1
|
Yoshikawa T, Yanagita M. Single-Cell Analysis Provides New Insights into the Roles of Tertiary Lymphoid Structures and Immune Cell Infiltration in Kidney Injury and Chronic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:40-54. [PMID: 39097168 DOI: 10.1016/j.ajpath.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024]
Abstract
Chronic kidney disease (CKD) is a global health concern with high morbidity and mortality. Acute kidney injury (AKI) is a pivotal risk factor for the progression of CKD, and the rate of AKI-to-CKD progression increases with aging. Intrarenal inflammation is a fundamental mechanism underlying AKI-to-CKD progression. Tertiary lymphoid structures (TLSs), ectopic lymphoid aggregates formed in nonlymphoid organs, develop in aged injured kidneys, but not in young kidneys, with prolonged inflammation and maladaptive repair, which potentially exacerbates AKI-to-CKD progression in aged individuals. Dysregulated immune responses are involved in the pathogenesis of various kidney diseases, such as IgA nephropathy, lupus nephritis, and diabetic kidney diseases, thereby deteriorating kidney function. TLSs also develop in several kidney diseases, including transplanted kidneys and renal cell carcinoma. However, the precise immunologic mechanisms driving AKI-to-CKD progression and development of these kidney diseases remain unclear, which hinders the development of novel therapeutic approaches. This review aims to describe recent findings from single-cell analysis of cellular heterogeneity and complex interactions among immune and renal parenchymal cells, which potentially contribute to the pathogenesis of AKI-to-CKD progression and other kidney diseases, highlighting the mechanisms of formation and pathogenic roles of TLSs in aged injured kidneys.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Fashemi BE, Rougeau AK, Salazar AM, Bark SJ, Chappidi R, Brown JW, Cho CJ, Mills JC, Mysorekar IU. IFRD1 is required for maintenance of bladder epithelial homeostasis. iScience 2024; 27:111282. [PMID: 39628564 PMCID: PMC11613175 DOI: 10.1016/j.isci.2024.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of Ifrd1 leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. Ifrd1-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.
Collapse
Affiliation(s)
- Bisiayo E. Fashemi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amala K. Rougeau
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Arnold M. Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Steven J. Bark
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Rayvanth Chappidi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W. Brown
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J. Cho
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhang J, Chen S, Zheng H, Rao S, Lin Y, Wan J, Chen Y. A single-center retrospective study of ectopic lymphoid tissues in idiopathic membranous nephropathy: clinical pathological characteristics and prognostic value. PeerJ 2024; 12:e18703. [PMID: 39670089 PMCID: PMC11636532 DOI: 10.7717/peerj.18703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Background In recent years, ectopic lymphoid tissue (ELT) has been increasingly confirmed as a new biomarker for kidney injury or inflammation. However, there is insufficient research on the relationship between ELT grading and the progression of idiopathic membranous nephropathy (IMN). Methods A total of 147 patients with biopsy-proven IMN in our institution from March 2020 to June 2022 were classified into five grades based on the different distribution of lymphocyte subsets in renal tissue (G0: no B cells or T cells, G1: scattered B and T cells, G2: clustered B and T cells, G3: an aggregation region of B and T cells without a central network, G4: highly organized and formed zones of B and T cells with a central network of follicular dendritic cells and scattered macrophages), and were further divided into low-grade group (G0+G1), intermediate-grade group (G2) and high-grade group (G3+G4). The clinicopathological data, induction treatment response and prognosis among the three groups were analyzed and compared retrospectively. Results As the grading of ectopic lymphoid tissues increased, patients were older, with a higher prevalence of hypertension, a higher 24-h urinary protein level, lower baseline hemoglobin and estimated glomerular filtration rate (eGFR) levels, and more severe renal pathological damage. Logistic regression analysis showed that after 6 months of induction treatment, patients in the high-grade group were more likely to be in non-remission than those in the low-grade group (odds ratios [ORs] of the three adjusted models were 4.310, 4.239, and 5.088, respectively, P-values were 0.005, 0.006, and 0.001, respectively). Kaplan-Meier survival analysis indicated that patients in the intermediate- and high-grade groups had significantly lower renal cumulative survival rate than those in the low-grade group (P = 0.025). Univariate Cox analysis showed that the risk of adverse renal outcome was 3.662 times higher in the intermediate- and high-grade groups than in the low-grade group (95% confidence interval [CI] [1.078-12.435]; P = 0.037). Multivariate Cox analysis revealed that failure of remission at the first 6 months (hazard ratio [HR] = 5.769; 95% CI [1.854-17.950]; P = 0.002) remained an independent risk factor for poor renal outcome in patients with IMN. Conclusions Grading of renal ectopic lymphoid tissues correlates with disease activity and severity in IMN patients and can be used as an indicator to assess the risk of IMN progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Siyu Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Haiying Zheng
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Siyi Rao
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanyuan Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Al-Naggar IM, Antony M, Baker D, Wang L, Godoy LDC, Kuo CL, Fraser MO, Smith PP, Xu M, Kuchel GA. Polyploid superficial uroepithelial bladder barrier cells express features of cellular senescence across the lifespan and are insensitive to senolytics. Aging Cell 2024:e14399. [PMID: 39644167 DOI: 10.1111/acel.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 12/09/2024] Open
Abstract
Lower urinary tract dysfunction (LUTD) increases with aging. Ensuing symptoms including incontinence greatly impact quality of life, isolation, depression, and nursing home admission. The aging bladder is hypothesized to be central to this decline, however, it remains difficult to pinpoint a singular strong driver of aging-related bladder dysfunction. Many molecular and cellular changes occur with aging, contributing to decreased resilience to internal and external stressors, affecting urinary control and exacerbating LUTD. In this study, we examined whether cellular senescence, a cell fate involved in the etiology of most aging diseases, contributes to LUTD. We found that umbrella cells (UCs), luminal barrier uroepithelial cells in the bladder, show senescence features over the mouse lifespan. These polyploid UCs exhibit high cyclin D1 staining, previously reported to mediate tetraploidy-induced senescence in vitro. These senescent UCs were not eliminated by the senolytic combination of Dasatinib and Quercetin. We also tested the effect of a high-fat diet (HFD) and senescent cell transplantation on bladder function and showed that both models induce cystometric changes similar to natural aging in mice, with no effect of senolytics on HFD-induced changes. These findings illustrate the heterogeneity of cellular senescence in varied tissues, while also providing potential insights into the origin of urothelial cancer. We conclude that senescence of bladder uroepithelial cells plays a role in normal physiology, namely in their role as barrier cells, helping promote uroepithelial integrity and impermeability and maintaining the urine-blood barrier.
Collapse
Affiliation(s)
- Iman M Al-Naggar
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| | - Maria Antony
- The University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Dylan Baker
- Department of Genetics & Genome Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Lichao Wang
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
| | - Lucas Da Cunha Godoy
- The Cato T. Laurencin Institute for Regenerative Engineering, Farmington, Connecticut, USA
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, Farmington, Connecticut, USA
| | - Matthew O Fraser
- Department of Research & Development, Durham Veterans Affairs Medical Centers, Durham, North Carolina, USA
| | - Phillip P Smith
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
- Department of Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Connecticut Institute for Brain and Cognitive Science, University of Connecticut, Storrs, Connecticut, USA
| | - Ming Xu
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
- Department of Genetics & Genome Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Cornelius SA, Basu U, Zimmern PE, De Nisco NJ. Overcoming challenges in the management of recurrent urinary tract infections. Expert Rev Anti Infect Ther 2024; 22:1157-1169. [PMID: 39387179 PMCID: PMC11634670 DOI: 10.1080/14787210.2024.2412628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Urinary tract infection (UTI) is a major global health concern. While acute UTIs can usually be effectively treated, recurrent UTIs (rUTIs) impact patients for years, causing significant morbidity and can become refractory to front-line antibiotics. AREAS COVERED This review discusses the risk factors associated with rUTI, current rUTI treatment paradigms, prophylactic strategies, and challenges in rUTI diagnostics. We specifically discuss common risk factors for rUTI, including biological sex, age, menopause status, and diabetes mellitus. We also review recently available evidence for commonly used treatments, from oral antibiotic therapy to intravesical antimicrobials, electrofulguration of chronic cystitis, and the last-resort treatment, cystectomy. We discuss the most current literature evaluating prophylactic strategies for rUTI including long-term antibiotic prophylaxis, estrogen hormone therapy, and dietary supplements. Finally, we address the important role of UTI diagnostics in effective rUTI management and review the strengths and limitations of both current and emerging UTI diagnostic platforms as well as their ability to operate at point-of-care. EXPERT OPINION We discuss the current challenges faced by clinicians in managing rUTI in women and the steps that should be taken so that clinicians, scientists, and patients can work together to better understand the disease and develop better strategies for its management.
Collapse
Affiliation(s)
- Samuel A. Cornelius
- Department of Biological Sciences, The University of Texas at Dallas, Richardson TX
| | - Ujjaini Basu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson TX
| | - Philippe E. Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas TX
| | - Nicole J. De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson TX
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas TX
| |
Collapse
|
6
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
7
|
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol 2024; 20:603-615. [PMID: 39025993 DOI: 10.1038/s41581-024-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and shows a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to the sirtuin and Klotho signalling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney ageing. Thus, mechanisms that contribute to ageing not only dictate renal outcomes but also exert a substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited ageing trajectory in individuals, leading to premature ageing and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy ageing necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic ageing. Here, we examine the hallmarks of ageing, focusing on the mechanisms by which they affect kidney health and contribute to premature organ ageing. We also review diagnostic methodologies and interventions for premature ageing, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
8
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
9
|
Zhang T, Zhu J, Li Z, Zhao Y, Li Y, Li J, He Q, Geng Y, Lu W, Zhang L, Li Z. The UF-5000 Atyp.C parameter is an independent risk factor for bladder cancer. Sci Rep 2024; 14:12659. [PMID: 38830942 PMCID: PMC11148171 DOI: 10.1038/s41598-024-63572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
Bladder carcinoma (BC) accounts for > 90% of all urothelial cancers. Pathological diagnosis through cytoscopic biopsy is the gold standard, whereas non-invasive diagnostic tools remain lacking. The "Atyp.C" parameter of the Sysmex UF-5000 urine particle analyzer represents the ratio of nucleus to cytoplasm and can be employed to detect urinary atypical cells. The present study examined the association between urinary Atyp.C values and BC risk. This two-center, retrospective case-control study identified clinical primary or newly recurrent BC (study period, 2022-2023; n = 473) cases together with controls with urinary tract infection randomly matched by age and sex (1:1). Urinary sediment differences were compared using non-parametric tests. The correlations between urinary Atyp.C levels and BC grade or infiltration were analyzed using Spearman's rank correlation. The BC risk factor odds ratio of Atyp.C was calculated using conditional logistic regression, and potential confounder effects were adjusted using stepwise logistic regression (LR). Primary risk factors were identified by stratified analysis according to pathological histological diagnosis. The mean value of urinary Atyp.C in BC cases (1.30 ± 3.12) was 8.7 times higher than that in the controls (0.15 ± 0.68; P < 0.001). Urinary Atyp.C values were positively correlated with BC pathological grade and invasion (r = 0.360, P < 0.001; r = 0.367, P < 0.001). Urinary Atyp.C was an independent risk factor for BC and closely related with BC pathological grade and invasion. Elevated urinary Atyp.C values was an independent risk factor for BC. Our findings support the use of Atyp.C as a marker that will potentially aid in the early diagnosis and long-term surveillance of new and recurrent BC cases.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianhong Zhu
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhaoxing Li
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ya Zhao
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Li
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Li
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Geng
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Lu
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Zhang
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Zhenzhen Li
- Department of Clinical Laboratory, Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
10
|
Joshi CS, Salazar AM, Wang C, Ligon MM, Chappidi RR, Fashemi BE, Felder PA, Mora A, Grimm SL, Coarfa C, Mysorekar IU. D-Mannose reduces cellular senescence and NLRP3/GasderminD/IL-1β-driven pyroptotic uroepithelial cell shedding in the murine bladder. Dev Cell 2024; 59:33-47.e5. [PMID: 38101412 PMCID: PMC10872954 DOI: 10.1016/j.devcel.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1β-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.
Collapse
Affiliation(s)
- Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rayvanth R Chappidi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A Felder
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Mora
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandra L Grimm
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Corse TD, Rahmani LD, Hasley HL, Kim K, Harrison R, Fromer DL. New avenue of diagnostic stewardship: procedural stewardship for recurrent urinary tract infections in female patients. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e231. [PMID: 38156218 PMCID: PMC10753495 DOI: 10.1017/ash.2023.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
Introduction Societal guidelines offer a weak recommendation to perform cystoscopy for female patients with recurrent urinary tract infections (rUTI) of advanced age and/or with high-risk features. These guidelines lack the support of robust data and are instead based on expert opinion. In this retrospective cohort study, we aim to determine the utility of cystoscopy in patients with and without high-risk features for rUTI. Materials and methods We identified 476 women who underwent cystoscopy for the evaluation of rUTI at a single tertiary academic medical center from May 1, 2015 and March 15, 2021. Patients were excluded if they had a competing indication for cystoscopy. Risk factors, demographic information, cystoscopic findings, and patient outcomes were analyzed. Results 192 (41.1%) were classified as having complicated UTI. We identified six patients (1.3%) with findings that prompted management to significantly impact patient outcomes. All six patients had high-risk features. 14 patients (3.0%) were found to have mucosal abnormalities prompting biopsy, three of which required general anesthesia. All 14 biopsies were ultimately benign. Conclusions Our findings demonstrate a low diagnostic yield and increased risk exposure for women undergoing cystoscopy for the evaluation of complicated rUTI. Additionally, our observations support prior studies indicating that cystoscopy has limited utility in the evaluation of rUTI without high-risk features.
Collapse
Affiliation(s)
- Tanner D. Corse
- Department of Urology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Urology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Linda Dayan Rahmani
- Department of Urology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Hunter L. Hasley
- Department of Urology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Katherine Kim
- Department of Urology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Robert Harrison
- Department of Urology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Debra L. Fromer
- Department of Urology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Urology, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
12
|
Hawas S, Vagenas D, Haque A, Totsika M. Bladder-draining lymph nodes support germinal center B cell responses during urinary tract infection in mice. Infect Immun 2023; 91:e0031723. [PMID: 37882531 PMCID: PMC10652902 DOI: 10.1128/iai.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Bacterial urinary tract infections (UTIs) are both common and exhibit high recurrence rates in women. UTI healthcare costs are increasing due to the rise of multidrug-resistant (MDR) bacteria, necessitating alternative approaches for infection control. Here, we directly observed host adaptive immune responses in acute UTI. We employed a mouse model in which wild-type C57BL/6J mice were transurethrally inoculated with a clinically relevant MDR UTI strain of uropathogenic Escherichia coli (UPEC). Firstly, we noted that rag1-/- C57BL/6J mice harbored larger bacterial burdens than wild-type counterparts, consistent with a role for adaptive immunity in UTI control. Consistent with this, UTI triggered in the bladders of wild-type mice early increases of myeloid cells, including CD11chi conventional dendritic cells, suggesting possible involvement of these professional antigen-presenting cells. Importantly, germinal center B cell responses developed by 4 weeks post-infection in bladder-draining lymph nodes of wild-type mice and, although modest in magnitude and transient in nature, could not be boosted with a second UTI. Thus, our data reveal for the first time in a mouse model that UPEC UTI induces local B cell immune responses in bladder-draining lymph nodes, which could potentially serve to control infection.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dimitrios Vagenas
- Research Methods Group, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ashraful Haque
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Shchukina I, Bohacova P, Artyomov MN. T cell control of inflammaging. Semin Immunol 2023; 70:101818. [PMID: 37611324 DOI: 10.1016/j.smim.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
T cells are a critical component of the immune system, found in abundance in blood, secondary lymphoid organs, and peripheral tissues. As individuals age, T cells are particularly susceptible to changes, making them one of the most affected immune subsets. These changes can have significant implications for age-related dysregulations, including the development of low-grade inflammation - a hallmark of aging known as inflammaging. In this review, we first present age-related changes in the functionality of the T cell compartment, including dysregulation of cytokine and chemokine production and cytotoxicity. Next, we discuss how these changes can contribute to the development and maintenance of inflammaging. Furthermore, we will summarize the mechanisms through which age-related changes in T cells may drive abnormal physiological outcomes.
Collapse
Affiliation(s)
- Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Lin JB, Mora A, Wang TJ, Santeford A, Usmani D, Ligon MM, Mysorekar IU, Apte RS. Loss of stearoyl-CoA desaturase 2 disrupts inflammatory response in macrophages. mBio 2023; 14:e0092523. [PMID: 37417745 PMCID: PMC10470784 DOI: 10.1128/mbio.00925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023] Open
Abstract
Macrophages are innate immune cells that patrol tissues and are the first responders to detect infection. They orchestrate the host immune response in eliminating invading pathogens and the subsequent transition from inflammation to tissue repair. Macrophage dysfunction contributes to age-related pathologies, including low-grade inflammation in advanced age that is termed "inflammaging." Our laboratory has previously identified that macrophage expression of a fatty acid desaturase, stearoyl-CoA desaturase 2 (SCD2), declines with age. Herein, we delineate the precise cellular effects of SCD2 deficiency in murine macrophages. We found that deletion of Scd2 from macrophages dysregulated basal and bacterial lipopolysaccharide (LPS)-stimulated transcription of numerous inflammation-associated genes. Specifically, deletion of Scd2 from macrophages decreased basal and LPS-induced expression of Il1b transcript that corresponded to decreased production of precursor IL1B protein and release of mature IL1B. Furthermore, we identified disruptions in autophagy and depletion of unsaturated cardiolipins in SCD2-deficient macrophages. To assess the functional relevance of SCD2 in the macrophage response to infection, we challenged SCD2-deficient macrophages with uropathogenic Escherichia coli and found that there was impaired clearance of intracellular bacteria. This increased burden of intracellular bacteria was accompanied by increased release of pro-inflammatory cytokines IL6 and TNF but decreased IL1B. Taken together, these results indicate that macrophage expression of Scd2 is necessary for maintaining the macrophage response to inflammatory stimuli. This link between fatty acid metabolism and fundamental macrophage effector functions may potentially be relevant to diverse age-related pathologies. IMPORTANCE Macrophages are immune cells that respond to infection, but their dysfunction is implicated in many age-related diseases. Recent evidence showed that macrophage expression of a fatty acid enzyme, stearoyl-CoA desaturase 2, declines in aged organisms. In this work, we characterize the effects when stearoyl-CoA desaturase 2 is deficient in macrophages. We identify aspects of the macrophage inflammatory response to infection that may be affected when expression of a key fatty acid enzyme is decreased, and these findings may provide cellular insight into how macrophages contribute to age-related diseases.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy Mora
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tzu Jui Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Darksha Usmani
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marianne M. Ligon
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Indira U. Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
17
|
Faris A, Lane GI, Mehra R, Dadhania V, Crescenze I, Clemens JQ, Barboglio Romo P, Stoffel J, Malaeb B, Blair Y, Goh M, Gupta P, Cameron AP. Destroyed bladders: Characterization of progressive inflammatory cystitis. Neurourol Urodyn 2023; 42:1194-1202. [PMID: 37126389 PMCID: PMC11542153 DOI: 10.1002/nau.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE We identified a subset of patients with noninfectious cystitis who develop refractory symptoms marked by diffuse inflammatory changes, reduced bladder capacity, and vesicoureteral reflux (VUR), termed here as "progressive inflammatory cystitis" (PIC). Our objective was to describe the phenotype, disease outcomes, and pathologic findings of PIC. MATERIAL AND METHODS A single institution retrospective cohort study of patients with PIC. Patients with a history of pelvic radiation, urologic malignancy, or neurogenic bladder were excluded. We describe cohort characteristics and use bivariate analyses to compare subgroups. Kaplan-Meier methods estimate time to urinary diversion. RESULTS From 2008 to 2020, 46 patients with PIC were identified. The median age of symptom onset was 63 years old (interquartile range [IQR]: 56, 70) and the most common presenting symptoms were urinary urgency/frequency (54%) and incontinence (48%). Urodynamics showed a median maximum bladder capacity of 80 mL (IQR: 34, 152), commonly with VUR (68%) and hydronephrosis (59%). Ultimately 36 patients (78%) underwent urinary diversion at a median of 4.5 years (IQR: 2, 6.5) after symptom onset. Significant pathologic findings include presence of ulceration (52%), acute and chronic inflammation (68%), including eosinophils (80%), lymphoid follicles (56%), and mast cells in both lamina and muscularis propria (76%). CONCLUSIONS PIC is a newly defined entity characterized by significantly diminished bladder capacity, upper tract changes, and relatively quick progression to urinary diversion. Larger prospective cohort studies are required to further characterize this severe phenotype of chronic noninfectious cystitis, aid earlier diagnosis, and guide management decisions.
Collapse
Affiliation(s)
- Anna Faris
- University of Michigan, Department of Urology
| | | | - Rohit Mehra
- University of Michigan, Department of Pathology
| | | | | | | | | | | | | | - Yooni Blair
- University of Michigan, Department of Urology
| | - Meidee Goh
- University of Michigan, Department of Urology
| | | | | |
Collapse
|
18
|
Viitanen SJ, Tuomisto L, Salonen N, Eskola K, Kegler K. Escherichia coli-associated follicular cystitis in dogs: Clinical and pathologic characterization. J Vet Intern Med 2023; 37:1059-1066. [PMID: 37154220 PMCID: PMC10229364 DOI: 10.1111/jvim.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Follicular cystitis is an uncommon inflammatory change in the urinary bladder wall characterized by the formation of tertiary lymphoid structures (TLSs) in the submucosa. OBJECTIVES To characterize clinical and pathologic features of follicular cystitis in dogs and to explore in situ distribution and possible role of Escherichia coli as an associated cause. ANIMALS Eight dogs diagnosed with follicular cystitis and 2 control dogs. METHODS Retrospective descriptive study. Dogs diagnosed with follicular cystitis (macroscopic follicular lesions in the urinary bladder mucosa and histopathologic detection of TLSs in bladder wall biopsies) were identified from medical records. Paraffin embedded bladder wall biopsies were subject to in situ hybridization for E. coli 16SrRNA identification. RESULTS Follicular cystitis was diagnosed in large breed (median weight 24.9 kg, interquartile range [IQR] 18.8-35.4 kg) female dogs with a history of chronic recurrent urinary tract infections (UTIs; median duration of clinical signs 7 months, IQR 3-17 months; median number of previous UTIs 5, IQR 4-6). Positive E. coli 16SrRNA signal was detected within developing, immature and mature TLSs in 7/8 dogs, through submucosal stroma in 8/8 dogs and within the urothelium in 3/8 dogs. CONCLUSIONS AND CLINICAL IMPORTANCE Chronic inflammation associated with an intramural E. coli infection in the urinary bladder wall represents a possible triggering factor for the development of follicular cystitis.
Collapse
Affiliation(s)
- Sanna J Viitanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Tuomisto
- Department of Veterinary Biosciences, Pathology and Parasitology Unit, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Salonen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katariina Eskola
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristel Kegler
- Department of Veterinary Biosciences, Pathology and Parasitology Unit, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Ligon MM, Liang B, Lenger SM, Parameswaran P, Sutcliffe S, Lowder JL, Mysorekar IU. Bladder Mucosal Cystitis Cystica Lesions Are Tertiary Lymphoid Tissues That Correlate With Recurrent Urinary Tract Infection Frequency in Postmenopausal Women. J Urol 2023; 209:928-936. [PMID: 36715657 PMCID: PMC11463732 DOI: 10.1097/ju.0000000000003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE We identify correlates and clinical outcomes of cystitis cystica, a poorly understood chronic inflammatory bladder change, in women with recurrent urinary tract infections. MATERIALS AND METHODS A retrospective, observational cohort of women with recurrent urinary tract infections who underwent cystoscopy (n=138) from 2015 to 2018 were identified using electronic medical records. Cystitis cystica status was abstracted from cystoscopy reports and correlations were identified by logistic regression. Urinary tract infection-free survival time associated with cystitis cystica was evaluated by Cox proportional hazards regression. Exact logistic regression was used to identify factors associated with changes to cystitis cystica lesions on repeat cystoscopy. Biopsies of cystitis cystica lesions were examined by routine histology and immunofluorescence. RESULTS Fifty-three patients (38%) had cystitis cystica on cystoscopy. Cystitis cystica was associated with postmenopausal status (OR: 5.53, 95% CI: 1.39-37.21), pelvic floor myofascial pain (6.82, 1.78-45.04), having ≥4 urinary tract infections in the past year (2.28, 1.04-5.09), and a shorter time to next urinary tract infection (HR: 1.54, 95% CI: 1.01-2.35). Forty-two patients (82%) demonstrated improvement or resolution of lesions. Ten/11 (91%) biopsied cystitis cystica lesions were tertiary lymphoid tissue with germinal centers and resembled follicular cystitis. CONCLUSIONS Cystitis cystica lesions were associated with postmenopausal status, pelvic floor myofascial pain, and number of urinary tract infections in the prior year and predicted worse recurrent urinary tract infection outcomes. Cystitis cystica lesions are tertiary lymphoid tissue/follicular cystitis that may improve or resolve over time with treatment. Identifying cystitis cystica in recurrent urinary tract infection patients may be useful in informing future urinary tract infection risk and tailoring appropriate treatment strategies.
Collapse
Affiliation(s)
- Marianne M. Ligon
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, Missouri
| | - Brooke Liang
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, Missouri
| | - Stacy M. Lenger
- Department of Obstetrics & Gynecology and Women’s Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Priyanka Parameswaran
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, Missouri
| | - Siobhan Sutcliffe
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Jerry L. Lowder
- Department of Obstetrics & Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Indira U. Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, Missouri
- Department of Medicine, Section of Infectious Diseases and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol 2023:10.1038/s41581-023-00706-z. [PMID: 37046081 PMCID: PMC10092939 DOI: 10.1038/s41581-023-00706-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues that drive antigen-specific immune responses at sites of chronic inflammation. Unlike secondary lymphoid organs such as lymph nodes, TLSs lack capsules and have their own unique characteristics and functions. The presumed influence of TLSs on the disease course has led to widespread interest in obtaining a better understanding of their biology and function. Studies using single-cell analyses have suggested heterogeneity in TLS composition and phenotype, and consequently, functional correlates with disease progression are sometimes conflicting. The presence of TLSs correlates with a favourable disease course in cancer and infection. Conversely, in autoimmune diseases and chronic age-related inflammatory diseases including chronic kidney disease, the presence of TLSs is associated with a more severe disease course. However, the detailed mechanisms that underlie these clinical associations are not fully understood. To what extent the mechanisms of TLS development and maturation are shared across organs and diseases is also still obscure. Improved understanding of TLS development and function at the cellular and molecular levels may enable the exploitation of these structures to improve therapies for chronic diseases, including chronic kidney disease.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Fashemi BE, Wang C, Chappidi RR, Morsy H, Mysorekar IU. Supraphysiologic Vaginal Estrogen Therapy in Aged Mice Mitigates Age-Associated Bladder Inflammatory Response to Urinary Tract Infections. UROGYNECOLOGY (PHILADELPHIA, PA.) 2023; 29:430-442. [PMID: 36384972 PMCID: PMC10117622 DOI: 10.1097/spv.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IMPORTANCE Bladder diseases characterized by chronic inflammation are highly prevalent in older women, as are recurrent urinary tract infections (rUTIs). Recurrent urinary tract infections lead to chronic inflammation of the bladder mucosa and cause lower urinary tract symptoms that persist even after the infection is cleared. Vaginal estrogen therapy (VET) has long been used for the treatment of rUTIs; however, its mechanism of action remains unclear. OBJECTIVES The objective of this study was to examine the mechanism(s) by which VET affects bladder inflammation and response to rUTIs. STUDY DESIGN Here, we induced surgical menopause in aged (18 months old) mice followed by VET. Mice were then infected with uropathogenic Escherichia coli , and course of infection was investigated. Inflammatory cytokine response was assessed before and during infection using enzyme-linked immunosorbent assay. RNA sequencing analysis was used to compare the inflammatory status of the young versus aged bladder and principal changes confirmed via quantitative reverse transcriptase-polymerase chain reaction to determine the effects of VET on bladder inflammation. Impact on age-associated bladder tertiary lymphoid tissue formation was evaluated histologically. RESULTS In the ovariectomized aged model, VET not only mitigated uterine atrophy but was also associated with reduced rUTIs, number of bacterial reservoirs, dampened immune response, and promotion of terminal differentiation of urothelial cells. Bladder tertiary lymphoid tissue lesions were also reduced with VET, with an associated decrease in signals important for bladder tertiary lymphoid tissue formation. Finally, we determined that VET reverses age-associated upregulation of inflammatory genes and pathways. CONCLUSIONS Our data suggest that VET is effective by reducing age-associated hyperinflammatory conditions in bladder mucosa and in enhancing the host response to infection.
Collapse
Affiliation(s)
- Bisiayo E Fashemi
- From the Center for Reproductive Health Sciences, Division of Basic Research
| | - Caihong Wang
- From the Center for Reproductive Health Sciences, Division of Basic Research
| | - Rayvanth R Chappidi
- From the Center for Reproductive Health Sciences, Division of Basic Research
| | - Haidy Morsy
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics & Gynecology, Washington University School of Medicine
| | | |
Collapse
|
22
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Sato Y, Tamura M, Yanagita M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol Dial Transplant 2023; 38:26-33. [PMID: 34245300 DOI: 10.1093/ndt/gfab212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues that develop at sites of chronic inflammation in nonlymphoid organs. As with lymph nodes, TLTs initiate adaptive immune responses and coordinate local tissue immunity. Although virtually ignored for decades, TLTs have recently received a great deal of attention for their ability to influence disease severity, prognosis and response to therapy in various diseases, including cancer, autoimmune disorders and infections. TLTs are also induced in kidneys of patients with chronic kidney diseases such as immunoglobulin A nephropathy and lupus nephritis. Nevertheless, TLTs in the kidney have not been extensively investigated and their mechanism of development, functions and clinical relevance remain unknown, mainly because of the absence of adequate murine kidney TLT models and limited availability of human kidney samples containing TLTs. We recently found that aged kidneys, but not young kidneys, exhibit multiple TLTs after injury. Interestingly, although they are a minor component of TLTs, resident fibroblasts in the kidneys diversify into several distinct phenotypes that play crucial roles in TLT formation. Furthermore, the potential of TLTs as a novel kidney injury/inflammation marker as well as a novel therapeutic target for kidney diseases is also suggested. In this review article we describe the current understanding of TLTs with a focus on age-dependent TLTs in the kidney and discuss their potential as a novel therapeutic target and kidney inflammation marker.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Ligon MM, Joshi CS, Fashemi BE, Salazar AM, Mysorekar IU. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev Biol 2023; 493:29-39. [PMID: 36368522 PMCID: PMC11463731 DOI: 10.1016/j.ydbio.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.
Collapse
Affiliation(s)
- Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Microbiology and Virology, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Popovics P, Penniston KL. Current research and future directions in non-malignant urologic research - proceedings of the annual CAIRIBU meeting. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:449-461. [PMID: 36636691 PMCID: PMC9831912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
The Annual Collaborating for the Advancement of Interdisciplinary Research (CAIRIBU) Meeting in 2022 highlighted basic, translational, and clinical non-malignant urology research within five main areas affecting the urinary tract: urinary dysfunction due to prostate disease, microbes and infection, bladder function and physiology, neurology and neuromuscular influences and calculi and obstruction. In this paper, we summarize main findings and future directions outlined by CAIRIBU-affiliated scientists who presented as part of the scientific sessions.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical SchoolVA, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public HealthWI, USA
| |
Collapse
|
26
|
Lyu T, Lin Y, Wu K, Cao Z, Zhang Q, Zheng J. Single-cell sequencing technologies in bladder cancer research: Applications and challenges. Front Genet 2022; 13:1027909. [PMID: 36338973 PMCID: PMC9627177 DOI: 10.3389/fgene.2022.1027909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2023] Open
Abstract
Bladder cancer is among the most common malignant tumors with highly heterogeneous molecular characteristics. Despite advancements of the available therapeutic options, several bladder cancer patients exhibit unsatisfactory clinical outcomes. The lack of specific biomarkers for effective targeted therapy or immunotherapy remains a major obstacle in treating bladder cancer. The rapid development of single-cell techniques is transforming our understanding of the intra-tumoral heterogeneity, thereby providing us with a powerful high-throughput sequencing tool that can reveal tumorigenesis, progression, and invasion in bladder tumors. In this review, we summarise and discuss how single-cell sequencing technologies have been applied in bladder cancer research, to advance our collective knowledge on the heterogeneity of bladder tumor cells, as well as to provide new insights into the complex ecosystem of the tumor microenvironment. The application of single-cell approaches also uncovers the therapeutic resistance mechanism in bladder cancer and facilitates the detection of urinary-exfoliated tumor cells. Moreover, benefiting from the powerful technical advantages of single-cell techniques, several key therapeutic targets and prognostic models of bladder cancer have been identified. It is hoped that this paper can provide novel insights into the precision medicine of bladder cancer.
Collapse
Affiliation(s)
- Tianqi Lyu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS), Ningbo, China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS), Ningbo, China
| | - Kerong Wu
- Department of Urology, Ningbo First Hospital, School of Medicine Ningbo University, Zhejiang University Ningbo Hospital, Ningbo, China
| | - Zhanglei Cao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS), Ningbo, China
| | - Qian Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS), Ningbo, China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS), Ningbo, China
| |
Collapse
|
27
|
The Impact of Methenamine Hippurate Treatment on Urothelial Integrity and Bladder Inflammation in Aged Female Mice and Women With Urinary Tract Infections. Female Pelvic Med Reconstr Surg 2022; 28:e205-e210. [PMID: 35536668 DOI: 10.1097/spv.0000000000001185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMPORTANCE Antibiotics are commonly used to treat and prevent urinary tract infection (UTI), but resistance is growing. Nonantibiotic prophylaxis such as methenamine hippurate (MH) shows clinical promise, but its impact on bladder factors influencing recurrent UTIs (rUTIs) is not well described. OBJECTIVE The aim of the study was to examine the effect of MH on bladder inflammation and barrier function in aged mice and women with rUTI. STUDY DESIGN This study included urine samples from an experimental study involving aged female mice with and without methenamine treatment as well as women with rUTI who received either no prophylaxis, MH alone, vaginal estrogen therapy and/or d-mannose alone, or MH in addition to vaginal estrogen therapy and/or d-mannose. We performed a comprehensive cytopathological analysis, which included enzyme-linked immunosorbent assay for immunoglobulin A (IgA), interleukin 6 (in human samples), and fluorescein isothiocyanate-conjugated-dextran permeability assay (in mice) to assess for urothelial permeability. RESULTS In the aged mice model, there was a decreased urothelial permeability (as seen by retention of fluorescein isothiocyanate-conjugated-dextran fluorescence in superficial cells) and increased urinary IgA in mice treated with MH compared with controls. There was no significant difference in urothelial shedding (P > 0.05). In human samples, there was significantly increased urinary IgA in those taking MH alone compared with no prophylaxis (830.1 vs 540.1 ng/mL, P = 0.04), but no significant difference in interleukin 6. CONCLUSIONS Methenamine hippurate seems to enhance barrier function as evidenced by decreased urothelial permeability and increased urinary IgA levels, without worsening inflammation. This may reflect another beneficial mechanism by which MH helps prevent rUTI.
Collapse
|
28
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Hamade A, Li D, Tyryshkin K, Xu M, Conseil G, Yolmo P, Hamilton J, Chenard S, Robert Siemens D, Koti M. Sex differences in the aging murine urinary bladder and influence on the tumor immune microenvironment of a carcinogen-induced model of bladder cancer. Biol Sex Differ 2022; 13:19. [PMID: 35505436 PMCID: PMC9066862 DOI: 10.1186/s13293-022-00428-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Sex and age associated differences in the tumor immune microenvironment of non-muscle invasive bladder (NMIBC) cancer and associated clinical outcomes are emerging indicators of treatment outcomes. The incidence of urothelial carcinoma of the bladder is four times higher in males than females; however, females tend to present with a more aggressive disease, a poorer response to immunotherapy and suffer worse clinical outcomes. Recent findings have demonstrated sex differences in the tumor immune microenvironment of non-muscle invasive and muscle invasive bladder cancer and associated clinical outcomes. However, a significant gap in knowledge remains with respect to the current pre-clinical modeling approaches to more precisely recapitulate these differences towards improved therapeutic design. Given the similarities in mucosal immune physiology between humans and mice, we evaluated the sex and age-related immune alterations in healthy murine bladders. Bulk-RNA sequencing and multiplex immunofluorescence-based spatial immune profiling of healthy murine bladders from male and female mice of age groups spanning young to old showed a highly altered immune landscape that exhibited sex and age associated differences, particularly in the context of B cell mediated responses. Spatial profiling of healthy bladders, using markers specific to macrophages, T cells, B cells, activated dendritic cells, high endothelial venules, myeloid cells and the PD-L1 immune checkpoint showed sex and age associated differences. Bladders from healthy older female mice also showed a higher presence of tertiary lymphoid structures (TLSs) compared to both young female and male equivalents. Spatial immune profiling of N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) carcinogen exposed male and female bladders from young and old mice revealed a similar frequency of TLS formation, sex differences in the bladder immune microenvironment and, age associated differences in latency of tumor induction. These findings support the incorporation of sex and age as factors in pre-clinical modeling of bladder cancer and will potentially advance the field of immunotherapeutic drug development to improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Hamade
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Deyang Li
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Minqi Xu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Gwenaelle Conseil
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Priyanka Yolmo
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jake Hamilton
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephen Chenard
- Queen's Cancer Research Institute, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | - Madhuri Koti
- Queen's Cancer Research Institute, Kingston, ON, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Department of Urology, Queen's University, Kingston, ON, Canada. .,Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, K7L3N6, Canada.
| |
Collapse
|
30
|
Abstract
The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.
Collapse
Affiliation(s)
- Georgina S Bowyer
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
31
|
Trujillo-Vargas CM, Mauk KE, Hernandez H, de Souza RG, Yu Z, Galletti JG, Dietrich J, Paulsen F, de Paiva CS. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroScience 2022; 44:2105-2128. [PMID: 35279788 DOI: 10.1007/s11357-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a massive infiltration of T lymphocytes in the lacrimal gland. Here, we aimed to characterize the immune phenotype of aged CD4+ T cells in this tissue as compared with lymphoid organs. To perform this, we sorted regulatory T cells (Tregs, CD4+CD25+GITR+) and non-Tregs (CD4+CD25negGITRneg) in lymphoid organs from female C57BL/6J mice and subjected these cells to an immunology NanoString® panel. These results were confirmed by flow cytometry, live imaging, and tissue immunostaining in the lacrimal gland. Importantly, effector T helper 1 (Th1) genes were highly upregulated on aged Tregs, including the master regulator Tbx21. Among the non-Tregs, we also found a significant increase in the levels of EOMESmed/high, TbetnegIFN-γ+, and CD62L+CD44negCD4+ T cells with aging, which are associated with cell exhaustion, immunopathology, and the generation of tertiary lymphoid tissue. At the functional level, aged Tregs from lymphoid organs are less able to decrease proliferation and IFN-γ production of T responders at any age. More importantly, human lacrimal glands (age range 55-81 years) also showed the presence of CD4+Foxp3+ cells. Further studies are needed to propose potential molecular targets to avoid immune-mediated lacrimal gland dysfunction with aging.
Collapse
Affiliation(s)
- Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.,Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Kelsey E Mauk
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Jeremias G Galletti
- Institute of Experimental Medicine, CONICET-National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA.
| |
Collapse
|
32
|
Di Zazzo A, Coassin M, Surico PL, Bonini S. Age-related ocular surface failure: A narrative review. Exp Eye Res 2022; 219:109035. [DOI: 10.1016/j.exer.2022.109035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
|
33
|
Chiu K, Zhang F, Sutcliffe S, Mysorekar IU, Lowder JL. Recurrent Urinary Tract Infection Incidence Rates Decrease in Women With Cystitis Cystica After Treatment With d-Mannose: A Cohort Study. Female Pelvic Med Reconstr Surg 2022; 28:e62-e65. [PMID: 35272335 PMCID: PMC8928039 DOI: 10.1097/spv.0000000000001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES d-Mannose is a promising nonantibiotic prophylaxis for recurrent urinary tract infection (rUTI). Recurrent UTI is common in postmenopausal women and may be especially prevalent in those with cystitis cystica (CC) lesions found on cystoscopy. Our objectives were to determine whether CC lesions are associated with a higher UTI incidence rate and whether d-mannose reduces this rate in women with CC. METHODS This is a retrospective cohort study of patients with rUTI who underwent cystoscopy at our institution (from which CC status was identified) and who were treated with d-mannose as a single agent for UTI prophylaxis. Participants were required to have at least 1 year of follow-up for UTIs both before and after d-mannose initiation to allow for a pre-post comparison. RESULTS Twenty-seven patients were included in the analysis (13 with CC, 14 without CC). Most patients (88.9%) were postmenopausal. Patients with CC had a higher UTI incidence rate than patients without CC (4.69 vs 2.93 UTIs/year before starting d-mannose prophylaxis, P = 0.021). After initiating d-mannose prophylaxis, the UTI incidence rate decreased significantly in patients with CC (rate decrease = 2.23 UTIs/year, P = 0.0028). This decrease was similar in magnitude to that observed in patients without CC (rate decrease = 1.64 UTIs/year, P = 0.0007; P interaction = 0.58). CONCLUSIONS Patients with rUTI with CC had more frequent UTI episodes than patients without CC. Patients in both groups had fewer UTI episodes after beginning d-mannose prophylaxis. These findings add to the body of literature supporting d-mannose for the prevention of rUTI in women, including those with CC.
Collapse
Affiliation(s)
- Kimberley Chiu
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology
| | - Fan Zhang
- Division of Clinical Research, Department of Obstetrics and Gynecology
| | - Siobhan Sutcliffe
- Division of Public Health Sciences, Department of Surgery, Washington University in St Louis, St Louis, MO
| | - Indira U Mysorekar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jerry L Lowder
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology
| |
Collapse
|
34
|
Sato Y, Oguchi A, Fukushima Y, Masuda K, Toriu N, Taniguchi K, Yoshikawa T, Cui X, Kondo M, Hosoi T, Komidori S, Shimizu Y, Fujita H, Jiang L, Kong Y, Yamanashi T, Seita J, Yamamoto T, Toyokuni S, Hamazaki Y, Hattori M, Yoshikai Y, Boor P, Floege J, Kawamoto H, Murakawa Y, Minato N, Yanagita M. CD153-CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J Clin Invest 2021; 132:146071. [PMID: 34813503 PMCID: PMC8759786 DOI: 10.1172/jci146071] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Tertiary lymphoid tissues (TLTs) facilitate local T and B cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here, we identified TNF superfamily CD153/CD30 signaling between 2 unique age-dependent lymphocyte subpopulations, CD153+PD-1+CD4+ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL-21 and IFN-γ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis, and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153/CD30 signaling in TLT formation and propose targeting the CD153/CD30 signaling pathway as a therapeutic target for slowing kidney disease progression.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Fukushima
- Department of Immunosenescence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Department of Immunology, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Taniguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiaotong Cui
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makiko Kondo
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Hosoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shota Komidori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Shimizu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Harumi Fujita
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Jun Seita
- Medical Sciences Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masakazu Hattori
- Department of Immunosenescence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Network Center for Infectious Disease, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Peter Boor
- Department of Nephrology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology, University Hospital RWTH Aachen, Aachen, Germany
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Xie J, Li X, Lü Y, Huang C, Long X, Liu Y, Lu H, Long J, Chen B, Luo Z, Mo Z. Female chronic posterior urethritis is underestimated in patients with lower urinary tract symptoms. Transl Androl Urol 2021; 10:3456-3464. [PMID: 34532270 PMCID: PMC8421815 DOI: 10.21037/tau-21-550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022] Open
Abstract
Background As one of the causes of urethral symptoms, female chronic posterior urethritis is a common and distressing disease; however, it is often neglected and misdiagnosed as overactive bladder (OAB) or interstitial cystitis/bladder pain syndrome (IC/BPS). Currently, little is known about the urothelium and lamina propria of the bladder neck and proximal urethra. Thus, identifying urethral lesions is necessary for the diagnosis and treatment of female chronic posterior urethritis. Transurethral electroresection is an effective and safe approach for treating female chronic posterior urethritis. This study sought to determine if urethral lesions are necessary for the diagnosis and treatment of female chronic posterior urethritis, and evaluate the efficacy and safety of the transurethral electroresection of mucosa and submucosa in treating female chronic posterior urethritis. Methods A single-center, retrospective, observational study was conducted at a teaching and referral hospital. A total of 147 female patients who had been diagnosed with chronic papillary urethritis underwent transurethral electroresection between 2015 and 2018. Each patient underwent a follow-up examination. A chart review was also performed. Results Patients had a mean age of 54 years (range, 23–82 years), and the average follow-up period was 54.8 months (range, 6–600 months). Urinary frequency and urgency (51.7%) were the most common clinical manifestations of chronic posterior urethritis. Forty-two-point two percent of patients had positive urine culture results, most commonly with Mycoplasma genitalium. The cystoscopic findings revealed that chronic posterior urethritis has tuft-like, pseudopodia-like, finger-like, and follicular-like polyps and villi, and a pebble-like appearance with mucosal hyperemia. The success rate of the transurethral electroresection was 88.6%, and patients showed no apparent or serious complications. Conclusions This study showed that female chronic posterior urethritis is a cause that contributes to LUT symptoms. Its characteristic cystoscopic appearance and biopsy play a vital role in its diagnosis. The transurethral electroresection of urethral lesions is simple, effective, and minimally invasive without any apparent complications.
Collapse
Affiliation(s)
- Juanjuan Xie
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xin Li
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yufang Lü
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Caisheng Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xinyang Long
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yong Liu
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huaxiang Lu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jianhua Long
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Chen
- Department of Computer Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Jones-Freeman B, Chonwerawong M, Marcelino VR, Deshpande AV, Forster SC, Starkey MR. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol 2021; 14:779-792. [PMID: 33542492 DOI: 10.1038/s41385-020-00372-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Department of Pediatric Urology and Surgery, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia.,Urology Unit, Department of Pediatric Surgery, Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
37
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Spatz LB, Jin RU, Mills JC. Cellular plasticity at the nexus of development and disease. Development 2021; 148:148/3/dev197392. [PMID: 33547203 DOI: 10.1242/dev.197392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
In October 2020, the Keystone Symposia Global Health Series hosted a Keystone eSymposia entitled 'Tissue Plasticity: Preservation and Alteration of Cellular Identity'. The event synthesized groundbreaking research from unusually diverse fields of study, presented in various formats, including live and virtual talks, panel discussions and interactive e-poster sessions. The meeting focused on cell identity changes and plasticity in multiple tissues, species and developmental contexts, both in homeostasis and during injury. Here, we review the key themes of the meeting: (1) cell-extrinsic drivers of plasticity; (2) epigenomic regulation of cell plasticity; and (3) conserved mechanisms governing plasticity. A salient take-home conclusion was that there may be conserved mechanisms used by cells to execute plasticity, with autodegradative activity (autophagy and lysosomes) playing a crucial initial step in diverse organs and organisms.
Collapse
Affiliation(s)
- Lillian B Spatz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA .,Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|