1
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. Neuropharmacology 2024; 259:110098. [PMID: 39117106 PMCID: PMC11714651 DOI: 10.1016/j.neuropharm.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure. Our recent work identified dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE exposure significantly increased intrinsic excitability as well as spontaneous excitatory and inhibitory postsynaptic currents (sE/IPSCs) in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE exposure also increased the frequency of sEPSCs in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol exposure. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Joel E Shillinglaw
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Shannon R Wheeler
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo-Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024; 13:1809. [PMID: 39513916 PMCID: PMC11545051 DOI: 10.3390/cells13211809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Δ9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders.
Collapse
Affiliation(s)
- Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, I-09123 Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
| |
Collapse
|
3
|
Ramirez LA, Przybysz KR, Pitock JR, Starr EM, Yang H, Glover EJ. Attenuated incubation of ethanol-induced conditioned taste aversion in a model of dependence. Psychopharmacology (Berl) 2024; 241:1191-1203. [PMID: 38383904 PMCID: PMC11105978 DOI: 10.1007/s00213-024-06553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
RATIONALE Preclinical studies report attenuated ethanol-induced conditioned taste aversion (CTA) following chronic ethanol exposure, suggesting that tolerance develops to the aversive properties of ethanol. However, these studies are confounded by pre-exposure to the unconditioned stimulus (US; ethanol), which is well known to hinder conditioning. OBJECTIVES This study was designed to determine whether chronic ethanol exposure produces tolerance to the aversive properties of ethanol in the absence of a US pre-exposure confound. METHODS CTA was performed in adult male and female Long-Evans rats by pairing 0.1% ingested saccharin with an intraperitoneal injection of ethanol (1.5 or 2.0 g/kg) or saline. Rats were then rendered ethanol dependent using chronic intermittent ethanol (CIE) vapor exposure. Controls were exposed to room air (AIR). The effect of chronic ethanol on CTA expression and reconditioning were examined following vapor exposure. RESULTS Prior to vapor exposure, both sexes developed CTA to a comparable degree with 2.0 g/kg producing greater CTA than 1.5 g/kg ethanol. Following vapor exposure, AIR controls exhibited an increase in CTA magnitude compared to pre-vapor levels. This effect was largely absent in CIE-exposed rats. Re-conditioning after vapor exposure facilitated increased CTA magnitude to a similar degree in AIR- and CIE-exposed males. In contrast, CTA magnitude was unchanged by re-conditioning in females. CONCLUSIONS These data suggest that chronic ethanol does not facilitate tolerance to the aversive properties of ethanol but rather attenuates incubation of ethanol-induced CTA. Loss of CTA incubation suggests that CIE exposure disrupts circuits encoding aversion.
Collapse
Affiliation(s)
- Lindsey A Ramirez
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA
| | - Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA
| | - Joseph R Pitock
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC912, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592759. [PMID: 38766178 PMCID: PMC11100703 DOI: 10.1101/2024.05.06.592759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) which facilitate the maladaptive behaviors interfering with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is a GABAergic midbrain region involved in aversive signaling and is functionally altered by chronic ethanol exposure. Our recent work identified a dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE significantly increased intrinsic excitability as well as excitatory and inhibitory synaptic drive in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE also increased excitatory synaptic drive in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol.
Collapse
|
5
|
Duratkar A, Patel R, Jain NS. Neuronal nicotinic acetylcholine receptor of the central amygdala modulates the ethanol-induced tolerance to anxiolysis and withdrawal-induced anxiety in male rats. Behav Pharmacol 2024; 35:132-146. [PMID: 38451025 DOI: 10.1097/fbp.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.
Collapse
Affiliation(s)
- Antariksha Duratkar
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
6
|
Wu J, Li X, Zhang Q, Li J, Cui R, Li X. Differential effects of intra-RMTg infusions of pilocarpine or 4-DAMP on regulating depression- and anxiety-like behaviors. Behav Brain Res 2024; 462:114833. [PMID: 38220059 DOI: 10.1016/j.bbr.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Depression and anxiety are associated with dysfunction of the mesolimbic dopamine system. The rostromedial tegmental nucleus (RMTg) is predominantly composed of GABAergic neurons that exhibit dense projections and strongly inhibit mesolimbic dopaminergic neurons, proposed as a major "brake" for the system. Consequently, the RMTg may be a crucial brain region for regulating these emotions. The central cholinergic system, particularly the muscarinic receptors, plays an important regulatory role in depression and anxiety. M3 muscarinic receptors are distributed on GABAergic neurons in the RMTg, but their involvement in the regulation of depression and anxiety remains uncertain. This study aimed to examine the effects of RMTg M3 muscarinic receptors on regulating depression- and anxiety-like behaviors in adult male Wistar rats, as assessed through the forced swim, tail suspension, and elevated plus maze tests. The results showed that intra-RMTg injections of the M1/M3 muscarinic receptors agonist, pilocarpine (3, 10, and 30 μg/side), or the M3 muscarinic receptors antagonist, 4-DAMP (0.5, 1, and 2 μg/side), did not alter the immobility time in the forced swim and tail suspension tests. Additionally, pilocarpine (30 μg/side) decreased time spent in open arms and increased time in closed arms in the elevated plus maze; while 4-DAMP (1 and 2 μg/side) played the opposite role by increasing time spent in open arms and decreasing time in closed arms. These findings suggest that RMTg M3 muscarinic receptors have differential effects on regulating depression- and anxiety-like behaviors. Enhancing or inhibiting these receptors can produce anxiogenic or anxiolytic effects, but have no impact on depression-like behavior. Therefore, RMTg M3 muscarinic receptors are involved in regulating anxiety and may be a potential therapeutic target for anxiolytic drugs.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Faculty of Education, Henan Normal University, Xinxiang, China
| | - Xuhong Li
- Department of Education, Lyuliang University, Lyuliang, China
| | - Qi Zhang
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jiaxiang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| |
Collapse
|
7
|
Fu Y, Li W, Mai Y, Guan J, Ding R, Hou J, Chen B, Cao G, Sun S, Tang Y, Fu R. Association between RMTg Neuropeptide Genes and Negative Effect during Alcohol Withdrawal in Mice. Int J Mol Sci 2024; 25:2933. [PMID: 38474180 DOI: 10.3390/ijms25052933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alcohol use disorders (AUDs) frequently co-occur with negative mood disorders, such as anxiety and depression, exacerbating relapse through dopaminergic dysfunction. Stress-related neuropeptides play a crucial role in AUD pathophysiology by modulating dopamine (DA) function. The rostromedial tegmental nucleus (RMTg), which inhibits midbrain dopamine neurons and signals aversion, has been shown to increase ethanol consumption and negative emotional states during abstinence. Despite some stress-related neuropeptides acting through the RMTg to affect addiction behaviors, their specific roles in alcohol-induced contexts remain underexplored. This study utilized an intermittent voluntary drinking model in mice to induce negative effect behavior 24 h into ethanol (EtOH) abstinence (post-EtOH). It examined changes in pro-stress (Pnoc, Oxt, Npy) and anti-stress (Crf, Pomc, Avp, Orx, Pdyn) neuropeptide-coding genes and analyzed their correlations with aversive behaviors. We observed that adult male C57BL/6J mice displayed evident anxiety, anhedonia, and depression-like symptoms at 24 h post-EtOH. The laser-capture microdissection technique, coupled with or without retrograde tracing, was used to harvest total ventral tegmental area (VTA)-projecting neurons or the intact RMTg area. The findings revealed that post-EtOH consistently reduced Pnoc and Orx levels while elevating Crf levels in these neuronal populations. Notably, RMTg Pnoc and Npy levels counteracted ethanol consumption and depression severity, while Crf levels were indicative of the mice's anxiety levels. Together, these results underscore the potential role of stress-related neuropeptides in the RMTg in regulating the negative emotions related to AUDs, offering novel insights for future research.
Collapse
Affiliation(s)
- Yixin Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Junhao Guan
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ying Tang
- Clinical Skills Training Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| |
Collapse
|
8
|
Li Z, Shu Q, Chen Q, Yang H, Liu L, He Z, Lin H, Li Z. HCN1 in the lateral habenula contributes to morphine abstinence-induced anxiety-like behaviors in male mice. J Psychiatr Res 2024; 171:185-196. [PMID: 38301534 DOI: 10.1016/j.jpsychires.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Anxiety disorders, common symptoms during morphine withdrawal, are important negative reinforcement factors leading to relapse. Lateral habenula serves as a negative reinforcement center, however its role in morphine withdrawal-induced anxiety remains uncovered. The hyperpolarization activated cyclic nucleotide-gated (HCN) channels have been reported to be important in emotion processing and addiction, but the role of HCN in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, Western blot, immunofluorescence, electrophysiology and virus-mediated regulation of HCN, we found that: (1) Intra-LHb injection of selective HCN blocker ZD7288 alleviated anxiety-like behaviors in morphine protracted abstinent male mice. (2) The LHb neuronal activity was increased by morphine protracted abstinence. (3) LHb neurons were inhibited by ZD7288 and activated by 8-Br-cAMP respectively, which were enhanced by morphine withdrawal. (4) HCN1 in the LHb was upregulated by morphine withdrawal. (5) Virus-mediated overexpression of HCN1 in the LHb was sufficient to produce anxiety-like behaviors in male mice and virus-mediated knockdown of HCN1 in the LHb prevented the anxiety-like behaviors in male mice. The findings reveal that selective blockade of HCN1 channels in the LHb may represent a therapeutic approach to morphine withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Zonghui Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qigang Shu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qiuping Chen
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Hongwei Yang
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Lu Liu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi He
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| | - Hong Lin
- Yichang Mental Health Center, Yichang, China.
| | - Zicheng Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China; Yichang Mental Health Center, Yichang, China.
| |
Collapse
|
9
|
Vento PJ, Watson JR, Pullmann D, Black SL, Tomberlin JS, Jhou TC. Pumping the brakes: rostromedial tegmental inhibition of compulsive cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560908. [PMID: 38405989 PMCID: PMC10889025 DOI: 10.1101/2023.10.04.560908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Addiction is marked by aberrant decision-making and an inability to suppress inappropriate and often dangerous behaviors. We previously demonstrated that inactivation of the rostromedial tegmental nucleus (RMTg) in rats causes persistent food seeking despite impending aversive footshock, an effect strikingly similar to the punishment resistance observed in people with a history of protracted drug use [1]. Here, we extend these studies to demonstrate chemogenetic silencing of RMTg axonal projections to the ventral tegmental area (VTA) (RMTg→VTA pathway) causes rats to endure significantly more footshock to receive cocaine infusions. To further test whether activation of this circuit is sufficient to suppress reward seeking in the absence of an overtly aversive stimulus, we used temporally specific optogenetic stimulation of the RMTg→VTA pathway as a "punisher" in place of footshock following lever pressing for either food or cocaine reward. While optical stimulation of the RMTg→VTA pathway robustly suppressed lever pressing for food, we found that stimulation of this circuit had only modest effects on suppressing responding for cocaine infusions. Even though optical RMTg→VTA stimulation was not particularly effective at reducing ongoing cocaine use, this experience nevertheless had long-lasting consequences, as reinstatement of drug seeking in response to cocaine-associated cues was profoundly suppressed when tested nearly two weeks later. These results suggest the RMTg may serve as a useful target for producing enduring reductions in drug craving, particularly during periods of abstinence from drug use.
Collapse
Affiliation(s)
- Peter J Vento
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Jacob R Watson
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Dominika Pullmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | | | - Jensen S Tomberlin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
10
|
Ramirez LA, Przybysz KR, Pitock JR, Starr EM, Yang H, Glover EJ. Attenuated incubation of ethanol-induced conditioned taste aversion in a model of dependence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557582. [PMID: 37745477 PMCID: PMC10515951 DOI: 10.1101/2023.09.13.557582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rationale Preclinical studies report attenuated ethanol-induced conditioned taste aversion (CTA) following chronic ethanol exposure, suggesting that tolerance develops to the aversive properties of ethanol. However, these studies are confounded by pre-exposure to the unconditioned stimulus (US; ethanol), which is well known to hinder conditioning. Objectives This study was designed to determine whether chronic ethanol exposure produces tolerance to the aversive properties of ethanol in the absence of a US pre-exposure confound. Methods CTA was performed in adult male and female Long-Evans rats by pairing 0.1% ingested saccharin with an intraperitoneal injection of ethanol (1.5 or 2.0 g/kg) or saline. Rats were then rendered ethanol dependent using chronic intermittent ethanol (CIE) vapor exposure. Controls were exposed to room air (AIR). The effect of chronic ethanol on CTA expression and reconditioning were examined following vapor exposure. Results Prior to vapor exposure, both sexes developed CTA to a comparable degree with 2.0 g/kg producing greater CTA than 1.5 g/kg ethanol. Following vapor exposure, AIR controls exhibited an increase in CTA magnitude compared to pre-vapor levels. This effect was absent in CIE-exposed rats. These group differences were eliminated upon re-conditioning after vapor exposure. Conclusions These data suggest that chronic ethanol does not facilitate tolerance to the aversive properties of ethanol but rather, attenuates incubation of ethanol-induced CTA. Loss of CTA incubation suggests that CIE exposure disrupts circuits encoding aversion.
Collapse
Affiliation(s)
- Lindsey A Ramirez
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph R Pitock
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Przybysz KR, Ramirez LA, Pitock JR, Starr EM, Yang H, Glover EJ. A translational rodent model of individual differences in sensitivity to the aversive properties of ethanol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544209. [PMID: 37333122 PMCID: PMC10274910 DOI: 10.1101/2023.06.08.544209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background A strong relationship exists between individual sensitivity to the aversive properties of ethanol and risk for alcohol use disorder (AUD). Despite this, our understanding of the neurobiological mechanisms underlying subjective response to ethanol is relatively poor. A major contributor to this is the absence of preclinical models that enable exploration of this individual variability similar to studies performed in humans. Methods Adult male and female Long-Evans rats were trained to associate a novel tastant (saccharin) with acute exposure to either saline or ethanol (1.5 g/kg or 2.0 g/kg i.p.) over three conditioning days using a standard conditioned taste aversion (CTA) procedure. Variability in sensitivity to ethanol-induced CTA was phenotypically characterized using a median split across the populations studied. Results When examining group averages, both male and female rats that had saccharin paired with either dose of ethanol exhibited reduced saccharin intake relative to saline controls of ethanol-induced CTA. Examination of individual data revealed a bimodal distribution of responses uncovering two distinct phenotypes present in both sexes. CTA-sensitive rats exhibited a rapid and progressive reduction in saccharin intake with each successive ethanol pairing. In contrast, saccharin intake was unchanged or maintained after an initial decrease from baseline levels in CTA-resistant rats. While CTA magnitude was similar between male and female CTA-sensitive rats, CTA-resistant females were more resistant to the development of ethanol-induced CTA than their male counterparts. Phenotypic differences were not driven by differences in baseline saccharin intake. CTA sensitivity correlated with behavioral signs of intoxication in only a subset of rats. Conclusions These data parallel work in humans by revealing individual differences in sensitivity to the aversive properties of ethanol that emerge immediately after initial exposure to ethanol in both sexes. This model can be leveraged in future studies to investigate the neurobiological mechanisms that confer risk for AUD.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lindsey A Ramirez
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph R Pitock
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Li W, Ren Z, Tang Y, Fu Y, Sun S, Ding R, Hou J, Mai Y, Zhan B, Zhu Y, Zuo W, Ye JH, Fu R. Rostromedial tegmental nucleus nociceptin/orphanin FQ (N/OFQ) signaling regulates anxiety- and depression-like behaviors in alcohol withdrawn rats. Neuropsychopharmacology 2023; 48:908-919. [PMID: 36329156 PMCID: PMC10156713 DOI: 10.1038/s41386-022-01482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
13
|
Chao YS, Parrilla-Carrero J, Eid M, Culver OP, Jackson TB, Lipat R, Taniguchi M, Jhou TC. Innate cocaine-seeking vulnerability arising from loss of serotonin-mediated aversive effects of cocaine in rats. Cell Rep 2023; 42:112404. [PMID: 37083325 DOI: 10.1016/j.celrep.2023.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.
Collapse
Affiliation(s)
- Ying S Chao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oliver P Culver
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tyler B Jackson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel Lipat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C Jhou
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Plasil SL, Collins VJ, Baratta AM, Farris SP, Homanics GE. Hippocampal ceRNA networks from chronic intermittent ethanol vapor-exposed male mice and functional analysis of top-ranked lncRNA genes for ethanol drinking phenotypes. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10831. [PMID: 36908580 PMCID: PMC10004261 DOI: 10.3389/adar.2022.10831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms regulating the development and progression of alcohol use disorder (AUD) are largely unknown. While noncoding RNAs have previously been implicated as playing key roles in AUD, long-noncoding RNA (lncRNA) remains understudied in relation to AUD. In this study, we first identified ethanol-responsive lncRNAs in the mouse hippocampus that are transcriptional network hub genes. Microarray analysis of lncRNA, miRNA, circular RNA, and protein coding gene expression in the hippocampus from chronic intermittent ethanol vapor- or air- (control) exposed mice was used to identify ethanol-responsive competing endogenous RNA (ceRNA) networks. Highly interconnected lncRNAs (genes that had the strongest overall correlation to all other dysregulated genes identified) were ranked. The top four lncRNAs were novel, previously uncharacterized genes named Gm42575, 4930413E15Rik, Gm15767, and Gm33447, hereafter referred to as Pitt1, Pitt2, Pitt3, and Pitt4, respectively. We subsequently tested the hypothesis that CRISPR/Cas9 mutagenesis of the putative promoter and first exon of these lncRNAs in C57BL/6J mice would alter ethanol drinking behavior. The Drinking in the Dark (DID) assay was used to examine binge-like drinking behavior, and the Every-Other-Day Two-Bottle Choice (EOD-2BC) assay was used to examine intermittent ethanol consumption and preference. No significant differences between control and mutant mice were observed in the DID assay. Female-specific reductions in ethanol consumption were observed in the EOD-2BC assay for Pitt1, Pitt3, and Pitt4 mutant mice compared to controls. Male-specific alterations in ethanol preference were observed for Pitt1 and Pitt2. Female-specific increases in ethanol preference were observed for Pitt3 and Pitt4. Total fluid consumption was reduced in Pitt1 and Pitt2 mutants at 15% v/v ethanol and in Pitt3 and Pitt4 at 20% v/v ethanol in females only. We conclude that all lncRNAs targeted altered ethanol drinking behavior, and that lncRNAs Pitt1, Pitt3, and Pitt4 influenced ethanol consumption in a sex-specific manner. Further research is necessary to elucidate the biological mechanisms for these effects. These findings add to the literature implicating noncoding RNAs in AUD and suggest lncRNAs also play an important regulatory role in the disease.
Collapse
Affiliation(s)
- SL Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - VJ Collins
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - AM Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - SP Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - GE Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Nentwig TB, Vaughan DT, Braunscheidel KM, Browning BD, Woodward JJ, Chandler LJ. The lateral habenula is not required for ethanol dependence-induced escalation of drinking. Neuropsychopharmacology 2022; 47:2123-2131. [PMID: 35717465 PMCID: PMC9556754 DOI: 10.1038/s41386-022-01357-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
The lateral habenula (LHb) is an epithalamic nuclei that has been shown to signal the aversive properties of ethanol. The present study tested the hypothesis that activity of the LHb is required for the acquisition and/or expression of dependence-induced escalation of ethanol drinking and somatic withdrawal symptoms. Male Sprague-Dawley rats completed 4 weeks of baseline drinking under a standard intermittent access two-bottle choice (2BC) paradigm before undergoing 2 weeks of daily chronic intermittent ethanol (CIE) via vapor inhalation. Following this CIE exposure period, rats resumed 2BC drinking to assess dependence-induced changes in voluntary ethanol consumption. CIE exposed rats exhibited a significant increase in ethanol drinking that was associated with high levels of blood alcohol and a reduction in somatic symptoms of ethanol withdrawal. However, despite robust cFos activation in the LHb during ethanol withdrawal, chemogenetic inhibition of the LHb did not alter either ethanol consumption or somatic signs of ethanol withdrawal. Consistent with this observation, ablating LHb outputs via electrolytic lesions of the fasciculus retroflexus (FR) did not alter the acquisition of somatic withdrawal symptoms or escalation of ethanol drinking in CIE-exposed rats. The LHb controls activity of the rostromedial tegmental nucleus (RMTg), a midbrain nucleus activated by aversive experiences including ethanol withdrawal. During ethanol withdrawal, both FR lesioned and sham control rats exhibited similar cFos activation in the RMTg, suggesting that RMTg activation during ethanol withdrawal does not require LHb input. These data suggest that, at least in male rats, the LHb is not necessary for the acquisition or expression of escalation of ethanol consumption or expression of somatic symptoms of ethanol withdrawal. Overall, our findings provide evidence that the LHb is dispensable for some of the negative consequences of ethanol withdrawal.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Braunscheidel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience Mount Sinai, New York, NY, USA
| | - Brittney D Browning
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
16
|
Kourosh-Arami M, Gholami M, Alavi-Kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022; 95:102259. [PMID: 35714437 DOI: 10.1016/j.npep.2022.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
The orexin (hypocretin) is one of the hypothalamic neuropeptides that plays a critical role in some behaviors including feeding, sleep, arousal, reward processing, and drug addiction. This variety of functions can be described by a united function for orexins in translating states of heightened motivation, for example during physiological requirement states or following exposure to reward opportunities, into planned goal-directed behaviors. An addicted state is characterized by robust activation of orexin neurons from the environment, which triggers downstream circuits to facilitate behavior directed towards obtaining the drug. Two orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the brain. Here, we will introduce and describe the cortical and subcortical brain areas involved in addictive-like behaviors and the impact of orexin on addiction.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Sajjad Alavi-Kakhki
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Zhao YN, Zhang Y, Tao SY, Huang ZL, Qu WM, Yang SR. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022; 16:914300. [PMID: 35733933 PMCID: PMC9207306 DOI: 10.3389/fnins.2022.914300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has revealed that the rostromedial tegmental area (RMTg) mediates many behaviors, including sleep and addiction. However, presynaptic patterns governing the activity of γ-aminobutyric acid-releasing (GABAergic) neurons, the main neuronal type in the RMTg, have not been defined. Here, we used cell-type-specific retrograde trans-synaptic rabies viruses to map and quantify the monosynaptic afferents to RMTg GABAergic neurons in mouse whole brains. We identified 71 ascending projection brain regions. Sixty-eight percent of the input neurons arise from the ipsilateral and 32% from the contralateral areas of the brain. The first three strongest projection regions were the ipsilateral lateral hypothalamus, zone incerta, and contralateral pontine reticular nucleus. Immunohistochemistry imaging showed that the input neurons in the dorsal raphe, laterodorsal tegmentum, and dorsal part of zone incerta were colocalized with serotoninergic, cholinergic, and neuronal nitric oxide synthetase-expressing neurons, respectively. However, in the lateral hypothalamus, a few input neurons innervating RMTg GABAergic neurons colocalized orexinergic neurons but lacked colocalization of melanin-concentrating hormone neurons. Our findings provide anatomical evidence to understand how RMTg GABAergic neurons integrate diverse information to exert varied functions.
Collapse
|
18
|
Sánchez-Catalán MJ, Barrot M. Fos response of the tail of the ventral tegmental area to food restriction entails a prediction error processing. Behav Brain Res 2022; 425:113826. [PMID: 35247487 DOI: 10.1016/j.bbr.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
The tail of the ventral tegmental area (tVTA) or rostromedial tegmental nucleus (RMTg) receives lateral habenula inputs and projects heavily to midbrain dopamine neurons. Midbrain dopamine and lateral habenula neurons participate in learning processes predicting the outcomes of actions, placing the tVTA in a critical location into prediction error pathways. tVTA GABA neurons show electrophysiological inhibition or activation after reward and aversive stimuli, respectively, and their predictive cues. tVTA molecular recruitment, however, is not elicited by all aversive stimuli. Indeed, precipitated opioid withdrawal, repeated footshocks or food restriction raise tVTA Fos expression, whereas various other unpleasant, stressful or painful stimuli does not elicit that molecular response. However, the basis of that difference remains unknown. In the present study, we tried to disentangle whether the tVTA c-Fos induction observed after food restriction was due to the aversive state of food restriction or to procedure-related reward prediction error. To this end, male Sprague-Dawley rats were food-restricted for 7-8 days. During this period, animals were handled and weighed every day before feeding. On the test day, rats underwent several behavioral procedures to explore the impact of food restriction and food-predictive cue exposure on tVTA c-Fos expression. We showed that food restriction per se was not able to recruit c-Fos in the tVTA. On the contrary, the food-predicting cues induced c-Fos locally in the absence of feeding, whereas the food-predicting cues followed by feeding evoked lower c-Fos expression. Overall, our results support the proposed involvement of the tVTA in reward prediction error.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| |
Collapse
|
19
|
Jhou TC. The rostromedial tegmental (RMTg) "brake" on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021; 198:108763. [PMID: 34433088 PMCID: PMC8593889 DOI: 10.1016/j.neuropharm.2021.108763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
Between 2005 and 2009, several research groups identified a strikingly dense inhibitory input to midbrain dopamine neurons arising from a previously uncharted region posterior to the ventral tegmental area (VTA). This region is now denoted as either the rostromedial tegmental nucleus (RMTg) or the "tail of the VTA" (tVTA), and is recognized to express distinct genetic markers, encode negative "prediction errors" (inverse to dopamine neurons), and play critical roles in behavioral inhibition and punishment learning. RMTg neurons are also influenced by many categories of abused drugs, and may drive some aversive responses to such drugs, particularly cocaine and alcohol. However, despite much progress, many important questions remain about RMTg molecular/genetic properties, diversity of projection targets, and applications to addiction, depression, and other neuropsychiatric disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
20
|
Cortez I, Brocardo PS, Leasure JL. Changes in Affective Behavior and Oxidative Stress after Binge Alcohol in Male and Female Rats. Brain Sci 2021; 11:brainsci11091250. [PMID: 34573270 PMCID: PMC8468617 DOI: 10.3390/brainsci11091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Binge alcohol consumption and alcohol use disorders (AUD) are prevalent, and there is comorbidity with depression and anxiety. Potential underlying mechanisms include neurophysiological, genetic, and metabolic changes resulting from alcohol exposure. Mood and anxiety disorders are more common among women, but whether females are more susceptible to binge-induced oxidative stress and co-occurring anxiety and depression-like behaviors remains unknown. Here, we used a repeated, weekly binge alcohol paradigm in male and female rats to investigate sex differences in despair and anxiety-like behaviors and brain oxidative stress parameters. A single binge alcohol exposure significantly elevated glutathione (GSH) levels in prefrontal cortex (PFC) of both male and female animals. This was accompanied by increased lipid peroxidation in PFC of both sexes. Repeated (once weekly) binge exposure induced changes in anxiety- and depression-like behaviors in both males and females and increased GSH level in the PFC without detectable oxidative damage. Our findings suggest that repeated binge alcohol exposure influences affect regardless of sex and in the absence of membrane damage.
Collapse
Affiliation(s)
- Ibanelo Cortez
- Department of Psychology, University of Houston, Houston, TX 77204, USA;
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
- Correspondence: (P.S.B.); (J.L.L.)
| | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204, USA;
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
- Correspondence: (P.S.B.); (J.L.L.)
| |
Collapse
|
21
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
22
|
Tapocik JD, Schank JR, Mitchell JR, Damazdic R, Mayo CL, Brady D, Pincus AB, King CE, Heilig M, Elmer GI. Live predator stress in adolescence results in distinct adult behavioral consequences and dorsal diencephalic brain activation patterns. Behav Brain Res 2021; 400:113028. [PMID: 33309751 PMCID: PMC8056471 DOI: 10.1016/j.bbr.2020.113028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Exposure to traumatic events during childhood increases the risk of adult psychopathology, including anxiety, depression, alcohol use disorders and their co-morbidity. Early life trauma also results in increased symptom complexity, treatment resistance and poor treatment outcomes. The purpose of this study was to establish a novel rodent model of adolescent stress, based on an ethologically relevant life-threatening event, live predator exposure. Rats were exposed to a live predator for 10 min. at three different time points (postnatal day (PND)31, 46 and 61). Adult depression-, anxiety-like behaviors and ethanol consumption were characterized well past the last acute stress event (two weeks). Behavioral profiles across assessments were developed to characterize individual response to adolescent stress. CNS activation patterns in separate groups of subjects were characterized after the early (PND31) and last predator exposure (PND61). Subjects exposed to live-predator adolescent stress generally exhibited less exploratory behavior, less propensity to venture into open spaces, a decreased preference for sweet solutions and decreased ethanol consumption in a two-bottle preference test. Additional studies demonstrated blunted cortisol response and CNS activation patterns suggestive of habenula, rostromedial tegmental (RMTg), dorsal raphe and central amygdala involvement in mediating the adult consequences of adolescent stress. Thus, adolescent stress in the form of live-predator exposure results in significant adult behavioral and neurobiological disturbances. Childhood trauma, its impact on neurodevelopment and the subsequent development of mood disorders is a pervasive theme in mental illness. Improving animal models and our neurobiological understanding of the symptom domains impacted by trauma could significantly improve treatment strategies.
Collapse
Affiliation(s)
- J D Tapocik
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - J R Schank
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - J R Mitchell
- Department of Psychology, Colby College, Waterville, ME, 04901, United States
| | - R Damazdic
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - C L Mayo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - D Brady
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - A B Pincus
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - C E King
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - M Heilig
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - G I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
23
|
Castillo-Rolón D, Ramírez-Sánchez E, Arenas-López G, Garduño J, Hernández-González O, Mihailescu S, Hernández-López S. Nicotine Increases Spontaneous Glutamate Release in the Rostromedial Tegmental Nucleus. Front Neurosci 2021; 14:604583. [PMID: 33519359 PMCID: PMC7838497 DOI: 10.3389/fnins.2020.604583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
The rostromedial tegmental nucleus (RMTg) is a bilateral structure localized in the brainstem and comprise of mainly GABAergic neurons. One of the main functions of the RMTg is to regulate the activity of dopamine neurons of the mesoaccumbens pathway. Therefore, the RMTg has been proposed as a modulator of the reward system and adaptive behaviors associated to reward learning. The RMTg receives an important glutamatergic input from the lateral habenula. Also, it receives cholinergic inputs from the laterodorsal and pedunculopontine tegmental nuclei. Previously, it was reported that nicotine increases glutamate release, evoked by electric stimulation, in the RMTg nucleus. However, the mechanisms by which nicotine induces this effect were not explored. In the present work, we performed electrophysiological experiments in brainstem slices to study the effect of nicotine on spontaneous excitatory postsynaptic currents recorded from immunocytochemically identified RMTg neurons. Also, we used calcium imaging techniques to explore the effects of nicotine on multiple RMTg neurons simultaneously. We found that nicotine promotes the persistent release of glutamate through the activation of α7 nicotinic acetylcholine receptors present on glutamatergic afferents and by a mechanism involving calcium release from intracellular stores. Through these mechanisms, nicotine increases the excitability and synchronizes the activity of RMTg neurons. Our results suggest that the RMTg nucleus mediates the noxious effects of the nicotine, and it could be a potential therapeutic target against tobacco addiction.
Collapse
Affiliation(s)
- Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Hernández-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
24
|
Glover EJ, Khan F, Clayton-Stiglbauer K, Chandler LJ. Impact of sex, strain, and age on blood ethanol concentration and behavioral signs of intoxication during ethanol vapor exposure. Neuropharmacology 2020; 184:108393. [PMID: 33221480 DOI: 10.1016/j.neuropharm.2020.108393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
Animal models of alcohol drinking and dependence are a critical resource for understanding the neurobiological mechanisms and development of more effective treatments for alcohol use disorder (AUD). Because most rat strains do not voluntarily consume large enough quantities of alcohol to adequately model heavy drinking, dependence, and withdrawal-related symptoms, researchers frequently turn to experimenter administered methods to investigate how prolonged and repeated exposure to large quantities of alcohol impacts brain and behavior. Vaporized ethanol is a common method used for chronically subjecting rodents to alcohol and has been widely used to model both binge and dependence-inducing heavy drinking patterns observed in humans. Rodent strain, sex, and age during exposure are all well-known to influence outcomes in experiments utilizing intraperitoneal or intragastric methods of repeated ethanol exposure. Yet, despite its frequent use, the impact of these variables on outcomes associated with ethanol vapor exposure has not been widely investigated. The present study analyzed data generated from over 700 rats across an eight-year period to provide a population-level assessment of variables influencing level of intoxication using vapor exposure. Our findings reveal important differences with respect to strain, sex, and age during ethanol exposure in the relationship between blood ethanol concentration and behavioral signs of intoxication. These data provide valuable scientific and practical insight for laboratories utilizing ethanol vapor exposure paradigms to model AUD in rats.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA.
| | - Fauzan Khan
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - Kacey Clayton-Stiglbauer
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - L Judson Chandler
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| |
Collapse
|
25
|
Zhao YN, Yan YD, Wang CY, Qu WM, Jhou TC, Huang ZL, Yang SR. The Rostromedial Tegmental Nucleus: Anatomical Studies and Roles in Sleep and Substance Addictions in Rats and Mice. Nat Sci Sleep 2020; 12:1215-1223. [PMID: 33380853 PMCID: PMC7769149 DOI: 10.2147/nss.s278026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
The rostromedial tegmental nucleus (RMTg), a brake of the dopamine system, is specifically activated by aversive stimuli, such as foot shock. It is principally composed of gamma-aminobutyric acid neurons. However, there is no exact location of the RMTg on the brain stereotaxic atlas. The RMTg can be defined by c-Fos staining elicited by psychostimulants, the position of retrograde-labeled neurons stained by injections into the ventral tegmental area (VTA), the terminal field formed by axons from the lateral habenula, and some molecular markers identified as specifically expressed in the RMTg such as FoxP1. The RMTg receives a broad range of inputs and produces diverse outputs, which indicates that the RMTg has multiple functions. First, the RMTg plays an essential role for non-rapid eye movement sleep. Additionally, the RMTg serves a vital role in response to addiction. Opiates increase the firing rates of dopaminergic neurons in the VTA by acting on μ-opioid receptors on RMTg neurons and their terminals inside the VTA. In this review, we summarize the recent research advances on the anatomical location of the RMTg in rats and mice, its projections, and its regulation of sleep-wake behavior and addiction.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yu-Dong Yan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chen-Yao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Su-Rong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|