, Seoul, 05548, Republic of Korea
| | - Kwangjoon Jeong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Jin Hai Zheng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
| |
Collapse
|
5
|
Mauricio F, Mendoza R, Silva H, Calderon I, Espinoza-Carhuancho F, Pacheco-Mendoza J, Mayta-Tovalino F. Overview, Trends, and Collaboration on Immunization, Vaccination, and Immunomodulation Therapies for Periodontitis: A Scientometric Study. J Contemp Dent Pract 2024; 25:128-133. [PMID: 38514409 DOI: 10.5005/jp-journals-10024-3641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
AIM To identify patterns and trends in the field of immunization, vaccination, and immunomodulation therapies for periodontitis. MATERIALS AND METHODS Metadata were collected from the Scopus database on publications related to these topics from January 1986 to February 2024. Several types of papers were included in this study, a total of 22 publications. Data were extracted from relevant publications and loaded into SciVal for analysis that were used to identify trends and patterns in the data, including cross-country collaboration, thematic evolution, and keyword distribution. RESULTS Mohsen Amin of Tehran University of Medical Sciences in Iran and S. Aadil Ahamed and Annie Kitty George of Saveetha Institute of Medical and Technical Sciences in India were found to be notable contributors in this field. India leads in terms of academic paper production, followed by Iran and China. The journals Expert Review of Vaccines and International Immunopharmacology have published significant papers in this field. CONCLUSIONS According to Lotka's Law, most authors have written only one paper, reflecting the distribution of productivity in many academic and scientific fields. Collaborations were observed between Iran and Canada, Korea and New Zealand, and the United States and Belgium. This study provides useful insight into the predominant trends and patterns in the scientific literature in the field of immunization, vaccination, and immunomodulation therapies for periodontitis. CLINICAL SIGNIFICANCE The findings of this study may help to understand the dynamics of the production on immunization, vaccination, and immunomodulation therapies could reduce the inflammation and progression of periodontitis, thus improving the patient's oral and overall health. How to cite this article: Mauricio F, Mendoza R, Silva H, et al. Overview, Trends, and Collaboration on Immunization, Vaccination, and Immunomodulation Therapies for Periodontitis: A Scientometric Study. J Contemp Dent Pract 2024;25(2):128-133.
Collapse
Affiliation(s)
- Franco Mauricio
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Roman Mendoza
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Herbert Silva
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Ivan Calderon
- Academic Department, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Fran Espinoza-Carhuancho
- Academic Department, Grupo de Bibliometría, Evaluación de Evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Josmel Pacheco-Mendoza
- Academic Department, Grupo de Bibliometría, Evaluación de Evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Frank Mayta-Tovalino
- Research Department, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru, Phone: +51 13171023, e-mail:
| |
Collapse
|
6
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
7
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
8
|
Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol 2023; 60:101330. [PMID: 37084463 DOI: 10.1016/j.coviro.2023.101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
9
|
Ebersole JL, Nguyen LM, Gonzalez OA. Gingival tissue antibody gene utilization in aging and periodontitis. J Periodontal Res 2022; 57:780-798. [PMID: 35582846 DOI: 10.1111/jre.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study used a nonhuman primate model of ligature-induced periodontitis to document the characteristics of immunoglobulin (Ig) gene usage in gingival tissues with disease and affected by age. BACKGROUND Adaptive immune responses to an array of oral bacteria are routinely detected in local gingival tissues and the systemic circulation across the human population. The level and diversity of antibody increases with periodontitis, reflecting the increased quantity of B cells and plasmacytes in the tissues at sites of periodontal lesions. METHODS Macaca mulatta (n = 36) in four groups (young - ≤3 years; adolescent >3-7 years; adult - 12-15 years; aged - 17-23 years) were used in this study. Gingival tissues were sampled at baseline (health), 2 weeks (initiation), 1 and 3 months (progression), and 5 months (resolution) of the lesion development and transcriptomic analysis included 78 Ig-related genes. RESULTS The results demonstrated extensive variation in Ig gene usage patterns and changes with the disease process that was substantially affected by the age of the animal. Of note was that the aged animals generally demonstrated elevated expression on multiple Ig genes even in the baseline/healthy gingival tissues. The expression levels revealed 5 aggregates of Ig gene change profiles across the age groups. The number of gene changes were greatly increased in adult animals with the initiation of disease, while the young and adolescent animals showed extensive changes with disease progression. Elevated Ig gene transcripts remained with disease resolution except in the aged animals. The response profiles demonstrated selective heavy/light change gene transcripts that differed with age and clustering of the transcript expression was dominated by the age of the animals. CONCLUSIONS The results suggested potential critical variations in the molecular aspects of Ig gene expression in gingival tissues that can contribute to understanding the kinetics of periodontal lesions, as well as the variation in episodes, rapidity of progression, and role in resolution that are impacted by age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
An all-in-one adjuvanted therapeutic cancer vaccine targeting dendritic cell cytosol induces long-lived tumor suppression through NLRC4 inflammasome activation. Biomaterials 2022; 286:121542. [DOI: 10.1016/j.biomaterials.2022.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
|
11
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
12
|
Yadalam PK, Kalaivani V, Fageeh HI, Ibraheem W, Al-Ahmari MM, Khan SS, Ahmed ZH, Abdulkarim HH, Baeshen HA, Balaji TM, Bhandi S, Raj AT, Patil S. Future Drug Targets in Periodontal Personalised Medicine-A Narrative Review. J Pers Med 2022; 12:371. [PMID: 35330371 PMCID: PMC8955099 DOI: 10.3390/jpm12030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal disease is an infection-driven inflammatory disease characterized by the destruction of tooth-supporting tissues. The establishment of chronic inflammation will result in progressive destruction of bone and soft tissue changes. Severe periodontitis can lead to tooth loss. The disease has complex pathogenesis with an interplay between genetic, environmental, and host factors and pathogens. Effective management consists of plaque control and non-surgical interventions, along with adjuvant strategies to control inflammation and disrupt the pathogenic subgingival biofilms. Recent studies have examined novel approaches for managing periodontal diseases such as modulating microbial signaling mechanisms, tissue engineering, and molecular targeting of host inflammatory substances. Mounting evidence suggests the need to integrate omics-based approaches with traditional therapy to address the disease. This article discusses the various evolving and future drug targets, including proteomics, gene therapeutics, vaccines, and nanotechnology in personalized periodontal medicine for the effective management of periodontal diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, India;
| | - V. Kalaivani
- Department of Periodontics, SRM Kattankulathur Dental College & Hospital, SRM Nagar, Chennai 603203, India;
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Wael Ibraheem
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Manea Musa. Al-Ahmari
- Department of Periodontics and Community Medical Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham H. Abdulkarim
- Advanced Periodontal and Dental Implant Care, Missouri School of Dentistry and Oral Health, A. T. Still University, St. Louis, MO 63104, USA;
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
13
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Deimmunization of flagellin for repeated administration as a vaccine adjuvant. NPJ Vaccines 2021; 6:116. [PMID: 34518537 PMCID: PMC8438039 DOI: 10.1038/s41541-021-00379-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
Flagellin, a protein-based Toll-like receptor agonist, is a versatile adjuvant applicable to wide spectrum of vaccines and immunotherapies. Given reiterated treatments of immunogenic biopharmaceuticals should lead to antibody responses precluding repeated administration, the development of flagellin not inducing specific antibodies would greatly expand the chances of clinical applications. Here we computationally identified immunogenic regions in Vibrio vulnificus flagellin B and deimmunized by simply removing a B cell epitope region. The recombinant deimmunized FlaB (dFlaB) maintains stable TLR5-stimulating activity. Multiple immunization of dFlaB does not induce FlaB-specific B cell responses in mice. Intranasally co-administered dFlaB with influenza vaccine enhanced strong Ag-specific immune responses in both systemic and mucosal compartments devoid of FlaB-specific Ab production. Notably, dFlaB showed better protective immune responses against lethal viral challenge compared with wild type FlaB. The deimmunizing B cell epitope deletion did not compromise stability and adjuvanticity, while suppressing unwanted antibody responses that may negatively affected vaccine antigen-directed immune responses in repeated vaccinations. We explain the underlying mechanism of deimmunization by employing molecular dynamics analysis.
Collapse
|
15
|
Bai G, Yu H, Guan X, Zeng F, Liu X, Chen B, Liu J, Tian Y. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health 2021; 21:403. [PMID: 34399747 PMCID: PMC8369760 DOI: 10.1186/s12903-021-01763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously demonstrated that nasal administration of periodontitis gene vaccine (pVAX1-HA2-fimA) or pVAX1-HA2-fimA plus IL-15 as adjuvant provoked protective immunity in the periodontal tissue of SD rats. This study evaluated the immune effect of pVAX1-HA2-fimA plus CpG-ODN 1826 as an adjuvant in the SD rat periodontitis models to improve the efficacy of the previously used vaccine. METHODS Periodontitis was induced in maxillary second molars in SD rats receiving a ligature and infected with Porphyromonas gingivalis. Forty-two SD rats were randomly assigned to six groups: A, control without P. gingivalis; B, P. gingivalis with saline; C, P. gingivalis with pVAX1; D, P. gingivalis with pVAX1-HA2-fimA; E, P. gingivalis with pVAX1-HA2-fimA/IL-15; F, P. gingivalis with pVAX1-HA2-fimA+CpG ODN 1826 (30 µg). The levels of FimA-specific and HA2-specific secretory IgA antibodies in the saliva of rats were measured by ELISA. The levels of COX-2 and RANKL were detected by immunohistochemical assay. Morphometric analysis was used to evaluate alveolar bone loss. Major organs were observed by HE staining. RESULTS 30 μg could be the optimal immunization dose for CpG-ODN 1826 and the levels of SIgA antibody were consistently higher in the pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) group than in the other groups during weeks 1-8 (P < 0.05, except week 1 or 2). Morphometric analysis demonstrated that pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) significantly reduced alveolar bone loss in ligated maxillary molars in group F compared with groups B-E (P < 0.05). Immunohistochemical assays revealed that the levels of COX-2 and RANKL were significantly lower in group F compared with groups B-E (P < 0.05). HE staining results of the major organs indicated that pVAX1-HA2-fimA with or without CpG-ODN 1826 was not toxic for in vivo use. CONCLUSIONS These results indicated that CpG-ODN 1826 (30 µg) could be used as an effective and safe mucosal adjuvant for pVAX1-HA2-fimA in SD rats since it could elicit mucosal SIgA responses and modulate COX-2 and RANKL production during weeks 1-8, thereby inhibiting inflammation and decreasing bone loss.
Collapse
Affiliation(s)
- Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Hang Yu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Fengjiao Zeng
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
16
|
Zidar A, Kristl J, Kocbek P, Zupančič Š. Treatment challenges and delivery systems in immunomodulation and probiotic therapies for periodontitis. Expert Opin Drug Deliv 2021; 18:1229-1244. [PMID: 33760648 DOI: 10.1080/17425247.2021.1908260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Periodontitis is a widespread illness that arises due to disrupted interplay between the oral microbiota and the host immune response. In some cases, conventional therapies can provide temporary remission, although this is often followed by disease relapse. Recent studies of periodontitis pathology have promoted the development of new therapeutics to improve treatment options, together with local application using advanced drug delivery systems.Areas covered: This paper provides a critical review of the status of current treatment approaches to periodontitis, with a focus on promising immunomodulation and probiotic therapies. These are based on delivery of small molecules, peptides, proteins, DNA or RNA, and probiotics. The key findings on novel treatment strategies and formulation of advanced delivery systems, such as nanoparticles and nanofibers, are highlighted.Expert opinion: Multitarget therapy based on antimicrobial, immunomodulatory, and probiotic active ingredients incorporated into advanced delivery systems for application to the periodontal pocket can improve periodontitis treatment outcomes. Translation of such adjuvant therapy from laboratory to patient is expected in the future.
Collapse
Affiliation(s)
- Anže Zidar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccine Potentiated the Anti-PD-1-Mediated Melanoma Suppression. Cells 2020; 9:cells9112432. [PMID: 33171765 PMCID: PMC7694978 DOI: 10.3390/cells9112432] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors become a standard therapy for malignant melanoma. As immune checkpoint inhibitor monotherapies proved to have limited efficacy in significant portion of patients, it is envisaged that combination with other therapeutic modalities may improve clinical outcomes. We investigated the effect of combining photodynamic therapy (PDT) and TLR5 agonist flagellin-adjuvanted tumor-specific peptide vaccination (FlaB-Vax) on the promotion of PD-1 blockade-mediated melanoma suppression using a mouse B16-F10 implantation model. Using a bilateral mouse melanoma cancer model, we evaluated the potentiation of PD-1 blockade by the combination of peritumoral FlaB-Vax delivery and PDT tumor ablation. A photosensitizing agent, pheophorbide A (PhA), was used for laser-triggered photodynamic destruction of the primary tumor. The effect of combination therapy in conjunction with PD-1 blockade was evaluated for tumor growth and survival. The effector cytokines that promote the activation of CD8+ T cells and antigen-presenting cells in tumor tissue and tumor-draining lymph nodes (TDLNs) were also assayed. PDT and FlaB-Vax combination therapy induced efficacious systemic antitumor immune responses for local and abscopal tumor control, with a significant increase in tumor-infiltrating effector memory CD8+ T cells and systemic IFNγ secretion. The combination of PDT and FlaB-Vax also enhanced the infiltration of tumor antigen-reactive CD8+ T cells and the accumulation of migratory CXCL10-secreting CD103+ dendritic cells (DCs) presumably contributing to tumor antigen cross-presentation in the tumor microenvironment (TME). The CD8+ T-cell-dependent therapeutic benefits of PDT combined with FlaB-Vax was significantly enhanced by a PD-1-targeting checkpoint inhibitor therapy. Conclusively, the combination of FlaB-Vax with PDT-mediated tumor ablation would serve a safe and feasible combinatorial therapy for enhancing PD-1 blockade treatment of malignant melanoma.
Collapse
|
18
|
Myneni SR, Brocavich K, Wang H. Biological strategies for the prevention of periodontal disease: Probiotics and vaccines. Periodontol 2000 2020; 84:161-175. [DOI: 10.1111/prd.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Srinivas Rao Myneni
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Kristen Brocavich
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Howard Wang
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| |
Collapse
|
19
|
Vergara Serpa OV, Cortina Gutiérrez A, Serna Otero DA, Zuluaga Salazar JF, Reyes Jaraba CA. Porphyromonas gingivalis ligada a enfermedad periodontal y su relación con la artritis reumatoide: identificación de nuevos mecanismos biomoleculares. ACTA ODONTOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/aoc.v10n2.85185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objetivo: revisar la literatura científica existente con respecto a la patogenicidad de Porphyromonas gingivalis, ligada a enfermedad periodontal (EP) (disbiosis oral), y su asociación con la activación de mecanismos fisiopatológicos en la artritis reumatoide (AR), a fin de exponer los nuevos mecanismos biomoleculares implicados. Métodos: búsqueda sistemática en la base de datos del Medical Subject Headings (MeSH), PubMed, Science Direct, Nature y Google académico usando las palabras clave: Aggregatibacter actinomycetemcomitans; artritis reumatoide; citrulinación; disbiosis; odontología; periodontitis; Porphyromonas gingivalis y reumatología. De un total de 297 publicaciones, se seleccionaron 52, todas a partir del año 2018; la selección fue hecha a partir de los criterios de inclusión y exclusión establecidos por los autores. Resultados: la infección por Porphyromonas gingivalis, ligada a la EP, está fuertemente implicada en la patogénesis y desarrollo de AR. Su relación se vincula con el proceso de citrulinación y producción de anticuerpos antipéptidos citrulinados. Se han identificado asociaciones entre la virulencia microbiana de dicho agente y la expresión de múltiples genes, relacionados con la activación de la respuesta inmune y el inicio del proceso inflamatorio crónico. Conclusiones: existe una alta asociación entre la patogenia de ambas enfermedades, donde microorganismos ligados a la EP, como Porphyromonas gingivalis, tienen la capacidad de aumentar la citrulinación, galactosilación, fucosilación, así como la excesiva glicosilación de Fragmentos de unión al antígeno (Fab), y por lo tanto, la agresividad de la AR.
Collapse
|
20
|
Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2019; 151:104582. [PMID: 31794871 DOI: 10.1016/j.phrs.2019.104582] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative pathology affecting milions of people worldwide associated with deposition of senile plaques. While the genetic and environmental risk factors associated with the onset and consolidation of late onset AD are heterogeneous and sporadic, growing evidence also suggests a potential link between some infectious diseases caused by oral microbiota and AD. Oral microbiota dysbiosis is purported to contribute either directly to amyloid protein production, or indirectly to neuroinflammation, occurring as a consequence of bacterial invasion. Over the last decade, the development of Human Oral Microbiome database (HOMD) has deepened our understanding of oral microbes and their different roles during the human lifetime. Oral pathogens mostly cause caries, periodontal disease, and edentulism in aged population, and, in particular, alterations of the oral microbiota causing chronic periodontal disease have been associated with the risk of AD. Here we describe how different alterations of the oral microbiota may be linked to AD, highlighting the importance of a good oral hygiene for the prevention of oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), and IdisBa, Palma de Mallorca, Balearic Islands, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex 51687, France
| | | | - Francesca Pistollato
- Centre for Health & Nutrition, Universidad Europea del Atlantico, Santander, Spain
| | - Tamara Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Grazia D'Onofrio
- Unit of Geriatrics, Department of Medical Sciences, Fondazione Casa Sollievo della sofferenza, San Giovanni Rotondo, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Duong-Nu TM, Jeong K, Hong SH, Puth S, Kim SY, Tan W, Lee KH, Lee SE, Rhee JH. A stealth adhesion factor contributes to Vibrio vulnificus pathogenicity: Flp pili play roles in host invasion, survival in the blood stream and resistance to complement activation. PLoS Pathog 2019; 15:e1007767. [PMID: 31437245 PMCID: PMC6748444 DOI: 10.1371/journal.ppat.1007767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis. Vibrio vulnificus, an opportunistic pathogen, harbors three distinct tad loci. Among them, only tad1 locus was highly upregulated in in vivo growing bacteria compared to in vitro culture condition. To understand the pathogenic roles of the three tad loci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only the Δtad123 triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on the Δtad123 mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. The Δtad123 mutant cells showed attenuated host cell adhesion, decreased biofilm formation, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. The Δtad123 mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Complement depletion by treating with anti-C5 antibody rescued the viable count of Δtad123 in infected mouse bloodstream to the level comparable to wild type strain. Taken together, all three tad loci cooperate to confer successful invasion of V. vulnificus into deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.
Collapse
Affiliation(s)
- Tra-My Duong-Nu
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sao Puth
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Soo Young Kim
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Wenzhi Tan
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Mendez KN, Hoare A, Soto C, Bugueño I, Olivera M, Meneses C, Pérez-Donoso JM, Castro-Nallar E, Bravo D. Variability in Genomic and Virulent Properties of Porphyromonas gingivalis Strains Isolated From Healthy and Severe Chronic Periodontitis Individuals. Front Cell Infect Microbiol 2019; 9:246. [PMID: 31355151 PMCID: PMC6635597 DOI: 10.3389/fcimb.2019.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis has been extensively associated with both the onset and progression of periodontitis. We previously isolated and characterized two P. gingivalis strains, one from a patient exhibiting severe chronic periodontitis (CP3) and another from a periodontally healthy individual (H3). We previously showed that CP3 and H3 exhibit differences in virulence since H3 showed a lower resistance to cationic peptides compared with CP3, and a lower ability to induce proliferation in gingival epithelial cells. Here, we aimed to determine whether differences in virulence between these two strains are associated with the presence or absence of specific genes encoding virulence factors. We sequenced the whole genomes of both P. gingivalis CP3 and H3 and conducted a comparative analysis regarding P. gingivalis virulence genetic determinants. To do so, we performed a homology search of predicted protein sequences in CP3 and H3 genomes against the most characterized virulence genes for P. gingivalis available in the literature. In addition, we performed a genomic comparison of CP3 and H3 with all the 62 genomes of P. gingivalis found in NCBI's RefSeq database. This approach allowed us to determine the evolutionary relationships of CP3 and H3 with other virulent and avirulent strains; and additionally, to detect variability in presence/absence of virulence genes among P. gingivalis genomes. Our results show genetic variability in the hemagglutinin genes. While CP3 possesses one copy of hagA and two of hagC, H3 has no hagA and only one copy of hagC. Experimentally, this finding is related to lower in vitro hemmaglutination ability of H3 compared to CP3. Moreover, while CP3 encodes a gene for a major fimbrium subunit FimA type 4 (CP3_00160), H3 possess a FimA type 1 (H3_01400). Such genetic differences are in agreement with both lower biofilm formation ability and less intracellular invasion to oral epithelial cells exhibited by H3, compared with the virulent strain CP3. Therefore, here we provide new results on the genome sequences, comparative genomics analyses, and phenotypic analyses of two P. gingivalis strains. The genomics comparison of these two strains with the other 62 genomes included in the analysis provided relevant results regarding genetic determinants and their association with P. gingivalis virulence.
Collapse
Affiliation(s)
- Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anilei Hoare
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marcela Olivera
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Jose Manuel Pérez-Donoso
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|