1
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 PMCID: PMC11638729 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Ding H, Kiguchi N, Dobbins M, Romero-Sandoval EA, Kishioka S, Ko MC. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 2023; 83:771-793. [PMID: 37209211 PMCID: PMC10948013 DOI: 10.1007/s40265-023-01878-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - MaryBeth Dobbins
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - E Alfonso Romero-Sandoval
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, 640-8392, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Stinson BT, Galbo LK, Flynn SM, Gouin A, Epperly PM, Davenport AT, Czoty PW. Punishment of ethanol choice in rhesus monkeys. Behav Pharmacol 2022; 33:395-401. [PMID: 35942846 PMCID: PMC9373234 DOI: 10.1097/fbp.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A defining characteristic of individuals diagnosed with alcohol use disorder (AUD) is that negative outcomes related to drinking do not lead them to reduce their alcohol use. In rodent models of AUD, this characteristic has been studied by adding the bitter tastant quinine to an ethanol solution. In this study, we extended this approach to a nonhuman primate model in which the ability of quinine to decrease the choice of a 4% ethanol solution vs. water was measured. Five adult female rhesus monkeys with 7.3 years of experience drinking ethanol were given access to a 4% ethanol solution and water for 3 h per day. When ethanol choice was stable, a single quinine concentration (0.03-5.6 g /L) was added to the ethanol solution for 1 day until a quinine concentration-effect curve was generated. After determining the quinine concentration that reduced ethanol choice by half (the quinine EC 50 ), the relative reinforcing strength of ethanol was manipulated by adding quinine or sucrose to the water alternative depending on the monkey's baseline choice. Adding quinine to ethanol produced a concentration-dependent decrease in ethanol choice and intake. Importantly, water intake increased, indicating an effect on response allocation rather than simply a decrease in fluid consumption. Consistent with this conclusion, the addition of quinine or sucrose to the water alternative resulted in predictable increases and decreases, respectively, in ethanol choice. These studies establish a model of punishment of ethanol choice in nonhuman primates that can be used to understand the contextual, biologic and pharmacologic factors that influence sensitivity to the punishment of alcohol drinking.
Collapse
Affiliation(s)
- Benjamin T Stinson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Coluzzi F, Rullo L, Scerpa MS, Losapio LM, Rocco M, Billeci D, Candeletti S, Romualdi P. Current and Future Therapeutic Options in Pain Management: Multi-mechanistic Opioids Involving Both MOR and NOP Receptor Activation. CNS Drugs 2022; 36:617-632. [PMID: 35616826 PMCID: PMC9166888 DOI: 10.1007/s40263-022-00924-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Opioids are widely used in chronic pain management, despite major concerns about their risk of adverse events, particularly abuse, misuse, and respiratory depression from overdose. Multi-mechanistic opioids, such as tapentadol and buprenorphine, have been widely studied as a valid alternative to traditional opioids for their safer profile. Special interest was focused on the role of the nociceptin opioid peptide (NOP) receptor in terms of analgesia and improved tolerability. Nociceptin opioid peptide receptor agonists were shown to reinforce the antinociceptive effect of mu opioid receptor (MOR) agonists and modulate some of their adverse effects. Therefore, multi-mechanistic opioids involving both MOR and NOP receptor activation became a major field of pharmaceutical and clinical investigations. Buprenorphine was re-discovered in a new perspective, as an atypical analgesic and as a substitution therapy for opioid use disorders; and buprenorphine derivatives have been tested in animal models of nociceptive and neuropathic pain. Similarly, cebranopadol, a full MOR/NOP receptor agonist, has been clinically evaluated for its potent analgesic efficacy and better tolerability profile, compared with traditional opioids. This review overviews pharmacological mechanisms of the NOP receptor system, including its role in pain management and in the development of opioid tolerance. Clinical data on buprenorphine suggest its role as a safer alternative to traditional opioids, particularly in patients with non-cancer pain; while data on cebranopadol still require phase III study results to approve its introduction on the market. Other bifunctional MOR/NOP receptor ligands, such as BU08028, BU10038, and AT-121, are currently under pharmacological investigations and could represent promising analgesic agents for the future.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Latina, Italy
- Unit Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Maria Sole Scerpa
- Unit Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy.
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| |
Collapse
|
5
|
Wang Y, Qin D, Guo Z, Shi F, Cannella N, Ciccocioppo R, Li H. Research progress on the potential novel analgesic BU08028. Eur J Pharmacol 2022; 914:174678. [PMID: 34875275 DOI: 10.1016/j.ejphar.2021.174678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Pain is a common symptom accompanying several clinical conditions and causes serious distress to patients. Addressing pain management is an important aspect of disease treatment, including cancer therapy. Opioid analgesics used to manage pain in human and veterinary medicine have been associated with substance dependence and other adverse effects, thereby limiting their application. Thus, the development of opioid analgesics with good safety profiles with minimal adverse effects and no addictive effects, is presently the focus of pain research. As a new potential analgesic, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028) has fewer adverse effects than other analgesics and is expected to be a safer alternative. In this review, we discuss the development of the opioid analog BU08028 and summarize its analgesic effects and biological characteristics, including efficiency, safety, and tolerance. Furthermore, we elaborate on studies showing the bifunctional effect of BU08028, which targets both mu opioid peptide and nociceptin-orphanin FQ peptide receptors, as well as the unique advantages of using BU08028 over single-target opioid agonists. Previous studies have suggested that BU08028 can not only weaken the reward and abuse effects of opioids and other drugs, but also enhance the anti-nociceptive effect of the mu opioid peptide receptors, making it a potent analgesic. Besides, we describe studies suggesting that BU08028 inhibits the effects of alcohol, making it a candidate drug for the management of alcohol addiction. Our review suggests that BU08028 is a potential novel medicine for managing pain and addiction.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Di Qin
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Zhihua Guo
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| |
Collapse
|
6
|
Ko MC, Husbands SM. Pleiotropic Effects of Kappa Opioid Receptor-Related Ligands in Non-human Primates. Handb Exp Pharmacol 2022; 271:435-452. [PMID: 33274403 PMCID: PMC8175454 DOI: 10.1007/164_2020_419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kappa opioid receptor (KOR)-related ligands have been demonstrated in preclinical studies for several therapeutic potentials. This chapter highlights (1) how non-human primates (NHP) studies facilitate the research and development of ligands targeting the KOR, (2) effects of the endogenous opioid peptide, dynorphin A-(1-17), and its analogs in NHP, and (3) pleiotropic effects and therapeutic applications of KOR-related ligands. In particular, synthetic ligands targeting the KOR have been extensively studied in NHP in three therapeutic areas, i.e., the treatment for itch, pain, and substance use disorders. As the KORs are widely expressed in the peripheral and central nervous systems, pleiotropic effects of KOR-related ligands, such as discriminative stimulus effects, neuroendocrine effects (e.g., prolactin release and stimulation of hypothalamic-pituitary-adrenal axis), and diuresis, in NHP are discussed. Centrally acting KOR agonists are known to produce adverse effects including dysphoria, hallucination, and sedation. Nonetheless, with strategic advances in medicinal chemistry, three classes of KOR-related agonists, i.e., peripherally restricted KOR agonists, mixed KOR/mu opioid receptor partial agonists, and G protein-biased KOR agonists, warrant additional NHP studies to improve our understanding of their functional efficacy, selectivity, and tolerability. Pharmacological studies in NHP which carry high translational significance will facilitate future development of KOR-based medications.
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
7
|
Bossert JM, Townsend EA, Altidor LKP, Fredriksson I, Shekara A, Husbands S, Sulima A, Rice KC, Banks ML, Shaham Y. Sex differences in the effect of chronic delivery of the buprenorphine analogue BU08028 on heroin relapse and choice in a rat model of opioid maintenance. Br J Pharmacol 2021; 179:227-241. [PMID: 34505281 DOI: 10.1111/bph.15679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Maintenance treatment with opioid agonists (buprenorphine, methadone) decreases opioid use and relapse. We recently modelled maintenance treatment in rats and found that chronic delivery of buprenorphine or the μ opioid receptor partial agonist TRV130 decreased relapse to oxycodone seeking and taking. Here, we tested the buprenorphine analogue BU08028 on different heroin relapse-related measures and heroin versus food choice. EXPERIMENTAL APPROACH For relapse assessment, we trained male and female rats to self-administer heroin (6 h·day-1 , 14 days) in Context A and then implanted osmotic minipumps containing BU08028 (0, 0.03 or 0.1 mg·kg-1 ·d-1 ). Effects of chronic BU08028 delivery were tested on (1) incubation of heroin-seeking in a non-drug Context B, (2) extinction responding reinforced by heroin-associated discrete cues in Context B, (3) reinstatement of heroin-seeking induced by re-exposure to Context A and (4) re-acquisition of heroin self-administration in Context A. For choice assessment, we tested the effect of chronic BU08028 delivery on heroin versus food choice. KEY RESULTS Chronic BU08028 delivery decreased incubation of heroin seeking. Unexpectedly, BU08028 increased re-acquisition of heroin self-administration selectively in females. Chronic BU08028 had minimal effects on context-induced reinstatement and heroin versus food choice in both sexes. Finally, exploratory post hoc analyses suggest that BU08028 decreased extinction responding selectively in males. CONCLUSIONS AND IMPLICATIONS Chronic BU08028 delivery had both beneficial and detrimental, sex-dependent, effects on different triggers of heroin relapse and minimal effects on heroin choice in both sexes. Results suggest that BU08028 would not be an effective opioid maintenance treatment in humans.
Collapse
Affiliation(s)
| | - E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| | - Aniruddha Shekara
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| | - Stephen Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA.,Chemical Biology Research Branch, IRP/NIAAA/NIH, Rockville, Maryland, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA.,Chemical Biology Research Branch, IRP/NIAAA/NIH, Rockville, Maryland, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
10
|
Abstract
Buprenorphine has not only had an interdisciplinary impact on our understanding of key neuroscience topics like opioid pharmacology, pain signaling, and reward processing but has also been a key influence in changing the way that substance use disorders are approached in modern medical systems. From its leading role in expanding outpatient treatment of opioid use disorders to its continued influence on research into next-generation analgesics, buprenorphine has been a continuous player in the ever-evolving societal perception of opioids and substance use disorder. To provide a multifaceted account on the enormous diversity of areas where this molecule has made an impact, this article discusses buprenorphine's chemical properties, synthesis and development, pharmacology, adverse effects, manufacturing information, and historical place in the field of chemical neuroscience.
Collapse
Affiliation(s)
- Jillian L. Kyzer
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Cody J. Wenthur
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Damuka N, Czoty PW, Davis AT, Nader MA, Nader SH, Craft S, Macauley SL, Galbo LK, Epperly PM, Whitlow CT, Davenport AT, Martin TJ, Daunais JB, Mintz A, Solingapuram Sai KK. PET Imaging of [ 11C]MPC-6827, a Microtubule-Based Radiotracer in Non-Human Primate Brains. Molecules 2020; 25:E2289. [PMID: 32414052 PMCID: PMC7287733 DOI: 10.3390/molecules25102289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of microtubules is commonly associated with several psychiatric and neurological disorders, including addiction and Alzheimer's disease. Imaging of microtubules in vivo using positron emission tomography (PET) could provide valuable information on their role in the development of disease pathogenesis and aid in improving therapeutic regimens. We developed [11C]MPC-6827, the first brain-penetrating PET radiotracer to image microtubules in vivo in the mouse brain. The aim of the present study was to assess the reproducibility of [11C]MPC-6827 PET imaging in non-human primate brains. Two dynamic 0-120 min PET/CT imaging scans were performed in each of four healthy male cynomolgus monkeys approximately one week apart. Time activity curves (TACs) and standard uptake values (SUVs) were determined for whole brains and specific regions of the brains and compared between the "test" and "retest" data. [11C]MPC-6827 showed excellent brain uptake with good pharmacokinetics in non-human primate brains, with significant correlation between the test and retest scan data (r = 0.77, p = 0.023). These initial evaluations demonstrate the high translational potential of [11C]MPC-6827 to image microtubules in the brain in vivo in monkey models of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - Paul W. Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Ashley T. Davis
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - Michael A. Nader
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Susan H. Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.C.); (S.L.M.)
| | - Shannon L. Macauley
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.C.); (S.L.M.)
| | - Lindsey K. Galbo
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Phillip M. Epperly
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (P.W.C.); (S.H.N.); (L.K.G.); (P.M.E.); (A.T.D.); (J.B.D.)
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY 10016, USA;
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (N.D.); (A.T.D.); (M.A.N.); (C.T.W.)
| |
Collapse
|
12
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|