1
|
Zhang L, He M, Liu Y, Wang B, Xie X, Liu H. The immune mechanism of the mTOR/ACC1/CPT1A fatty acid oxidation signaling pathway in Hashimoto's thyroiditis. J Endocrinol Invest 2024:10.1007/s40618-024-02501-4. [PMID: 39641893 DOI: 10.1007/s40618-024-02501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is the most common autoimmune thyroid disease (AITD), which is distinguished by high thyroid peroxidase antibody (TPOAb) or thyroglobulin antibody (TgAb). The differentiation of CD4+T cell subsets in patients with HT is imbalanced, with Treg cells decreased and Th17 cells abnormally activated. Fatty acid oxidation supports the differentiation of Th17 cells and induces inflammation, but the specific mechanism is still unknown. This study aimed to explore the role of fatty acid oxidation and its pathway in the pathogenesis of autoimmune thyroiditis and the immune mechanism. METHODS In in vitro experiments, a total of 60 HT patients and 20 healthy controls were selected and their CD4+T cells were sorted by magnetic beads. All 80 samples were divided into 4 groups on average: HC group (Healthy control group), HT group (Hashimoto thyroiditis CD4+T cell inactive group), TCC group(Hashimoto thyroiditis CD4+T cell activation), TCC + ETO group(Hashimoto thyroiditis CD4+T cell activation + Etomoxir group). In in vivo experiments, the mice were randomly divided into 3 groups: Con group(Control group), mTg group (CBA/J mice were injected with mTg for modeling, that is EAT mice group), and mTg + ETO group (Etomoxir intervention in EAT mice group). Fatty acid oxidation substrates of CD4+T cells in human peripheral blood were detected by targeted metabolomics. The expressions of key fatty acid oxidation proteins mTOR, ACC1 and CPT1A were detected by Western blotting. The proportion of CD4+T cell subtype differentiation in human and mouse models was detected by flow cytometry. The severity of EAT was detected by HE staining. RESULTS Compared with healthy controls, the level of CPT1A in CD4+T cells of HT patients was increased, and the intracellular fatty acid content was significantly decreased, indicating that the level of fatty acid oxidation was enhanced in HT patients. After adding Etomoxir, the level of fatty acid oxidation was significantly inhibited, and the imbalance of CD4+T cell subpopulation differentiation in HT patients was reversed. In EAT mice, the mTOR/ACC1/CPT1A pathway was significantly activated, and its expression level was decreased after adding Etomoxir. At the same time, Etomoxir could reverse the reprogramming of abnormal metabolism in EAT mice cells, reduce the spleen index, and improve lymphocyte infiltration in the thyroid. CONCLUSIONS The mTOR/ACC1/CPT1A fatty acid oxidation pathway of CD4+T cells in Hashimoto's thyroiditis was increased, and treatment with Etomoxir could inhibit the activation of this pathway, and reverse the reprogramming of abnormal metabolism in CD4+T cells, thereby reducing Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Mengfan He
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Yanyan Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Baohua Wang
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Xingjie Xie
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Haixia Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China.
| |
Collapse
|
2
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
He Y, Xu D, Zhang J, Liu Y, Liao M, Xia Y, Wei Z, Dai Y. Bergenin, the main active ingredient of Bergenia purpurascens, attenuates Th17 cell differentiation by downregulating fatty acid synthesis. FASEB J 2024; 38:e70095. [PMID: 39373984 DOI: 10.1096/fj.202400961r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Bergenin is the main active ingredient of Bergenia purpurascens, a medicinal plant which has long been used to treat a variety of Th17 cell-related diseases in China, such as allergic airway inflammation and colitis. This study aimed to uncover the underlying mechanisms by which bergenin impedes Th17 cell response in view of cellular metabolism. In vitro, bergenin treatment reduced the frequency of Th17 cells generated from naïve CD4+ T cells of mice. Mechanistically, bergenin preferentially restrained fatty acid synthesis (FAS) but not other metabolic pathways in differentiating Th17 cells, and exogenous addition of either palmitic acid (PA) or oleic acid (OA) and combination with acetyl-CoA carboxylase 1 (ACC1) activator citric acid dampened the inhibition of bergenin on Th17 cell differentiation. Bergenin inhibited FAS through downregulating the expression of SREBP1 via restriction of histone H3K27 acetylation in the SREBP1 promoter, and SREBP1 overexpression weakened the inhibition of bergenin on Th17 differentiation. Furthermore, bergenin was shown to directly interact with SIRT1 and result in activation of SIRT1. Either combination with SIRT1 inhibitor EX527 or point mutation plasmid of SIRT1 diminished the inhibitory effect of bergenin on FAS and Th17 cell differentiation. Finally, the inhibitory effect of bergenin on Th17 cell response and SIRT1 dependence were verified in mice with dextran sulfate sodium-induced colitis. In short, bergenin repressed Th17 cell response by downregulating FAS via activation of SIRT1, which might find therapeutic use in Th17 cell-related diseases.
Collapse
Affiliation(s)
- Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Danlei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
5
|
Qin Y, Wu Y, Zang H, Cong X, Shen Q, Chen L, Chen X. Lipid Metabolism in Pregnancy Women with Hypothyroidism and Potential Influence on Pregnancy Outcome. J Lipids 2024; 2024:5589492. [PMID: 39015803 PMCID: PMC11251789 DOI: 10.1155/2024/5589492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Thyroid hormone (TH) is essential for maintaining normal physiological processes during pregnancy, including the metabolism of energy materials in both the mother and fetus and the growth and development of fetal bone and nervous system. TH can act on the liver, fat, and other tissues and organs to participate in lipid synthesis and breakdown through multiple pathways. Consequently, abnormal thyroid function is often accompanied by lipid metabolism disorders. Both clinical and subclinical hypothyroidism, as well as dyslipidemia during pregnancy, have been shown to be associated with an increased risk of multiple adverse pregnancy outcomes. Recently, there has been an increased interest in studying the alteration of lipidomic and hypothyroidism (both clinical and subclinical hypothyroidism) during pregnancy. Studies have suggested that altered lipid molecules might be used as potential biomarker and associated with adverse maternal and neonatal outcome. Thus, we summarized the associations between lipid metabolism and clinical or subclinical hypothyroidism during pregnancy in this review. Then, we discussed the underlying mechanisms of thyroid dysfunction and lipid metabolism. In addition, we reviewed the possible effect of dyslipidemia on pregnancy and neonatal outcome. However, the relationship between hypothyroidism during pregnancy and changes in the lipid profile and how to intervene in the occurrence and development of adverse pregnancy outcomes require further study.
Collapse
Affiliation(s)
- Yuxin Qin
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Ying Wu
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Huanhuan Zang
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Xiangguo Cong
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Qiong Shen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Lei Chen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Xinxin Chen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| |
Collapse
|
6
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Lou F, Xu Z, Bai J, Zhao X, Cui L, Li Q, Wang H. Identification and pre-clinical investigation of 3-O-cyclohexanecarbonyl-11-keto-β-boswellic acid as a drug for external use to treat psoriasis. Br J Pharmacol 2024; 181:1290-1307. [PMID: 37749894 DOI: 10.1111/bph.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis vulgaris is a refractory skin inflammatory disorder with 80% of the cases belonging to the mild-to-moderate type, which can be controlled by topical treatment. Nevertheless, the drugs for external use have not been upgraded for decades. We modified acetyl-11-keto-beta-boswellic acid (ABKA), a natural compound shown to treat psoriasis animal models, to improve efficacy and solubility for topical use. EXPERIMENTAL APPROACH Eleven compounds were synthesized using AKBA as a lead compound, and their effects on Th17 cell differentiation were screened. 3-O-cyclohexanecarbonyl-11-keto-β-boswellic acid (CKBA) potently inhibited Th17 cell differentiation. Its efficacy in a mouse model of psoriasis was assessed along with its pharmacology and safety profile when topically or systemically delivered to several animal species. KEY RESULTS CKBA inhibited mouse and human Th17 cell differentiation with an IC50 of 3.28 and 3.61 μM, respectively, and directly targeted acetyl-CoA carboxylase 1 (ACC1). Safety evaluation and toxicity tests suggested that systemically delivered high-dose CKBA for 14 days had no dose-associated adverse effects on the CNS, haematopoietic, cardiovascular, respiratory and digestive systems of cynomolgus monkeys. CKBA ointment permeated the skin and did not irritate or sensitize intact skin. CKBA ointment mediated dose-dependent suppression of imiquimod-induced psoriasis-like skin inflammation with slow absorption and limited bioavailability (<10% in rats and <1% in minipigs). CONCLUSIONS AND IMPLICATIONS CKBA is safe when topically or systemically delivered to animals. The beneficial effects of CKBA ointment in a mouse model of psoriasis indicate that this is a promising drug candidate for further development as a treatment for psoriasis.
Collapse
Affiliation(s)
- Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Jia L, Jiang Y, Wu L, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis. Nat Commun 2024; 15:1617. [PMID: 38388542 PMCID: PMC10883948 DOI: 10.1038/s41467-024-45473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Periodontitis is closely related to inflammatory bowel disease (IBD). An excessive and non-self-limiting immune response to the dysbiotic microbiome characterizes the two. However, the underlying mechanisms that overlap still need to be clarified. We demonstrate that the critical periodontal pathogen Porphyromonas gingivalis (Pg) aggravates intestinal inflammation and Th17/Treg cell imbalance in a gut microbiota-dependent manner. Specifically, metagenomic and metabolomic analyses shows that oral administration of Pg increases levels of the Bacteroides phylum but decreases levels of the Firmicutes, Verrucomicrobia, and Actinobacteria phyla. Nevertheless, it suppresses the linoleic acid (LA) pathway in the gut microbiota, which was the target metabolite that determines the degree of inflammation and functions as an aryl hydrocarbon receptor (AHR) ligand to suppress Th17 differentiation while promoting Treg cell differentiation via the phosphorylation of Stat1 at Ser727. Therapeutically restoring LA levels in colitis mice challenged with Pg exerts anti-colitis effects by decreasing the Th17/Treg cell ratio in an AHR-dependent manner. Our study suggests that Pg aggravates colitis via a gut microbiota-LA metabolism-Th17/Treg cell balance axis, providing a potential therapeutically modifiable target for IBD patients with periodontitis.
Collapse
Affiliation(s)
- Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
9
|
Sattler A, Gamradt S, Proß V, Thole LML, He A, Schrezenmeier EV, Jechow K, Gold SM, Lukassen S, Conrad C, Kotsch K. CD3 downregulation identifies high-avidity, multipotent SARS-CoV-2 vaccine- and recall antigen-specific Th cells with distinct metabolism. JCI Insight 2024; 9:e166833. [PMID: 38206757 PMCID: PMC11143931 DOI: 10.1172/jci.insight.166833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.
Collapse
Affiliation(s)
- Arne Sattler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Stefanie Gamradt
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
| | - Vanessa Proß
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Linda Marie Laura Thole
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - An He
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Katharina Jechow
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Stefan M. Gold
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
- Universitätsklinikum Hamburg Eppendorf, Institut für Neuroimmunologie und Multiple Sklerose, Hamburg, Germany
| | - Sören Lukassen
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Christian Conrad
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
10
|
Kao YS, Mamareli P, Dhillon-LaBrooy A, Stüve P, Godoy GJ, Velasquez LN, Raker VK, Weidenthaler-Barth B, Boukhallouk F, Rampoldi F, Berod L, Sparwasser T. Targeting ACC1 in T cells ameliorates psoriatic skin inflammation. J Mol Med (Berl) 2023; 101:1153-1166. [PMID: 37594540 PMCID: PMC10482807 DOI: 10.1007/s00109-023-02349-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease driven by the IL-23/IL-17 axis. It results from excessive activation of effector T cells, including T helper (Th) and cytotoxic T (Tc) cells, and is associated with dysfunctional regulatory T cells (Tregs). Acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme of fatty acid synthesis (FAS), directs cell fate decisions between Th17 and Tregs and thus could be a promising therapeutic target for psoriasis treatment. Here, we demonstrate that targeting ACC1 in T cells by genetic ablation ameliorates skin inflammation in an experimental model of psoriasis by limiting Th17, Tc17, Th1, and Tc1 cells in skin lesions and increasing the frequency of effector Tregs in skin-draining lymph nodes (LNs). KEY MESSAGES : ACC1 deficiency in T cells ameliorates psoriatic skin inflammation in mice. ACC1 deficiency in T cells reduces IL-17A-producing Th17/Tc17/dysfunctional Treg populations in psoriatic lesions. ACC1 deficiency in T cells restrains IFN-γ-producing Th1/Tc1 populations in psoriatic skin lesions and skin-draining LNs. ACC1 deficiency promotes activated CD44+CD25+ Tregs and effector CD62L-CD44+ Tregs under homeostasis and psoriatic conditions.
Collapse
Affiliation(s)
- Yu-San Kao
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Panagiota Mamareli
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp Stüve
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Leibniz Institute for Immunotherapy, University Regensburg, 93053, Regensburg, Germany
- Chair for Immunology, University Regensburg, 93053, Regensburg, Germany
| | - Gloria Janet Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lis Noelia Velasquez
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Katharina Raker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Beate Weidenthaler-Barth
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Hu JQ, Yan YH, Xie H, Feng XB, Ge WH, Zhou H, Yu LL, Sun LY, Xie Y. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother 2023; 165:115198. [PMID: 37536033 DOI: 10.1016/j.biopha.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks its own tissues and organs. However, the causes of SLE remain unknown. Dyslipidemia is a common symptom observed in SLE patients and animal models and is closely correlated to disease activity. Lipid metabolic reprogramming has been considered as a hallmark of the dysfunction of T cells in patients with SLE, therefore, manipulating lipid metabolism provides a potential therapeutic target for treating SLE. A better understanding of the underlying mechanisms for the metabolic events of immune cells under pathological conditions is crucial for tuning immunometabolism to manage autoimmune diseases such as SLE. In this review, we aim to summarize the cross-link between lipid metabolism and the function of T cells as well as the underlying mechanisms, and provide light on the novel therapeutic strategies of active compounds from herbals for the treatment of SLE by targeting lipid metabolism in immune cells.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China
| | - Yan-Hua Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China; The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xue-Bing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei-Hong Ge
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hua Zhou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China.
| | - Ling-Yun Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Ke XY, Zou M, Xu C. Lipid metabolism in tumor-infiltrating T cells: mechanisms and applications. LIFE METABOLISM 2022; 1:211-223. [PMID: 39872079 PMCID: PMC11749778 DOI: 10.1093/lifemeta/loac038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2025]
Abstract
As an essential part of adaptive immunity, T cells coordinate the immune responses against pathogens and cancer cells. Lipid metabolism has emerged as a key regulator for the activation, differentiation, and effector functions of T cells. Therefore, uncovering the molecular mechanisms by which lipid metabolism dictates T cell biology is of vital importance. The tumor microenvironment is a hostile milieu, i.e. often characterized by nutrient restriction. In this environment, various cells, such as T cells and cancer cells, reprogram their metabolism, including their lipid metabolism, to meet their energy and functional needs. Here, we review the participation of fatty acid and cholesterol metabolism homeostasis in orchestrating T cell biology. We demonstrate how the tumor microenvironment reshapes the lipid metabolism in T cells. Importantly, we highlight the current cancer therapeutic interventions that target fatty acid and cholesterol metabolism of T cells. By offering a holistic understanding of how lipid metabolic adaption by T cells facilitates their immunosurveillance in the tumor microenvironment, we believe this review and the future studies might inspire the next-generation immunotherapies.
Collapse
Affiliation(s)
- Xin-Yu Ke
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miaowen Zou
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022; 219:e20221140. [PMID: 36301303 PMCID: PMC9617479 DOI: 10.1084/jem.20221140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Huiyang Yu
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T. Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Hou X, Zhu F, Zheng W, Jacques ML, Huang J, Guan F, Lei J. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Front Cell Infect Microbiol 2022; 12:1028899. [PMID: 36304936 PMCID: PMC9592807 DOI: 10.3389/fcimb.2022.1028899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-β1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Clinical Laboratory, The General Hospital of Central Theater Command, The People's Liberation Army, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muziazia Lupemba Jacques
- Department of Parasitology, Kinshasa Institute of Medical, Kinshasa, Democratic Republic of the Congo
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Pu’ai Hospital, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiahui Lei,
| |
Collapse
|
15
|
Liu Y, Zhang X, Cheng X, Luo Q, Yu M, Long K, Qu W, Tang Y, Gong M, Liang L, Ke X, Song Y. Characterization of fatty acid metabolism-related lncRNAs in lung adenocarcinoma identifying potential novel prognostic targets. Front Genet 2022; 13:990153. [PMID: 36299578 PMCID: PMC9589892 DOI: 10.3389/fgene.2022.990153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD), a malignant respiratory tumor with an extremely poor prognosis, has troubled the medical community all over the world. According to recent studies, fatty acid metabolism (FAM) and long non-coding RNAs (lncRNAs) regulation have shown exciting results in tumor therapy. In this study, the original LUAD patient data was obtained from the TCGA database, and 12 FAM-related lncRNAs (AL390755.1, AC105020.6, TMPO-AS1, AC016737.2, AC127070.2, LINC01281, AL589986.2, GAS6-DT, AC078993.1, LINC02198, AC007032.1, and AL021026.1) that were highly related to the progression of LUAD were finally identified through bioinformatics analysis, and a risk score model for clinical reference was constructed. The window explores the immunology and molecular mechanism of LUAD, aiming to shed the hoping light on LUAD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xixian Ke
- *Correspondence: Xixian Ke, ; Yongxiang Song,
| | | |
Collapse
|
16
|
Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5 + intestinal stem cell function. Nat Commun 2022; 13:3998. [PMID: 35810180 PMCID: PMC9271096 DOI: 10.1038/s41467-022-31725-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 06/13/2022] [Indexed: 01/07/2023] Open
Abstract
Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/β-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy. Here the authors report that inhibition of de novo fatty acid synthesis by deleting the enzyme Acetyl-CoA-Carboxylase 1 in the intestinal epithelium results in the loss of crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells.
Collapse
|
17
|
Vassilopoulou E, Guibas GV, Papadopoulos NG. Mediterranean-Type Diets as a Protective Factor for Asthma and Atopy. Nutrients 2022; 14:1825. [PMID: 35565792 PMCID: PMC9105881 DOI: 10.3390/nu14091825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
We are currently riding the second wave of the allergy epidemic, which is ongoing in affluent societies, but now also affecting developing countries. This increase in the prevalence of atopy/asthma in the Western world has coincided with a rapid improvement in living conditions and radical changes in lifestyle, suggesting that this upward trend in allergic manifestations may be associated with cultural and environmental factors. Diet is a prominent environmental exposure that has undergone major changes, with a substantial increase in the consumption of processed foods, all across the globe. On this basis, the potential effects of dietary habits on atopy and asthma have been researched rigorously, but even with a considerable body of evidence, clear associations are far from established. Many factors converge to obscure the potential relationship, including methodological, pathophysiological and cultural differences. To date, the most commonly researched, and highly promising, candidate for exerting a protective effect is the so-called Mediterranean diet (MedDi). This dietary pattern has been the subject of investigation since the mid twentieth century, and the evidence regarding its beneficial health effects is overwhelming, although data on a correlation between MedDi and the incidence and severity of asthma and atopy are inconclusive. As the prevalence of asthma appears to be lower in some Mediterranean populations, it can be speculated that the MedDi dietary pattern could indeed have a place in a preventive strategy for asthma/atopy. This is a review of the current evidence of the associations between the constituents of the MedDi and asthma/atopy, with emphasis on the pathophysiological links between MedDi and disease outcomes and the research pitfalls and methodological caveats which may hinder identification of causality. MedDi, as a dietary pattern, rather than short-term supplementation or excessive focus on single nutrient effects, may be a rational option for preventive intervention against atopy and asthma.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George V. Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK;
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Nikolaos G. Papadopoulos
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 11527 Athens, Greece
| |
Collapse
|
18
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
19
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
Shen L, Xiao Y, Tian J, Lu Z. Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Lett 2022; 529:139-152. [PMID: 35007698 DOI: 10.1016/j.canlet.2022.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
The dramatic success of adoptive transfer of engineered T cells expressing chimeric antigen receptor (CAR-T) has been achieved with effective responses in some relapsed or refractory hematologic malignancies, which is not yet met in solid tumors. The efficacy of CAR-T therapy is associated with its fate determination and their interaction with cancer cells in tumor microenvironment (TME), which is closely correlated with T cell metabolism fitness. Indeed, modulating T cell metabolism reprogramming has been proven crucial for their survival and reinvigorating antitumor immunity, and thus is considered as a promising strategy to improve the clinical performance of CAR-T cell therapy in difficult-to-treat cancers. This review briefly summarizes the T cell metabolic profiles and key metabolic challenges it faces in TME such as nutrient depletion, hypoxia, and toxic metabolites, then emphatically discusses the potential strategies to modulate metabolic properties of CAR-T cells including improving CARs construct design, optimizing manufacture process via addition of exogenous cytokines or targeting specific signaling pathway, manipulating ROS levels balance or relieve the unfavorable metabolic TME including adaptation to hypoxia and relieving inhibitory effect of toxic metabolites, eventually strengthening the anti-tumor response.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yefei Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
21
|
Rox K, Heyner M, Krull J, Harmrolfs K, Rinne V, Hokkanen J, Perez Vilaro G, Díez J, Müller R, Kröger A, Sugiyama Y, Brönstrup M. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Treatment of Dengue Infections Applied to the Broad Spectrum Antiviral Soraphen A. ACS Pharmacol Transl Sci 2021; 4:1499-1513. [PMID: 34661071 DOI: 10.1021/acsptsci.1c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/22/2022]
Abstract
While a drug treatment is unavailable, the global incidence of Dengue virus (DENV) infections and its associated severe manifestations continues to rise. We report the construction of the first physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that predicts viremia levels in relevant target organs based on preclinical data with the broad spectrum antiviral soraphen A (SorA), an inhibitor of the host cell target acetyl-CoA-carboxylase. SorA was highly effective against DENV in vitro (EC50 = 4.7 nM) and showed in vivo efficacy by inducing a significant reduction of viral load in the spleen and liver of IFNAR-/- mice infected with DENV-2. PBPK/PD predictions for SorA matched well with the experimental infection data. Transfer to a human PBPK/PD model for DENV to mimic a clinical scenario predicted a reduction in viremia by more than one log10 unit for an intravenous infusion regimen of SorA. The PBPK/PD model is applicable to any DENV drug lead and, thus, represents a valuable tool to accelerate and facilitate DENV drug discovery and development.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maxi Heyner
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | | | - Gemma Perez Vilaro
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juana Díez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Rolf Müller
- German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
22
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|
23
|
Cong J. Metabolism of Natural Killer Cells and Other Innate Lymphoid Cells. Front Immunol 2020; 11:1989. [PMID: 32983138 PMCID: PMC7484708 DOI: 10.3389/fimmu.2020.01989] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are the host's first line of defense against tumors and viral infections without prior sensitization. It is increasingly accepted that NK cells belong to the innate lymphoid cell (ILC) family. Other ILCs, comprising ILC1s, ILC2s, ILC3s and lymphoid tissue inducer (LTi) cells, are largely non-cytotoxic, tissue-resident cells, which function to protect local microenvironments against tissue insults and maintain homeostasis. Recently, evidence has accumulated that metabolism supports many aspects of the biology of NK cells and other ILCs, and that metabolic reprogramming regulates their development and function. Here, we outline the current understanding of ILC metabolism, and describe how metabolic processes are affected, and how metabolic defects are coupled to dysfunction of ILCs, in disease settings. Furthermore, we summarize the current and potential directions for immunotherapy involving targeting of ILC metabolism. Finally, we discuss the open questions in the rapidly expanding field of ILC metabolism.
Collapse
Affiliation(s)
- Jingjing Cong
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|