1
|
Dhital R, Flint K, Kaptsan I, Hegde S, Daloul R, Shimamura M. Virus-specific Th17 Cells Are Induced by Human Cytomegalovirus after Renal Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1703-1712. [PMID: 39423238 PMCID: PMC11573647 DOI: 10.4049/jimmunol.2300742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
CMV infection and Th17 cells are independently associated with increased risk for late allograft loss after renal transplantation. Although CMV-specific Th17 cells are detectable in animal models and nontransplant clinical populations, evidence linking CMV and Th17 cells after renal transplantation remains unclear. This prospective observational study evaluated a cohort of renal transplant recipients during 12 mo posttransplant to assess the presence of CMV-specific Th17 cells in peripheral blood and their relationship to pretransplant CMV serostatus and CMV DNAemia. CMV-specific Th17 cells were identified among CMV serostatus donor (D)+ and/or recipient (R)+ recipients and expanded during both primary (D+/R-) and reactivated (D+/R+, D-/R+) CMV DNAemia. A subset of CMV-specific Th17 cells coexpressed IFN-γ, indicating a Th1/17 phenotype. These Th17 and Th1/17 cells expressed CCR6, CCR5, activation and terminal differentiation markers (CD95, OX40, HLA-DR, CD57), and a central/effector memory phenotype. CMV-specific Th1/17 cells expressed activating/inhibitory receptors (CD57, 4-1BB, CD160, CTLA-4, PD-1) at higher frequencies than Th17 cells. In contrast, staphylococcal enterotoxin B-induced Th17 cells did not expand during CMV DNAemia, did not differ between CMV serostatus groups over time, expressed CCR6, predominantly coexpressed TNF-α, and had lower expression of activating and inhibitory receptors than pp65-specific Th17 and Th1/17 cells. These data show that CMV-specific Th17 cells expand during episodes of CMV DNAemia among renal transplant recipients, and that these virus-specific Th17 and Th1/17 cells have distinct phenotypes from global circulating Th(1)/17 cells. These results suggest a potential proinflammatory pathway by which CMV-induced Th17 cells may contribute to allograft injury, increasing risk for late allograft loss.
Collapse
Affiliation(s)
- Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Kaitlyn Flint
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Irina Kaptsan
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Shweta Hegde
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Reem Daloul
- Division of Transplant Nephrology, Comprehensive Transplant Center, The Ohio State University, Columbus OH
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Ohio State University, Columbus OH
| |
Collapse
|
2
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
3
|
Santiago-Carvalho I, Almeida-Santos G, Macedo BG, Barbosa-Bomfim CC, Almeida FM, Pinheiro Cione MV, Vardam-Kaur T, Masuda M, Van Dijk S, Melo BM, Silva do Nascimento R, da Conceição Souza R, Peixoto-Rangel AL, Coutinho-Silva R, Hirata MH, Alves-Filho JC, Álvarez JM, Lassounskaia E, Borges da Silva H, D'Império-Lima MR. T cell-specific P2RX7 favors lung parenchymal CD4 + T cell accumulation in response to severe lung infections. Cell Rep 2023; 42:113448. [PMID: 37967010 PMCID: PMC10841667 DOI: 10.1016/j.celrep.2023.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.
Collapse
Affiliation(s)
- Igor Santiago-Carvalho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Caio Cesar Barbosa-Bomfim
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fabricio Moreira Almeida
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | | | - Mia Masuda
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Sarah Van Dijk
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Bruno Marcel Melo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Rogério Silva do Nascimento
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Rebeka da Conceição Souza
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - José Maria Álvarez
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Elena Lassounskaia
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Maria Regina D'Império-Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
4
|
Armitage E, Quan D, Flórido M, Palendira U, Triccas JA, Britton WJ. CXCR3 Provides a Competitive Advantage for Retention of Mycobacterium tuberculosis-Specific Tissue-Resident Memory T Cells Following a Mucosal Tuberculosis Vaccine. Vaccines (Basel) 2023; 11:1549. [PMID: 37896952 PMCID: PMC10611282 DOI: 10.3390/vaccines11101549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen, and new vaccines are needed to prevent transmission. Mucosal vaccination may confer protection against M. tuberculosis by stimulating tissue-resident memory (TRM) CD4+ T cells in the lungs. The chemokine receptor CXCR3 promotes lung recruitment of T cells, but its role in TRM development is unknown. This study demonstrates the recombinant influenza A virus vaccine PR8.p25, expressing the immunodominant M. tuberculosis T cell epitope p25, induces CXCR3 expression on p25-specific CD4+ T cells in the lungs so that the majority of vaccine-induced CD4+ TRM expresses CXCR3 at 6 weeks. However, CXCR3-/- mice developed equivalent antigen-specific CD4+ T cell responses to wild-type (WT) mice following PR8.p25, and surprisingly retained more p25-specific CD4+ TRM in the lungs than WT mice at 6 weeks. The adoptive transfer of CXCR3-/- and WT P25 T cells into WT mice revealed that the initial recruitment of vaccine-induced CD4+ T cells into the lungs was independent of CXCR3, but by 6 weeks, CXCR3-deficient P25 T cells, and especially CXCR3-/- TRM, were significantly reduced compared to CXCR3-sufficient P25 T cells. Therefore, although CXCR3 was not essential for CD4+ TRM recruitment or retention, it provided a competitive advantage for the induction of M. tuberculosis-specific CD4+ TRM in the lungs following pulmonary immunization.
Collapse
Affiliation(s)
- Ellis Armitage
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Diana Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Manuela Flórido
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Umaimainthan Palendira
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Jones MC, Castonguay C, Nanaware PP, Weaver GC, Stadinski B, Kugler-Umana OA, Huseby ES, Stern LJ, McKinstry KK, Strutt TM, Devarajan P, Swain SL. CD4 Effector TCR Avidity for Peptide on APC Determines the Level of Memory Generated. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1950-1961. [PMID: 37093656 PMCID: PMC10247507 DOI: 10.4049/jimmunol.2200337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Initial TCR affinity for peptide Ag is known to impact the generation of memory; however, its contributions later, when effectors must again recognize Ag at 5-8 d postinfection to become memory, is unclear. We examined whether the effector TCR affinity for peptide at this "effector checkpoint" dictates the extent of memory and degree of protection against rechallenge. We made an influenza A virus nucleoprotein (NP)-specific TCR transgenic mouse strain, FluNP, and generated NP-peptide variants that are presented by MHC class II to bind to the FluNP TCR over a broad range of avidity. To evaluate the impact of avidity in vivo, we primed naive donor FluNP in influenza A virus-infected host mice, purified donor effectors at the checkpoint, and cotransferred them with the range of peptides pulsed on activated APCs into second uninfected hosts. Higher-avidity peptides yielded higher numbers of FluNP memory cells in spleen and most dramatically in lung and draining lymph nodes and induced better protection against lethal influenza infection. Avidity determined memory cell number, not cytokine profile, and already impacted donor cell number within several days of transfer. We previously found that autocrine IL-2 production at the checkpoint prevents default effector apoptosis and supports memory formation. Here, we find that peptide avidity determines the level of IL-2 produced by these effectors and that IL-2Rα expression by the APCs enhances memory formation, suggesting that transpresentation of IL-2 by APCs further amplifies IL-2 availability. Secondary memory generation was also avidity dependent. We propose that this regulatory pathway selects CD4 effectors of highest affinity to progress to memory.
Collapse
Affiliation(s)
- Michael C. Jones
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Grant C. Weaver
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brian Stadinski
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olivia A. Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Finn CM, Dhume K, Prokop E, Strutt TM, McKinstry KK. STAT1 Controls the Functionality of Influenza-Primed CD4 T Cells but Therapeutic STAT4 Engagement Maximizes Their Antiviral Impact. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1292-1304. [PMID: 36961447 PMCID: PMC10121883 DOI: 10.4049/jimmunol.2200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
It is generally accepted that influenza A virus (IAV) infection promotes a Th1-like CD4 T cell response and that this effector program underlies its protective impact. Canonical Th1 polarization requires cytokine-mediated activation of the transcription factors STAT1 and STAT4 that synergize to maximize the induction of the "master regulator" Th1 transcription factor, T-bet. Here, we determine the individual requirements for these transcription factors in directing the Th1 imprint primed by influenza infection in mice by tracking virus-specific wild-type or T-bet-deficient CD4 T cells in which STAT1 or STAT4 is knocked out. We find that STAT1 is required to protect influenza-primed CD4 T cells from NK cell-mediated deletion and for their expression of hallmark Th1 attributes. STAT1 is also required to prevent type I IFN signals from inhibiting the induction of the Th17 master regulator, Rorγt, in Th17-prone T-bet-/- cells responding to IAV. In contrast, STAT4 expression does not appreciably impact the phenotypic or functional attributes of wild-type or T-bet-/- CD4 T cell responses. However, cytokine-mediated STAT4 activation in virus-specific CD4 T cells enhances their Th1 identity in a T-bet-dependent manner, indicating that influenza infection does not promote maximal Th1 induction. Finally, we show that the T-bet-dependent protective capacity of CD4 T cell effectors against IAV is optimized by engaging both STAT1 and STAT4 during Th1 priming, with important implications for vaccine strategies aiming to generate T cell immunity.
Collapse
Affiliation(s)
- Caroline M. Finn
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Emily Prokop
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tara M. Strutt
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - K. Kai McKinstry
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Mammadli M, Suo L, Sen JM, Karimi M. TCF-1 Is Required for CD4 T Cell Persistence Functions during AlloImmunity. Int J Mol Sci 2023; 24:ijms24054326. [PMID: 36901757 PMCID: PMC10002223 DOI: 10.3390/ijms24054326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
The transcription factor T cell factor-1 (TCF-1) is encoded by Tcf7 and plays a significant role in regulating immune responses to cancer and pathogens. TCF-1 plays a central role in CD4 T cell development; however, the biological function of TCF-1 on mature peripheral CD4 T cell-mediated alloimmunity is currently unknown. This report reveals that TCF-1 is critical for mature CD4 T cell stemness and their persistence functions. Our data show that mature CD4 T cells from TCF-1 cKO mice did not cause graft versus host disease (GvHD) during allogeneic CD4 T cell transplantation, and donor CD4 T cells did not cause GvHD damage to target organs. For the first time, we showed that TCF-1 regulates CD4 T cell stemness by regulating CD28 expression, which is required for CD4 stemness. Our data showed that TCF-1 regulates CD4 effector and central memory formation. For the first time, we provide evidence that TCF-1 differentially regulates key chemokine and cytokine receptors critical for CD4 T cell migration and inflammation during alloimmunity. Our transcriptomic data uncovered that TCF-1 regulates critical pathways during normal state and alloimmunity. Knowledge acquired from these discoveries will enable us to develop a target-specific approach for treating CD4 T cell-mediated diseases.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jyoti Misra Sen
- National Institute on Aging-National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Center of Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: ; Tel.: 315-464-2344
| |
Collapse
|
8
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
9
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
10
|
Dhume K, Finn CM, Devarajan P, Singh A, Tejero JD, Prokop E, Strutt TM, Sell S, Swain SL, McKinstry KK. Bona Fide Th17 Cells without Th1 Functional Plasticity Protect against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1998-2007. [PMID: 35338093 PMCID: PMC9012674 DOI: 10.4049/jimmunol.2100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/04/2022] [Indexed: 01/24/2023]
Abstract
Optimal transcriptional programming needed for CD4 T cells to protect against influenza A virus (IAV) is unclear. Most IAV-primed CD4 T cells fit Th1 criteria. However, cells deficient for the Th1 "master regulator," T-bet, although marked by reduced Th1 identity, retain robust protective capacity. In this study, we show that T-bet's paralog, Eomesodermin (Eomes), is largely redundant in the presence of T-bet but is essential for the residual Th1 attributes of T-bet-deficient cells. Cells lacking both T-bet and Eomes instead develop concurrent Th17 and Th2 responses driven by specific inflammatory signals in the infected lung. Furthermore, the transfer of T-bet- and Eomes-deficient Th17, but not Th2, effector cells protects mice from lethal IAV infection. Importantly, these polyfunctional Th17 effectors do not display functional plasticity in vivo promoting gain of Th1 attributes seen in wild-type Th17 cells, which has clouded evaluation of the protective nature of Th17 programming in many studies. Finally, we show that primary and heterosubtypic IAV challenge is efficiently cleared in T-bet- and Eomes double-deficient mice without enhanced morbidity despite a strongly Th17-biased inflammatory response. Our studies thus demonstrate unexpectedly potent antiviral capacity of unadulterated Th17 responses against IAV, with important implications for vaccine design.
Collapse
Affiliation(s)
- Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Caroline M Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | | | - Ayushi Singh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Joanne D Tejero
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Stewart Sell
- Palisades Pathology Laboratory, Williamsburg, VA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA; and
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL;
| |
Collapse
|
11
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
12
|
Omokanye A, Ong LC, Lebrero-Fernandez C, Bernasconi V, Schön K, Strömberg A, Bemark M, Saelens X, Czarnewski P, Lycke N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol 2022; 15:717-729. [PMID: 35260804 PMCID: PMC8903128 DOI: 10.1038/s41385-022-00497-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.
Collapse
Affiliation(s)
- Ajibola Omokanye
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Li Ching Ong
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Bemark
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulo Czarnewski
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Hohman LS, Mou Z, Carneiro MB, Ferland G, Kratofil RM, Kubes P, Uzonna JE, Peters NC. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. PLoS Pathog 2021; 17:e1009944. [PMID: 34543348 PMCID: PMC8483310 DOI: 10.1371/journal.ppat.1009944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.
Collapse
Affiliation(s)
- Leah S. Hohman
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matheus B. Carneiro
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Gabriel Ferland
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Rachel M. Kratofil
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jude E. Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Shane HL, Othumpangat S, Marshall NB, Blachere F, Lukomska E, Weatherly LM, Baur R, Noti JD, Anderson SE. Topical exposure to triclosan inhibits Th1 immune responses and reduces T cells responding to influenza infection in mice. PLoS One 2020; 15:e0244436. [PMID: 33373420 PMCID: PMC7771851 DOI: 10.1371/journal.pone.0244436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Healthcare workers concurrently may be at a higher risk of developing respiratory infections and allergic disease, such as asthma, than the general public. Increased incidence of allergic diseases is thought to be caused, in part, due to occupational exposure to chemicals that induce or augment Th2 immune responses. However, whether exposure to these chemical antimicrobials can influence immune responses to respiratory pathogens is unknown. Here, we use a BALB/c murine model to test if the Th2-promoting antimicrobial chemical triclosan influences immune responses to influenza A virus. Mice were dermally exposed to 2% triclosan for 7 days prior to infection with a sub-lethal dose of mouse adapted PR8 A(H1N1) virus (50 pfu); triclosan exposure continued until 10 days post infection (dpi). Infected mice exposed to triclosan did not show an increase in morbidity or mortality, and viral titers were unchanged. Assessment of T cell responses at 10 dpi showed a decrease in the number of total and activated (CD44hi) CD4+ and CD8+ T cells at the site of infection (BAL and lung) in triclosan exposed mice compared to controls. Influenza-specific CD4+ and CD8+ T cells were assessed using MHCI and MHCII tetramers, with reduced populations, although not reaching statistical significance at these sites following triclosan exposure. Reductions in the Th1 transcription factor T-bet were seen in both activated and tetramer+ CD4+ and CD8+ T cells in the lungs of triclosan exposed infected mice, indicating reduced Th1 polarization and providing a potential mechanism for numerical reduction in T cells. Overall, these results indicate that the immune environment induced by triclosan exposure has the potential to influence the developing immune response to a respiratory viral infection and may have implications for healthcare workers who may be at an increased risk for developing infectious diseases.
Collapse
Affiliation(s)
- Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Sreekumar Othumpangat
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Nikki B. Marshall
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Francoise Blachere
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - John D. Noti
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| |
Collapse
|
16
|
Huang ZX, Li W, Lu E, Yan X, Lin J, Zhuo L. Peripheral blood CD4+ cell counts but not CD3+ and CD8+ cell counts are reduced in SARS-CoV-2 infection. J Affect Disord 2020; 277:375-378. [PMID: 32861838 PMCID: PMC7443336 DOI: 10.1016/j.jad.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The world is facing the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). T cell-induced immune responses during acute SARS-CoV-2 infection have rarely been reported. METHODS We use cell counting chips and PCR arrays to offer the first insights into the T cell involved in the course of acute SARS-CoV-2 infection. All consecutive patients with suspected SARS-CoV-2 infection treated at the designated hospital between January 2020 and February 2020 were recruited for the study, and cases were confirmed by real-time RT-PCR. Baseline characteristics for inpatients were prospectively collected and analyzed. RESULTS 96 patients with suspected SARS-CoV-2 infection in our center were screened for inclusion in the study. The median age of the patients was 39.0 years, and 47 (49.0%) were female. Multivariate logistic regression analysis showed that only the CD4+ cell counts were significantly lower in the infection group and slightly higher in the control group. Receiver operating characteristic curve analysis showed good discrimination power between subjects with and subjects without infection. LIMITATIONS This is a single-center study of patients with a specific ethnic background and lacks a mechanism. CONCLUSIONS These findings imply the importance of CD4+ T cells (but not CD8+ and CD3+ T cells) in SARS-CoV-2 infection associated pneumonia and indicate that CD4+ T cells might be important for the control of SARS-CoV-2.
Collapse
Affiliation(s)
- Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| | - Wenli Li
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Eying Lu
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Xiukui Yan
- P3 Biosafety Laboratory, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Jianguo Lin
- P3 Biosafety Laboratory, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| | - Li Zhuo
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
17
|
Hu C, Liu W, Xu N, Huang A, Zhang Z, Fan M, Ruan G, Wang Y, Xi T, Xing Y. Silk fibroin hydrogel as mucosal vaccine carrier: induction of gastric CD4+TRM cells mediated by inflammatory response induces optimal immune protection against Helicobacter felis. Emerg Microbes Infect 2020; 9:2289-2302. [PMID: 33000989 PMCID: PMC7594714 DOI: 10.1080/22221751.2020.1830719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T (TRM) cells, located in the epithelium of most peripheral tissues, constitute the first-line defense against pathogen infections. Our previous study reported that gastric subserous layer (GSL) vaccination induced a “pool” of protective tissue-resident memory CD4+T (CD4+TRM) cells in the gastric epithelium. However, the mechanistic details how CD4+TRM cells form in the gastric epithelium are unknown. Here, our results suggested that the vaccine containing CCF in combination with Silk fibroin hydrogel (SF) broadened the distribution of gastric intraepithelial CD4+TRM cells. It was revealed that the gastric intraepithelial TRM cells were even more important than circulating memory T cells against infection by Helicobacter felis. It was also shown that gastric-infiltrating neutrophils were involved as indispensable mediators which secreted CXCL10 to chemoattract CXCR3+CD4+T cells into the gastric epithelium. Blocking of CXCR3 or neutrophils significantly decreased the number of gastric intraepithelial CD4+TRM cells due to reduced recruitment of CD4+T cells. This study demonstrated the protective efficacy of gastric CD4+TRM cells against H. felis infection, and highlighted the influence of neutrophils on gastric intraepithelial CD4+TRM cells formation.
Collapse
Affiliation(s)
- Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (Trm) comprise the majority of memory cells in nonlymphoid tissues and play a predominant role in immunity at barrier surfaces. A better understanding of Trm cell maintenance and function is essential for the development of vaccines that confer frontline protection. However, it is currently challenging to precisely distinguish Trm cells from other T cells, and this has led to confusion in the literature. Here we highlight gaps in our understanding of tissue memory and discuss recent advances in the classification of Trm cell subsets based on their distribution and functional characteristics.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|