1
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
2
|
Wang X, Zhang Y, Luo S, Zhao K, Gao C, Mei D, Duan Y, Hu S. Restoration of nNOS Expression Rescues Autistic-Like Phenotypes Through Normalization of AMPA Receptor-Mediated Neurotransmission. Mol Neurobiol 2024; 61:6599-6612. [PMID: 38329681 DOI: 10.1007/s12035-024-03997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Autism spectrum disorder (ASD) is associated with a range of abnormalities characterized by deficits in socialization, communication, repetitive behaviors, and restricted interests. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was decreased in the basolateral amygdala (BLA) of mice after postnatal valproic acid exposure. Neuronal activity-regulated pentraxin (Narp) could contribute to the regulation of the GluA4 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) subunits which are predominantly expressed in interneurons. However, the specific role of nNOS re-expression on excitatory neurotransmitter with relevance to ASD core symptoms in VPA-treated animals remains to be elucidated. Herein, nNOS overexpression using a lentiviral vector and L-arginine-activating PI3K-Akt-mTOR signaling can restore nNOS expression in the BLA induced by VPA. Restoration of nNOS expression in these mice was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, stereotyped/repetitive behaviors, and anxiety-like traits. Most strikingly, re-expression of nNOS upregulated surface expression of Narp and GluA4 in nNOS-positive interneuron as shown by immunoprecipitation and Western blotting. Whole-cell patch-clamp recordings demonstrated that restoration of nNOS had a significant enhancing effect on AMPA receptor-mediated excitatory glutamatergic synaptic neurotransmission, which was inhibited by disturbing the interaction between Narp and GluA4 in acutely dissociated BLA slices. Overall, these data offer a scientific basis for the additional study of nNOS re-expression as a promising therapeutic target by correcting AMPA receptor-mediated synaptic function in ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Yaodong Zhang
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuying Luo
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ke Zhao
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shunan Hu
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Fatemi SH, Eschenlauer A, Aman J, Folsom TD, Chekouo T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb Cortex 2024; 34:161-171. [PMID: 38696595 PMCID: PMC11484494 DOI: 10.1093/cercor/bhae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 05/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Arthur Eschenlauer
- Minnesota Supercomputing Institute, 599 Walter Library, 117 Pleasant Street, Minneapolis, MN 55455, USA
| | - Justin Aman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Timothy D Folsom
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Thierry Chekouo
- University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Anand P, Kaur A, Singh S. Fucoxanthin mitigates valproic acid-induced autistic behavior through modulation of the AKT/GSK-3β signaling pathway. Eur J Pharmacol 2024; 967:176335. [PMID: 38331341 DOI: 10.1016/j.ejphar.2024.176335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
This study aimed to investigate the effects of fucoxanthin, a natural compound found in seaweed, on various aspects of autism using a rat model induced by valproic acid (VPA). Pregnant rats were administered VPA (600 mg/kg) on gestational day 12.5, and male pups were orally administered fucoxanthin at 50, 100, or 200 mg/kg beginning on post-natal day (PND) 23-43. Behavioral assessments were conducted on PND 45-53, and on PND 54, the animals were sacrificed for further biochemical analyses (superoxide dismutase (SOD) and glutathione (GSH), nitric oxide (NO)) via UV spectroscopy. Inflammatory markers (IL-17, TNF-α, and IL-1β) were also analyzed by sandwich ELISA, and the molecular parameters were evaluated through ELISA. The results revealed that, compared with VPA, fucoxanthin improved behavior and neuronal morphology. Specifically, fucoxanthin administration was found to enhance spatial memory, reduce pain sensitivity, and improve social interaction, locomotor activity, balance, and motor coordination. Fucoxanthin also exhibited anti-inflammatory and antioxidant effects, as indicated by the restoration of SOD and GSH levels and reduced inflammatory cytokine levels. Molecular analyses revealed that fucoxanthin restored the levels of GSK-3β and AKT. Furthermore, fucoxanthin regulates neurotransmitters, which are related to increasing GABA and reducing glutamate levels in the cortex and cerebellum. The therapeutic effects were dose-dependent, with higher doses (200 mg/kg) showing greater efficacy than lower doses (100 mg/kg) in improving behavioral, biochemical, neurotransmitter, and molecular parameters. Fucoxanthin is a potential treatment for autism, but further research, including clinical trials, is necessary to determine its effectiveness in humans.
Collapse
Affiliation(s)
- Piyush Anand
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arshbir Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
6
|
Tian Y, Yu F, Yun E, Lin JW, Man HY. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep 2024; 25:1282-1309. [PMID: 38316900 PMCID: PMC10933332 DOI: 10.1038/s44319-024-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Feiyuan Yu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Eunice Yun
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
8
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
9
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Liu L, Luo Z, Mai Y, Lu Y, Sun Z, Chen J, Zeng T, Chen L, Liu Z, Yang H, Xu Q, Lan L, Tang C. Dexmedetomidine relieves inflammatory pain by enhancing GABAergic synaptic activity in pyramidal neurons of the anterior cingulate cortex. Neuropharmacology 2023; 240:109710. [PMID: 37683885 DOI: 10.1016/j.neuropharm.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Pyramidal neuron (Pyn) hyperactivity in the anterior cingulate cortex (ACC) is involved in the modulation of pain. Previous studies indicate that the activation of α2 adrenoceptors (α2-ARs) by dexmedetomidine (DEX) is a safe and effective means of alleviating multiple types of pain. Here, we showed that systemically administered DEX can ameliorate the inflammatory pain induced by hindpaw injection of formalin (FA) and further examined the molecular and synaptic mechanisms of this DEX-elicited antinociceptive effect. We found that FA caused an increase in c-Fos expression in contralateral layer 2/3 (L2/3) ACC, and that intra-ACC infusion of DEX could also relieve phase 2 inflammatory pain behavior. DEX elicited an increase in the amplitude and frequency of miniature inhibitory post-synaptic currents (mIPSCs) and evoked IPSC amplitude, as well as a reduction in the hyperexcitability and both paired-pulse and excitation/inhibition ratios in contralateral L2/3 ACC Pyns of FA mice. These electrophysiological effects were associated with the upregulation of GABA A receptor (GABAAR) subunits. The interaction of phosphorylated Akt (p-Akt) with GABAAR subunits increased in the ACC following administration of DEX. These results suggest that DEX treatment reduces hyperactivity and enhances GABAergic inhibitory synaptic transmission in ACC Pyns, which produces analgesic effects by increasing GABAAR levels and activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Ling Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhihao Luo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanying Mai
- Department of Nursing, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Zhaoxia Sun
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianfeng Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianyu Zeng
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zihao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hanyu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qin Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Chunzhi Tang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
St George-Hyslop F, Haneklaus M, Kivisild T, Livesey FJ. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol Psychiatry 2023; 94:780-791. [PMID: 37001843 DOI: 10.1016/j.biopsych.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Moritz Haneklaus
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Park G, Jang WE, Kim S, Gonzales EL, Ji J, Choi S, Kim Y, Park JH, Mohammad HB, Bang G, Kang M, Kim S, Jeon SJ, Kim JY, Kim KP, Shin CY, An JY, Kim MS, Lee YS. Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med 2023; 55:1783-1794. [PMID: 37524878 PMCID: PMC10474298 DOI: 10.1038/s12276-023-01065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social behavior and communication, repetitive behaviors, and restricted interests. In addition to genetic factors, environmental factors such as prenatal drug exposure contribute to the development of ASD. However, how those prenatal factors induce behavioral deficits in the adult stage is not clear. To elucidate ASD pathogenesis at the molecular level, we performed a high-resolution mass spectrometry-based quantitative proteomic analysis on the prefrontal cortex (PFC) of mice exposed to valproic acid (VPA) in utero, a widely used animal model of ASD. Differentially expressed proteins (DEPs) in VPA-exposed mice showed significant overlap with ASD risk genes, including differentially expressed genes from the postmortem cortex of ASD patients. Functional annotations of the DEPs revealed significant enrichment in the Wnt/β-catenin signaling pathway, which is dysregulated by the upregulation of Rnf146 in VPA-exposed mice. Consistently, overexpressing Rnf146 in the PFC impaired social behaviors and altered the Wnt signaling pathway in adult mice. Furthermore, Rnf146-overexpressing PFC neurons showed increased excitatory synaptic transmission, which may underlie impaired social behavior. These results demonstrate that Rnf146 is critical for social behavior and that dysregulation of Rnf146 underlies social deficits in VPA-exposed mice.
Collapse
Affiliation(s)
- Gaeun Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wooyoung Eric Jang
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghwan Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Minkyung Kang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soobin Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea.
| | - Yong-Seok Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
13
|
Aguiar AFL, Campos RMP, Isaac AR, Paes-Colli Y, Carvalho VM, Sampaio LS, de Melo Reis RA. Long-Term Treatment with Cannabidiol-Enriched Cannabis Extract Induces Synaptic Changes in the Adolescent Rat Hippocampus. Int J Mol Sci 2023; 24:11775. [PMID: 37511537 PMCID: PMC10380262 DOI: 10.3390/ijms241411775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endocannabinoid system (eCS) is widely distributed in mammalian tissues and it is classically formed by cannabinoid receptors, endogenous bioactive lipids and its synthesis and degradation enzymes. Due to the modulatory role of eCS in synaptic activity in the Central Nervous System (CNS), phytocannabinoids have been increasingly used for the treatment of neurological disorders, even though little is known in terms of the long-term effect of these treatments on CNS development, mainly in the timeframe that comprises childhood and adolescence. Furthermore, an increased number of clinical trials using full-spectrum Cannabis extracts has been seen, rather than the isolated form of phytocannabinoids, when exploring the therapeutical benefits of the Cannabis plant. Thus, this study aims to evaluate the effect of cannabidiol (CBD)-enriched Cannabis extract on synaptic components in the hippocampus of rats from adolescence to early adulthood (postnatal day 45 to 60). Oral treatment of healthy male Wistar rats with a CBD-enriched Cannabis extract (3 mg/kg/day CBD) during 15 days did not affect food intake and water balance. There was also no negative impact on locomotor behaviour and cognitive performance. However, the hippocampal protein levels of GluA1 and GFAP were reduced in animals treated with the extract, whilst PSD95 levels were increased, which suggests rearrangement of glutamatergic synapses and modulation of astrocytic features. Microglial complexity was reduced in CA1 and CA3 regions, but no alterations in their phagocytic activity have been identified by Iba-1 and LAMP2 co-localization. Collectively, our data suggest that CBD-enriched Cannabis treatment may be safe and well-tolerated in healthy subjects, besides acting as a neuroprotective agent against hippocampal alterations related to the pathogenesis of excitatory and astrogliosis-mediated disorders in CNS.
Collapse
Affiliation(s)
- Andrey F L Aguiar
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Raquel M P Campos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Yolanda Paes-Colli
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Virgínia M Carvalho
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Luzia S Sampaio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Ricardo A de Melo Reis
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| |
Collapse
|
14
|
Perversi F, Costa C, Labate A, Lattanzi S, Liguori C, Maschio M, Meletti S, Nobili L, Operto FF, Romigi A, Russo E, Di Bonaventura C. The broad-spectrum activity of perampanel: state of the art and future perspective of AMPA antagonism beyond epilepsy. Front Neurol 2023; 14:1182304. [PMID: 37483446 PMCID: PMC10359664 DOI: 10.3389/fneur.2023.1182304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glutamate is the brain's main excitatory neurotransmitter. Glutamatergic neurons primarily compose basic neuronal networks, especially in the cortex. An imbalance of excitatory and inhibitory activities may result in epilepsy or other neurological and psychiatric conditions. Among glutamate receptors, AMPA receptors are the predominant mediator of glutamate-induced excitatory neurotransmission and dictate synaptic efficiency and plasticity by their numbers and/or properties. Therefore, they appear to be a major drug target for modulating several brain functions. Perampanel (PER) is a highly selective, noncompetitive AMPA antagonist approved in several countries worldwide for treating different types of seizures in various epileptic conditions. However, recent data show that PER can potentially address many other conditions within epilepsy and beyond. From this perspective, this review aims to examine the new preclinical and clinical studies-especially those produced from 2017 onwards-on AMPA antagonism and PER in conditions such as mesial temporal lobe epilepsy, idiopathic and genetic generalized epilepsy, brain tumor-related epilepsy, status epilepticus, rare epileptic syndromes, stroke, sleep, epilepsy-related migraine, cognitive impairment, autism, dementia, and other neurodegenerative diseases, as well as provide suggestions on future research agenda aimed at probing the possibility of treating these conditions with PER and/or other AMPA receptor antagonists.
Collapse
Affiliation(s)
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Neurological Clinic, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome ‘Tor Vergata”, Rome, Italy
- Epilepsy Center, Neurology Unit, University Hospital “Tor Vergata”, Rome, Italy
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Meletti
- Neurology Department, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genova, Genova, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Romigi
- Sleep Medicine Center, Neurological Mediterranean Institute IRCCS Neuromed, Pozzilli, Italy
- Psychology Faculty, International Telematic University Uninettuno, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Nakhal MM, Jayaprakash P, Aburuz S, Sadek B, Akour A. Canagliflozin Ameliorates Oxidative Stress and Autistic-like Features in Valproic-Acid-Induced Autism in Rats: Comparison with Aripiprazole Action. Pharmaceuticals (Basel) 2023; 16:ph16050769. [PMID: 37242552 DOI: 10.3390/ph16050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry and Molecular Biology Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
16
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
17
|
Maisterrena A, Matas E, Mirfendereski H, Balbous A, Marchand S, Jaber M. The State of the Dopaminergic and Glutamatergic Systems in the Valproic Acid Mouse Model of Autism Spectrum Disorder. Biomolecules 2022; 12:1691. [PMID: 36421705 PMCID: PMC9688008 DOI: 10.3390/biom12111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/23/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a progressive neurodevelopmental disorder mainly characterized by deficits in social communication and stereotyped behaviors and interests. Here, we aimed to investigate the state of several key players in the dopamine and glutamate neurotransmission systems in the valproic acid (VPA) animal model that was administered to E12.5 pregnant females as a single dose (450 mg/kg). We report no alterations in the number of mesencephalic dopamine neurons or in protein levels of tyrosine hydroxylase in either the striatum or the nucleus accumbens. In females prenatally exposed to VPA, levels of dopamine were slightly decreased while the ratio of DOPAC/dopamine was increased in the dorsal striatum, suggesting increased turn-over of dopamine tone. In turn, levels of D1 and D2 dopamine receptor mRNAs were increased in the nucleus accumbens of VPA mice suggesting upregulation of the corresponding receptors. We also report decreased protein levels of striatal parvalbumin and increased levels of p-mTOR in the cerebellum and the motor cortex of VPA mice. mRNA levels of mGluR1, mGluR4, and mGluR5 and the glutamate receptor subunits NR1, NR2A, and NR2B were not altered by VPA, nor were protein levels of NR1, NR2A, and NR2B and those of BDNF and TrkB. These findings are of interest as clinical trials aiming at the dopamine and glutamate systems are being considered.
Collapse
Affiliation(s)
- Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Emmanuel Matas
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Helene Mirfendereski
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Sandrine Marchand
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| |
Collapse
|
18
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Mishra A, Singla R, Kumar R, Sharma A, Joshi R, Sarma P, Kaur G, Prajapat M, Bhatia A, Medhi B. Granulocyte Colony-Stimulating Factor Improved Core Symptoms of Autism Spectrum Disorder via Modulating Glutamatergic Receptors in the Prefrontal Cortex and Hippocampus of Rat Brains. ACS Chem Neurosci 2022; 13:2942-2961. [PMID: 36166499 DOI: 10.1021/acschemneuro.2c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic neuroinflammation-induced anomalous glutamate receptor activation has been identified as one of the important factors in the pathogenesis of autism spectrum disorder (ASD). Thus, the current study was designed to elucidate the neuroprotective effect of the granulocyte colony-stimulating factor (G-CSF), a haemopoietic growth factor, an anti-inflammatory, and a neuroprotectant to decipher the underlying mechanism(s) in the valproic acid (VPA)-induced experimental model of ASD. Experimentally, the ASD rat model was induced by a single dose of VPA (600 mg/kg; i.p.) on gestation day 12.5 to the pregnant female rats. After birth, pups were treated with vehicle, normal saline 0.9% i.p., risperidone (2.5 mg/kg; i.p.), and G-CSF (10, 35, and 70 μg/kg; i.p.) from postnatal day (PND) 23 to 43. All the groups were subjected to various developmental and behavior tests from birth. The rats were sacrificed on PND 55, and their brain was excised and processed for biochemical parameters (oxidative stress, inflammatory markers, BDNF), histological examination (H&E, Nissl staining), NMDA, and AMPA receptor expression by immunohistochemistry, western blot, and real-time polymerase chain reaction evaluation. Also, the possible interaction of the G-CSF with NMDA and AMPA receptors was evaluated using the in-silico method. The results of the study showed that in VPA-exposed rats, postnatal treatment of G-CSF rescued all the behavioral abnormalities, oxidative stress, and inflammatory parameters in a dose-dependent manner while risperidone did not show any significant results. The in-silico analysis showed the direct interaction of G-CSF with NMDA and AMPA receptors. The upregulated expression of NMDA and AMPA both in the prefrontal cortex as well as hippocampus was alleviated by G-CSF thereby validating its anti-inflammatory and excitoprotective properties. Thus, G-CSF demonstrated neuroprotection against the core symptoms of autism in the VPA-induced rodent model, making it a potential candidate for the treatment of ASD.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - AmitRaj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| |
Collapse
|
20
|
Willardiine and Its Synthetic Analogues: Biological Aspects and Implications in Peptide Chemistry of This Nucleobase Amino Acid. Pharmaceuticals (Basel) 2022; 15:ph15101243. [PMID: 36297355 PMCID: PMC9611319 DOI: 10.3390/ph15101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/16/2022] Open
Abstract
Willardiine is a nonprotein amino acid containing uracil, and thus classified as nucleobase amino acid or nucleoamino acid, that together with isowillardiine forms the family of uracilylalanines isolated more than six decades ago in higher plants. Willardiine acts as a partial agonist of ionotropic glutamate receptors and more in particular it agonizes the non-N-methyl-D-aspartate (non-NMDA) receptors of L-glutamate: ie. the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and kainate receptors. Several analogues and derivatives of willardiine have been synthesised in the laboratory in the last decades and these compounds show different binding affinities for the non-NMDA receptors. More in detail, the willardiine analogues have been employed not only in the investigation of the structure of AMPA and kainate receptors, but also to evaluate the effects of receptor activation in the various brain regions. Remarkably, there are a number of neurological diseases determined by alterations in glutamate signaling, and thus, ligands for AMPA and kainate receptors deserve attention as potential neurodrugs. In fact, similar to willardiine its analogues often act as agonists of AMPA and kainate receptors. A particular importance should be recognized to willardiine and its thymine-based analogue AlaT also in the peptide chemistry field. In fact, besides the naturally-occurring short nucleopeptides isolated from plant sources, there are different examples in which this class of nucleoamino acids was investigated for nucleopeptide development. The applications are various ranging from the realization of nucleopeptide/DNA chimeras for diagnostic applications, and nucleoamino acid derivatization of proteins for facilitating protein-nucleic acid interaction, to nucleopeptide-nucleopeptide molecular recognition for nanotechnological applications. All the above aspects on both chemistry and biotechnological applications of willardine/willardine-analogues and nucleopeptide will be reviewed in this work.
Collapse
|
21
|
Lim S, Lee S. Chemical Modulators for Targeting Autism Spectrum Disorders: From Bench to Clinic. Molecules 2022; 27:molecules27165088. [PMID: 36014340 PMCID: PMC9414776 DOI: 10.3390/molecules27165088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by diverse behavioral symptoms such as repetitive behaviors, social deficits, anxiety, hyperactivity, and irritability. Despite their increasing incidence, the specific pathological mechanisms of ASD are still unknown, and the degree and types of symptoms that vary from patient to patient make it difficult to develop drugs that target the core symptoms of ASD. Although various atypical antipsychotics and antidepressants have been applied to regulate ASD symptoms, these drugs can only alleviate the symptoms and do not target the major causes. Therefore, development of novel drugs targeting factors directly related to the onset of ASD is required. Among the various factors related to the onset of ASD, several chemical modulators to treat ASD, focused on serotonin (5-hydroxytryptamine, 5-HT) and glutamate receptors, microbial metabolites, and inflammatory cytokines, are explored in this study. In particular, we focus on the chemical drugs that have improved various aspects of ASD symptoms in animal models and in clinical trials for various ages of patients with ASD.
Collapse
Affiliation(s)
- Songhyun Lim
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-958-5138
| |
Collapse
|
22
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
23
|
SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci 2022; 79:278. [PMID: 35505150 PMCID: PMC9064851 DOI: 10.1007/s00018-022-04291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.
Collapse
|
24
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
25
|
Kuo HY, Liu FC. Pathophysiological Studies of Monoaminergic Neurotransmission Systems in Valproic Acid-Induced Model of Autism Spectrum Disorder. Biomedicines 2022; 10:560. [PMID: 35327362 PMCID: PMC8945169 DOI: 10.3390/biomedicines10030560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. The core syndromes of ASD are deficits in social communication and self-restricted interests and repetitive behaviors. Social communication relies on the proper integration of sensory and motor functions, which is tightly interwoven with the limbic function of reward, motivation, and emotion in the brain. Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are key players in the modulation of neuronal activity. Owing to their broad distribution, the monoamine neurotransmitter systems are well suited to modulate social communication by coordinating sensory, motor, and limbic systems in different brain regions. The complex and diverse functions of monoamine neurotransmission thus render themselves as primary targets of pathophysiological investigation of the etiology of ASD. Clinical studies have reported that children with maternal exposure to valproic acid (VPA) have an increased risk of developing ASD. Extensive animal studies have confirmed that maternal treatments of VPA include ASD-like phenotypes, including impaired social communication and repetitive behavior. Here, given that ASD is a neurodevelopmental disorder, we begin with an overview of the neural development of monoaminergic systems with their neurochemical properties in the brain. We then review and discuss the evidence of human clinical and animal model studies of ASD with a focus on the VPA-induced pathophysiology of monoamine neurotransmitter systems. We also review the potential interactions of microbiota and monoamine neurotransmitter systems in ASD pathophysiology. Widespread and complex changes in monoamine neurotransmitters are detected in the brains of human patients with ASD and validated in animal models. ASD animal models are not only essential to the characterization of pathogenic mechanisms, but also provide a preclinical platform for developing therapeutic approaches to ASD.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
26
|
Park G, Jeon SJ, Ko IO, Park JH, Lee KC, Kim MS, Shin CY, Kim H, Lee YS. Decreased in vivo glutamate/GABA ratio correlates with the social behavior deficit in a mouse model of autism spectrum disorder. Mol Brain 2022; 15:19. [PMID: 35183218 PMCID: PMC8858545 DOI: 10.1186/s13041-022-00904-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
To diagnose autism spectrum disorder (ASD), researchers have sought biomarkers whose alterations correlate with the susceptibility to ASD. However, biomarkers closely related to the pathophysiology of ASD are lacking. Even though excitation/inhibition (E/I) imbalance has been suggested as an underlying mechanism of ASD, few studies have investigated the actual ratio of glutamate (Glu) to γ-aminobutyric acid (GABA) concentration in vivo. Moreover, there are controversies in the directions of E/I ratio alterations even in extensively studied ASD animal models. Here, using proton magnetic resonance spectroscopy (1H-MRS) at 9.4T, we found significant differences in the levels of different metabolites or their ratios in the prefrontal cortex and hippocampus of Cntnap2−/− mice compared to their wild-type littermates. The Glu/GABA ratio, N-acetylaspartate (NAA)/total creatine (tCr) ratio, and tCr level in the prefrontal cortex were significantly different in Cntnap2−/− mice compared to those in wild-type mice, and they significantly correlated with the sociability of mice. Moreover, receiver operating characteristic (ROC) analyses indicated high specificity and selectivity of these metabolites in discriminating genotypes. These results suggest that the lowered Glu/GABA ratio in the prefrontal cortex along with the changes in the other metabolites might contribute to the social behavior deficit in Cntnap2−/− mice. Our results also demonstrate the utility of 1H-MRS in investigating the underlying mechanisms or the diagnosis of ASD.
Collapse
|
27
|
Adil KJ, Remonde CG, Gonzales EL, Boo KJ, Kwon KJ, Kim DH, Kim HJ, Cheong JH, Shin CY, Jeon SJ. Behavioral Deficits in Adolescent Mice after Sub-Chronic Administration of NMDA during Early Stage of Postnatal Development. Biomol Ther (Seoul) 2022; 30:320-327. [PMID: 35135902 PMCID: PMC9252881 DOI: 10.4062/biomolther.2021.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
Abstract
Neurodevelopmental disorders are complex conditions that pose difficulty in the modulation of proper motor, sensory and cognitive function due to dysregulated neuronal development. Previous studies have reported that an imbalance in the excitation/ inhibition (E/I) in the brain regulated by glutamatergic and/or GABAergic neurotransmission can cause neurodevelopmental and neuropsychiatric behavioral deficits such as autism spectrum disorder (ASD). NMDA acts as an agonist at the NMDA receptor and imitates the action of the glutamate on that receptor. NMDA however, unlike glutamate, only binds to and regulates the NMDA receptor subtypes and not the other glutamate receptors. This study seeks to determine whether NMDA administration in mice i.e., over-activation of the NMDA system would result in long-lasting behavioral deficits in the adolescent mice. Both gender mice were treated with NMDA or saline at early postnatal developmental period with significant synaptogenesis and synaptic maturation. On postnatal day 28, various behavioral experiments were conducted to assess and identify behavioral characteristics. NMDAtreated mice show social deficits, and repetitive behavior in both gender mice at adolescent periods. However, only the male mice but not female mice showed increased locomotor activity. This study implies that neonatal exposure to NMDA may illicit behavioral features similar to ASD. This study also confirms the validity of the E/I imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model for ASD. Future studies may explore the mechanism behind the gender difference in locomotor activity as well as the human relevance and therapeutic significance of the present findings.
Collapse
Affiliation(s)
- Keremkleroo Jym Adil
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Jun Boo
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyong Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
28
|
Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA Receptor Function in Hypothalamic Synapses. Front Synaptic Neurosci 2022; 14:833449. [PMID: 35173598 PMCID: PMC8842481 DOI: 10.3389/fnsyn.2022.833449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
AMPA receptors (AMPARs) are critical for mediating glutamatergic synaptic transmission and plasticity, thus playing a major role in the molecular machinery underlying cellular substrates of memory and learning. Their expression pattern, transport and regulatory mechanisms have been extensively studied in the hippocampus, but their functional properties in other brain regions remain poorly understood. Interestingly, electrophysiological and molecular evidence has confirmed a prominent role of AMPARs in the regulation of hypothalamic function. This review summarizes the existing evidence on AMPAR-mediated transmission in the hypothalamus, where they are believed to orchestrate the role of glutamatergic transmission in autonomous, neuroendocrine function, body homeostasis, and social behavior.
Collapse
|
29
|
Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals (Basel) 2022; 15:ph15020161. [PMID: 35215274 PMCID: PMC8875614 DOI: 10.3390/ph15020161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by social deficits, repetitive stereotyped behaviors, and altered inflammatory responses. Accordingly, children with ASD show decreased plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation, which is the endogenous ligand of the formyl peptide receptor 2 (FPR2). To investigate the role of FPR2 in ASDs, we have used a new ureidopropanamide derivative able to activate the receptor, named MR-39. The effects of MR-39 (10 mg/kg, for 8 days) on hippocampal pro-inflammatory profile, neuronal plasticity, and social behavior were evaluated in two validated animal models of ASD: BTBR mouse strain and mice prenatally exposed to valproic acid (VPA). Primary cultures of hippocampal neurons from BTBR mice were also used to evaluate the effect of MR-39 on neurite elongation. Our results show that MR-39 treatment reduced several inflammatory markers, restored the low expression of LXA4, and modulated FPR2 expression in hippocampal tissues of both ASD animal models. These findings were accompanied by a significant positive effect of MR-39 on social behavioral tests of ASD mice. Finally, MR-39 stimulates neurite elongation in isolated hippocampal neurons of BTBR mice. In conclusion, these data indicate FPR2 as a potential target for an innovative therapeutical approach for the cure of ASD.
Collapse
|
30
|
Kim HY, Lee YJ, Kim SJ, Lee JD, Kim S, Ko MJ, Kim JW, Shin CY, Kim KB. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1-13. [PMID: 34445937 DOI: 10.1080/15287394.2021.1967821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Yong-Jae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sun Jae Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Republic of Korea
| | - Mee Jung Ko
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chan Young Shin
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| |
Collapse
|
31
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
32
|
St George-Hyslop F, Kivisild T, Livesey FJ. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front Mol Neurosci 2022; 15:1017144. [PMID: 36340692 PMCID: PMC9630569 DOI: 10.3389/fnmol.2022.1017144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is associated with multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), and specific language impairment (SLI). Experimental work has shown that CNTNAP2 is important for neuronal development and synapse formation. There is also accumulating evidence for the differential use of CNTNAP2 in the human cerebral cortex compared with other primates. Here, we review the current literature on CNTNAP2, including what is known about its expression, disease associations, and molecular/cellular functions. We also review the evidence for its role in human brain evolution, such as the presence of eight human accelerated regions (HARs) within the introns of the gene. While progress has been made in understanding the function(s) of CNTNAP2, more work is needed to clarify the precise mechanisms through which CNTNAP2 acts. Such information will be crucial for developing effective treatments for CNTNAP2 patients. It may also shed light on the longstanding question of what makes us human.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
33
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
34
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Adil KJ, Gonzales EL, Remonde CG, Boo KJ, Jeon SJ, Shin CY. Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate. Biomol Ther (Seoul) 2021; 30:232-237. [PMID: 34702791 PMCID: PMC9047488 DOI: 10.4062/biomolther.2021.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.
Collapse
Affiliation(s)
- Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
36
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Möhrle D, Wang W, Whitehead SN, Schmid S. GABA B Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front Integr Neurosci 2021; 15:710593. [PMID: 34489651 PMCID: PMC8417788 DOI: 10.3389/fnint.2021.710593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Altered sensory information processing, and auditory processing, in particular, is a common impairment in individuals with autism spectrum disorder (ASD). One prominent hypothesis for the etiology of ASD is an imbalance between neuronal excitation and inhibition. The selective GABAB receptor agonist R-Baclofen has been shown previously to improve social deficits and repetitive behaviors in several mouse models for neurodevelopmental disorders including ASD, and its formulation Arbaclofen has been shown to ameliorate social avoidance symptoms in some individuals with ASD. The present study investigated whether R-Baclofen can remediate ASD-related altered sensory processing reliant on excitation/inhibition imbalance in the auditory brainstem. To assess a possible excitation/inhibition imbalance in the startle-mediating brainstem underlying ASD-like auditory-evoked behaviors, we detected and quantified brain amino acid levels in the nucleus reticularis pontis caudalis (PnC) of rats with a homozygous loss-of-function mutation in the ASD-linked gene Contactin-associated protein-like 2 (Cntnap2) and their wildtype (WT) littermates using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS). Abnormal behavioral read-outs of brainstem auditory signaling in Cntnap2 KO rats were accompanied by increased levels of GABA, glutamate, and glutamine in the PnC. We then compared the effect of R-Baclofen on behavioral read-outs of brainstem auditory signaling in Cntnap2 KO and WT rats. Auditory reactivity, sensory filtering, and sensorimotor gating were tested in form of acoustic startle response input-output functions, short-term habituation, and prepulse inhibition before and after acute administration of R-Baclofen (0.75, 1.5, and 3 mg/kg). Systemic R-Baclofen treatment improved disruptions in sensory filtering in Cntnap2 KO rats and suppressed exaggerated auditory startle responses, in particular to moderately loud sounds. Lower ASR thresholds in Cntnap2 KO rats were increased in a dose-dependent fashion, with the two higher doses bringing thresholds close to controls, whereas shorter ASR peak latencies at the threshold were further exacerbated. Impaired prepulse inhibition increased across various acoustic prepulse conditions after administration of R-Baclofen in Cntnap2 KO rats, whereas R-Baclofen did not affect prepulse inhibition in WT rats. Our findings suggest that GABAB receptor agonists may be useful for pharmacologically targeting multiple aspects of sensory processing disruptions involving neuronal excitation/inhibition imbalances in ASD.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
38
|
Jabarin R, Levy N, Abergel Y, Berman JH, Zag A, Netser S, Levy AP, Wagner S. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl Psychiatry 2021; 11:234. [PMID: 33888678 PMCID: PMC8062516 DOI: 10.1038/s41398-021-01347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In this study we tested the hypothesis that pharmacological modulation of glutamatergic neurotransmission could rescue behavioral deficits exhibited by mice carrying a specific mutation in the Iqsec2 gene. The IQSEC2 protein plays a key role in glutamatergic synapses and mutations in the IQSEC2 gene are a frequent cause of neurodevelopmental disorders. We have recently reported on the molecular pathophysiology of one such mutation A350V and demonstrated that this mutation downregulates AMPA type glutamatergic receptors (AMPAR) in A350V mice. Here we sought to identify behavioral deficits in A350V mice and hypothesized that we could rescue these deficits by PF-4778574, a positive AMPAR modulator. Using a battery of social behavioral tasks, we found that A350V Iqsec2 mice exhibit specific deficits in sex preference and emotional state preference behaviors as well as in vocalizations when encountering a female mouse. The social discrimination deficits, but not the impaired vocalization, were rescued with a single dose of PF-4778574. We conclude that social behavior deficits associated with the A350V Iqsec2 mutation may be rescued by enhancing AMPAR mediated synaptic transmission.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nina Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Joshua H Berman
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Amir Zag
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
39
|
NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 2021; 10:cells10010077. [PMID: 33466431 PMCID: PMC7824909 DOI: 10.3390/cells10010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.
Collapse
|
40
|
Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol Psychiatry 2021; 26:1505-1519. [PMID: 31388105 PMCID: PMC8159750 DOI: 10.1038/s41380-019-0472-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Genetic studies of autism spectrum disorder (ASD) have revealed multigene variations that converge on synaptic dysfunction. DOCK4, a gene at 7q31.1 that encodes the Rac1 guanine nucleotide exchange factor Dock4, has been identified as a risk gene for ASD and other neuropsychiatric disorders. However, whether and how Dock4 disruption leads to ASD features through a synaptic mechanism remain unexplored. We generated and characterized a line of Dock4 knockout (KO) mice, which intriguingly displayed a series of ASD-like behaviors, including impaired social novelty preference, abnormal isolation-induced pup vocalizations, elevated anxiety, and perturbed object and spatial learning. Mice with conditional deletion of Dock4 in hippocampal CA1 recapitulated social preference deficit in KO mice. Examination in CA1 pyramidal neurons revealed that excitatory synaptic transmission was drastically attenuated in KO mice, accompanied by decreased spine density and synaptic content of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors. Moreover, Dock4 deficiency markedly reduced Rac1 activity in the hippocampus, which resulted in downregulation of global protein synthesis and diminished expression of AMPA and NMDA receptor subunits. Notably, Rac1 replenishment in the hippocampal CA1 of Dock4 KO mice restored excitatory synaptic transmission and corrected impaired social deficits in these mice, and pharmacological activation of NMDA receptors also restored social novelty preference in Dock4 KO mice. Together, our findings uncover a previously unrecognized Dock4-Rac1-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and social behavior.
Collapse
|
41
|
IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol Psychiatry 2021; 26:7498-7508. [PMID: 34535765 PMCID: PMC8873005 DOI: 10.1038/s41380-021-01281-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Collapse
|
42
|
Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci 2020; 22:ijms22010059. [PMID: 33374598 PMCID: PMC7793137 DOI: 10.3390/ijms22010059] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.
Collapse
|
43
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
44
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
45
|
Kim JW, Oh HA, Kim SR, Ko MJ, Seung H, Lee SH, Shin CY. Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid. Biomol Ther (Seoul) 2020; 28:389-396. [PMID: 32319264 PMCID: PMC7457173 DOI: 10.4062/biomolther.2020.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/05/2022] Open
Abstract
Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mee Jung Ko
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chan Young Shin
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
46
|
Wang X, Gao C, Zhang Y, Xu J, Fang Q, Gou L, Yang Z, Mei D, Liu L, Li L, Liu J, Zhang H, Song Y. Neuronal Nitric Oxide Synthase Knockdown Within Basolateral Amygdala Induces Autistic-Related Phenotypes and Decreases Excitatory Synaptic Transmission in Mice. Front Neurosci 2020; 14:886. [PMID: 32982674 PMCID: PMC7488195 DOI: 10.3389/fnins.2020.00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/29/2020] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by deficits in communication, impaired social interaction, and repetitive or restricted interests and behaviors. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala of mice after postnatal valproic acid exposure. However, the specific role of nNOS downregulation in mice remains to be elucidated. Herein, we investigated the behavioral alternations of naive mice with a recombinant adeno-associated virus (rAAV)-mediated knockdown of nNOS in a comprehensive test battery, including the social interaction, marble burying, self-grooming, and open field tests. Further, the electrophysiological and surface expression changes induced by nNOS deficiency of the basolateral amygdala in these animals were examined. Our results show that nNOS knockdown displayed typical symptoms of ASD-like behaviors, such as reduced social interaction and communication, elevated stereotypes, and anxiety in mice. Surprisingly, we found that nNOS knockdown exhibited greatly reduced excitatory synaptic transmission concomitant with the lower surface expression of GluN2B-containing N-methyl-D-aspartate receptors and postsynaptic density protein 95 in mice. These findings support a notion that dysregulation of nNOS might contribute to ASD-associated phenotypes, with disease pathogenesis most likely resulting from deficits in excitatory synaptic transmission.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinxiu Xu
- School of Basic Medicine, Sanquan Medical College, Xinxiang, China
| | - Quanfeng Fang
- Healthcare Department, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Zhigang Yang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Leiming Liu
- Department of Medical Assistance, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Linfei Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huichun Zhang
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yinsen Song
- People's Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020; 42:12-48. [DOI: 10.1159/000509109] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
|
48
|
Scheggi S, Guzzi F, Braccagni G, De Montis MG, Parenti M, Gambarana C. Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences. Mol Autism 2020; 11:62. [PMID: 32718349 PMCID: PMC7385875 DOI: 10.1186/s13229-020-00358-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The social motivational theory of autism spectrum disorder (ASD) focuses on social anhedonia as key causal feature of the impaired peer relationships that characterize ASD patients. ASD prevalence is higher in boys, but increasing evidence suggests underdiagnosis and undertreatment in girls. We showed that stress-induced motivational anhedonia is relieved by repeated treatment with fenofibrate (FBR), a peroxisome proliferator-activated receptor α (PPARα) agonist. Here, we used the valproic acid (VPA) model of ASD in rats to examine male and female phenotypes and assess whether FBR administration from weaning to young adulthood relieved social impairments. METHODS Male and female rats exposed to saline or VPA at gestational day 12.5 received standard or FBR-enriched diet from postnatal day 21 to 48-53, when behavioral tests and ex vivo neurochemical analyses were performed. Phosphorylation levels of DARPP-32 in response to social and nonsocial cues, as index of dopamine D1 receptor activation, levels of expression of PPARα, vesicular glutamatergic and GABAergic transporters, and postsynaptic density protein PSD-95 were analyzed by immunoblotting in selected brain regions. RESULTS FBR administration relieved social impairment and perseverative behavior in VPA-exposed male and female rats, but it was only effective on female stereotypies. Dopamine D1 receptor signaling triggered by social interaction in the nucleus accumbens shell was blunted in VPA-exposed rats, and it was rescued by FBR treatment only in males. VPA-exposed rats of both sexes exhibited an increased ratio of striatal excitatory over inhibitory synaptic markers that was normalized by FBR treatment. LIMITATIONS This study did not directly address the extent of motivational deficit in VPA-exposed rats and whether FBR administration restored the likely decreased motivation to operate for social reward. Future studies using operant behavior protocols will address this relevant issue. CONCLUSIONS The results support the involvement of impaired motivational mechanisms in ASD-like social deficits and suggest the rationale for a possible pharmacological treatment. Moreover, the study highlights sex-related differences in the expression of ASD-like symptoms and their differential responses to FBR treatment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy.
| | - Francesca Guzzi
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Braccagni
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Maria Graziella De Montis
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Marco Parenti
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Gambarana
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| |
Collapse
|
49
|
Lenart J, Augustyniak J, Lazarewicz JW, Zieminska E. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: A screening test. Toxicology 2020; 440:152500. [DOI: 10.1016/j.tox.2020.152500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
|
50
|
Heavner WE, Smith SEP. Resolving the Synaptic versus Developmental Dichotomy of Autism Risk Genes. Trends Neurosci 2020; 43:227-241. [PMID: 32209454 DOI: 10.1016/j.tins.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
Genes that are mutated in Autism Spectrum Disorders (ASD) can be classified broadly as either synaptic or developmental. But what if this is a false distinction? A recent spate of publications has provided evidence for developmental mechanisms that rely on neural activity for proper cortical development. Conversely, a growing body of evidence indicates a role for developmental mechanisms, particularly chromatin remodeling, during learning or in response to neural activity. Here, we review these recent publications and propose a model in which genes that confer ASD risk operate in signal transduction networks critical for both cortical development and synaptic homeostasis.
Collapse
Affiliation(s)
- Whitney E Heavner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|