1
|
Yu L, Russ AN, Algamal M, Abedin MJ, Zhao Q, Miller MR, Perle SJ, Kastanenka KV. Slow wave activity disruptions and memory impairments in a mouse model of aging. Neurobiol Aging 2024; 140:12-21. [PMID: 38701647 PMCID: PMC11188680 DOI: 10.1016/j.neurobiolaging.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The aging population suffers from memory impairments. Slow-wave activity (SWA) is composed of slow (0.5-1 Hz) and delta (1-4 Hz) oscillations, which play important roles in long-term memory and working memory function respectively. SWA disruptions might lead to memory disturbances often experienced by older adults. We conducted behavioral tests in young and older C57BL/6 J mice. SWA was monitored using wide-field imaging with voltage sensors. Cell-specific calcium imaging was used to monitor the activity of excitatory and inhibitory neurons in these mice. Older mice exhibited impairments in working memory but not memory consolidation. Voltage-sensor imaging revealed aberrant synchronization of neuronal activity in older mice. Notably, we found older mice exhibited no significant alterations in slow oscillations, whereas there was a significant increase in delta power compared to young mice. Calcium imaging revealed hypoactivity in inhibitory neurons of older mice. Combined, these results suggest that neural activity disruptions might correlate with aberrant memory performance in older mice.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Md Joynal Abedin
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Smies CW, Bellfy L, Wright DS, Bennetts SG, Urban MW, Brunswick CA, Shu G, Kwapis JL. Pharmacological HDAC3 inhibition alters memory updating in young and old male mice. Front Mol Neurosci 2024; 17:1429880. [PMID: 38989157 PMCID: PMC11234845 DOI: 10.3389/fnmol.2024.1429880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. male mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) male mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young male mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.
Collapse
Affiliation(s)
- Chad W. Smies
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Lauren Bellfy
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Destiny S. Wright
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sofia G. Bennetts
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark W. Urban
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Chad A. Brunswick
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guanhua Shu
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Janine L. Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- Center for the Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Robinson PK, Met Hoxha E, Williams D, Kinzig KP, Trask S. Fear extinction is impaired in aged rats. GeroScience 2024; 46:2815-2825. [PMID: 38349449 PMCID: PMC11009175 DOI: 10.1007/s11357-024-01084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Normal aging is accompanied by broad loss of cognitive function in humans and rodents, including declines in cognitive flexibility. In extinction, a conditional stimulus (CS) that was previously paired with a footshock is presented alone. This procedure reliably reduces conditional freezing behavior in young adult rats. Here, we aimed to investigate how normal aging affects extinction learning. Using young (3 months) and aged (20 months) male and female Long Evans rats, we compared extinction (using 20 CS-alone presentations) to a no extinction control (equal exposure to the conditioning chamber without CS presentations) following delay fear conditioning. We found that young animals in the extinction group showed a decrease in freezing following extinction; aged animals did not. We next examined changes in neural activity using expression of the immediate early gene zif268. In young animals, extinction corresponded with decreased expression of zif268 in the basolateral amygdala and anterior retrosplenial cortex; this was not observed in aged animals. Further, aged animals showed increased zif268 expression in each region examined, suggesting that dysfunction in neural activity precedes cognitive deficits. These results demonstrate that aging impacts both extinction learning and neural activity.
Collapse
Affiliation(s)
- Payton K Robinson
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Erisa Met Hoxha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Destine Williams
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
- Center On Aging and the Life Course, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Smies CW, Bellfy L, Wright DS, Bennetts SS, Urban MW, Brunswick CA, Shu G, Kwapis JL. Pharmacological HDAC3 inhibition alters memory updating in young and old mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593015. [PMID: 38766057 PMCID: PMC11100699 DOI: 10.1101/2024.05.08.593015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.
Collapse
|
5
|
Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, Rounds JS, Rodriguez A, Beardwood JH, Augustynski AS, Al-Shammari A, Alaghband Y, Alizo Vera V, Berchtold NC, Shanur S, Baldi P, Cotman CW, Wood MA. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nat Commun 2024; 15:3836. [PMID: 38714691 PMCID: PMC11076285 DOI: 10.1038/s41467-024-47996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher W Butler
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Alyssa Rodriguez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Joy H Beardwood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Agatha S Augustynski
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Ameer Al-Shammari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Sharmin Shanur
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Huff AE, O'Neill OS, Messer WS, Winters BD. Muscarinic receptor activation promotes destabilization and updating of object location memories in mice. Behav Brain Res 2024; 461:114847. [PMID: 38185383 DOI: 10.1016/j.bbr.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The storage of long-term memories is a dynamic process. Reminder cues can destabilize previously consolidated memories, rendering them labile and modifiable. However, memories that are strongly encoded or relatively remote at the time of reactivation can resist destabilization only being rendered labile under conditions that favour memory updating. Using the object location recognition task, here we show in male C57BL/6 mice that novelty-induced destabilization of strongly-encoded memories requires muscarinic acetylcholine receptor (mAChR) activation. Furthermore, we use the objects-in-updated locations task to show that updating of object location memories is mAChR-dependent. Thus, mAChR stimulation appears to be critical for spatial memory destabilization and related memory updating. Enhancing our understanding of the role of ACh in memory updating should inform future research into the underlying causes of behavioural disorders that are characterized by persistent maladaptive memories, such as age-related cognitive inflexibility and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Andrew Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Olivia S O'Neill
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - William S Messer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Vozenin MC, Alaghband Y, Drayson OGG, Piaget F, Leavitt R, Allen BD, Doan NL, Rostomyan T, Stabilini A, Reggiani D, Hajdas W, Yukihara EG, Norbury JW, Bailat C, Desorgher L, Baulch JE, Limoli CL. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat Res 2024; 201:93-103. [PMID: 38171489 DOI: 10.1667/rade-23-00241.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.
Collapse
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Filippo Piaget
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | | | | | | | | | | | | | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| |
Collapse
|
8
|
Lima KR, Alves N, Lopes LF, Picua SS, da Silva de Vargas L, Daré LR, Ramborger B, Roehrs R, de Gomes MG, Mello-Carpes PB. Novelty facilitates the persistence of aversive memory extinction by dopamine regulation in the hippocampus and ventral tegmental area. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110832. [PMID: 37463639 DOI: 10.1016/j.pnpbp.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Aversive memory extinction comprises a novel learning that blocks retrieving a previously formed traumatic memory. In this sense, aversive memory extinction is an excellent tool for decreasing fear responses. However, this tool it's not effective in the long term because of original memory spontaneous recovery. Thus, searching for alternative strategies that strengthen extinction learning is essential. In the current study, we evaluated the effects of a novel context (i.e., novelty) exposure on aversive memory extinction enhancement over days and the dopaminergic system requirement. Given the purpose, experiments were conducted using 3-month-old male Wistar rats. Animals were trained in inhibitory avoidance (IA). Twenty-four hours later, rats were submitted to a weak extinction protocol. Still, 30 min before the first extinction session, animals were submitted to an exploration of a novel context for 5 min. After, memory retention and persistence were evaluated 24 h, 3, 7, 14, and 21 days later. The exposition of a novel context caused a decrease in aversive responses in all days analyzed and an increase in dopamine levels in the hippocampus. The intrahippocampal infusion of dopamine in the CA1 area or the stimulation of the ventral tegmental area (VTA) by a glutamatergic agonist (NMDA) showed similar effects of novelty. In contrast, VTA inhibition by a gabaergic agonist (muscimol) impaired the persistence of extinction learning induced by novelty exposition and caused a decrease in hippocampal dopamine levels. In summary, we show that novel context exposure promotes persistent aversive memory extinction, revealing the significant role of the dopaminergic system.
Collapse
Affiliation(s)
- Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Niege Alves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiza Freitas Lopes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Steffanie Severo Picua
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Liane da Silva de Vargas
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Bruna Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
9
|
Allen BD, Alaghband Y, Kramár EA, Ru N, Petit B, Grilj V, Petronek MS, Pulliam CF, Kim RY, Doan NL, Baulch JE, Wood MA, Bailat C, Spitz DR, Vozenin MC, Limoli CL. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro Oncol 2023; 25:927-939. [PMID: 36334265 PMCID: PMC10158064 DOI: 10.1093/neuonc/noac248] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. METHODS Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. RESULTS The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. CONCLUSIONS Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Veljko Grilj
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael S Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Rachel Y Kim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Claude Bailat
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| |
Collapse
|
10
|
Timmermann A, Tascio D, Jabs R, Boehlen A, Domingos C, Skubal M, Huang W, Kirchhoff F, Henneberger C, Bilkei-Gorzo A, Seifert G, Steinhäuser C. Dysfunction of NG2 glial cells affects neuronal plasticity and behavior. Glia 2023; 71:1481-1501. [PMID: 36802096 DOI: 10.1002/glia.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/20/2023]
Abstract
NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.
Collapse
Affiliation(s)
- Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Catia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Alaghband Y, Klein PM, Kramár EA, Cranston MN, Perry BC, Shelerud LM, Kane AE, Doan NL, Ru N, Acharya MM, Wood MA, Sinclair DA, Dickstein DL, Soltesz I, Limoli CL, Baulch JE. Galactic cosmic radiation exposure causes multifaceted neurocognitive impairments. Cell Mol Life Sci 2023; 80:29. [PMID: 36607431 PMCID: PMC9823026 DOI: 10.1007/s00018-022-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, 92697-2695, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-2695, USA
| | - Michael N Cranston
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Bayley C Perry
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Lukas M Shelerud
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
12
|
Osorio-Gómez D, Miranda MI, Guzmán-Ramos K, Bermúdez-Rattoni F. Transforming experiences: Neurobiology of memory updating/editing. Front Syst Neurosci 2023; 17:1103770. [PMID: 36896148 PMCID: PMC9989287 DOI: 10.3389/fnsys.2023.1103770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Long-term memory is achieved through a consolidation process where structural and molecular changes integrate information into a stable memory. However, environmental conditions constantly change, and organisms must adapt their behavior by updating their memories, providing dynamic flexibility for adaptive responses. Consequently, novel stimulation/experiences can be integrated during memory retrieval; where consolidated memories are updated by a dynamic process after the appearance of a prediction error or by the exposure to new information, generating edited memories. This review will discuss the neurobiological systems involved in memory updating including recognition memory and emotional memories. In this regard, we will review the salient and emotional experiences that promote the gradual shifting from displeasure to pleasure (or vice versa), leading to hedonic or aversive responses, throughout memory updating. Finally, we will discuss evidence regarding memory updating and its potential clinical implication in drug addiction, phobias, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Kioko Guzmán-Ramos
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus. Proc Natl Acad Sci U S A 2022; 119:e2208254119. [PMID: 36442129 PMCID: PMC9894183 DOI: 10.1073/pnas.2208254119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Detecting novelty is critical to consolidate declarative memories, such as spatial contextual recognition memory. It has been shown that stored memories, when retrieved, are susceptible to modification, incorporating new information through an updating process. Catecholamine release in the hippocampal CA1 region consolidates an object location memory (OLM). This work hypothesized that spatial contextual memory updating could be changed by decreasing catecholamine release in the hippocampal CA1 terminals from the locus coeruleus (LC). In a mouse model expressing Cre-recombinase under the control of the tyrosine hydroxylase (TH) promoter, memory updating was impaired by photoinhibition of the CA1 catecholaminergic terminals from the LC (LC-CA1) but not from the ventral tegmental area (VTA-CA1). In vivo microdialysis confirmed that the extracellular concentration of both dopamine (DA) and noradrenaline (NA) decreased after photoinhibition of the LC-CA1 terminals (but not VTA-CA1) during the OLM update session. Furthermore, DA D1/D5 and beta-adrenergic receptor antagonists disrupted behavior, but only the former impaired memory updating. Finally, photoinhibition of LC-CA1 terminals suppressed long-term potentiation (LTP) induction in Schaffer's collaterals as a plausible mechanism for memory updating. These data will help understand the underpinning mechanisms of DA in spatial contextual memory updating.
Collapse
|
14
|
Dong TN, Kramár EA, Beardwood JH, Al-Shammari A, Wood MA, Keiser AA. Temporal endurance of exercise-induced benefits on hippocampus-dependent memory and synaptic plasticity in female mice. Neurobiol Learn Mem 2022; 194:107658. [PMID: 35811066 PMCID: PMC9901197 DOI: 10.1016/j.nlm.2022.107658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023]
Abstract
Exercise facilitates hippocampal neurogenesis and neuroplasticity that in turn, promotes cognitive function. Our previous studies have demonstrated that in male mice, voluntary exercise enables hippocampus-dependent learning in conditions that are normally subthreshold for long-term memory formation in sedentary animals. Such cognitive enhancement can be maintained long after exercise has ceased and can be re-engaged by a subsequent subthreshold exercise session, suggesting exercise-induced benefits are temporally dynamic. In females, the extent to which the benefits of exercise can be maintained and the mechanisms underlying this maintenance have yet to be defined. Here, we examined the exercise parameters required to initiate and maintain the benefits of exercise in female C57BL/6J mice. Using a subthreshold version of the hippocampus-dependent task called object-location memory (OLM) task, we show that 14d of voluntary exercise enables learning under subthreshold acquisition conditions in female mice. Following the initial exercise, a 7d sedentary delay results in diminished performance, which can be re-facilitated when animals receive 2d of reactivating exercise following the sedentary delay. Assessment of estrous cycle reveals enhanced wheel running activity during the estrus phase relative to the diestrus phase, whereas estrous phase on training or test had no effect on OLM performance. Utilizing the same exercise parameters, we demonstrate that 14d of exercise enhances long-term potentiation (LTP) in the CA1 region of the hippocampus, an effect that persists throughout the sedentary delay and following the reactivating exercise session. Previous studies have proposed exercise-induced BDNF upregulation as the mechanism underlying exercise-mediated benefits on synaptic plasticity and cognition. However, our assessment of hippocampal Bdnf mRNA expression following memory retrieval reveals no difference between exercise conditions and control, suggesting that persistent Bdnf upregulation may not be required for maintenance of exercise-induced benefits. Together, our data indicate that 14d of voluntary exercise can initiate long-lasting benefits on neuroplasticity and cognitive function in female mice, establishing the first evidence on the temporal endurance of exercise-induced benefits in females.
Collapse
Affiliation(s)
- T N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - J H Beardwood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A Al-Shammari
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
15
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
16
|
Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death. Cell Host Microbe 2022; 30:944-960.e8. [PMID: 35654045 DOI: 10.1016/j.chom.2022.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
The intestinal microbiome releases a plethora of small molecules. Here, we show that the Ruminococcaceae metabolite isoamylamine (IAA) is enriched in aged mice and elderly people, whereas Ruminococcaceae phages, belonging to the Myoviridae family, are reduced. Young mice orally administered IAA show cognitive decline, whereas Myoviridae phage administration reduces IAA levels. Mechanistically, IAA promotes apoptosis of microglial cells by recruiting the transcriptional regulator p53 to the S100A8 promoter region. Specifically, IAA recognizes and binds the S100A8 promoter region to facilitate the unwinding of its self-complementary hairpin structure, thereby subsequently enabling p53 to access the S100A8 promoter and enhance S100A8 expression. Thus, our findings provide evidence that small molecules released from the gut microbiome can directly bind genomic DNA and act as transcriptional coregulators by recruiting transcription factors. These findings further unveil a molecular mechanism that connects gut metabolism to gene expression in the brain with implications for disease development.
Collapse
|
17
|
Jardine KH, Huff AE, Wideman CE, McGraw SD, Winters BD. The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neurosci Biobehav Rev 2022; 136:104598. [PMID: 35247380 DOI: 10.1016/j.neubiorev.2022.104598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Systematic investigation of reactivation-induced memory updating began in the 1960s, and a wave of research in this area followed the seminal articulation of "reconsolidation" theory in the early 2000s. Myriad studies indicate that memory reactivation can cause previously consolidated memories to become labile and sensitive to weakening, strengthening, or other forms of modification. However, from its nascent period to the present, the field has been beset by inconsistencies in researchers' abilities to replicate seemingly established effects. Here we review these many studies, synthesizing the human and nonhuman animal literature, and suggest that these failures-to-replicate reflect a highly complex and delicately balanced memory modification system, the substrates of which must be finely tuned to enable adaptive memory updating while limiting maladaptive, inaccurate modifications. A systematic approach to the entire body of evidence, integrating positive and null findings, will yield a comprehensive understanding of the complex and dynamic nature of long-term memory storage and the potential for harnessing modification processes to treat mental disorders driven by pervasive maladaptive memories.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - A Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Trask S, Fournier DI. Examining a role for the retrosplenial cortex in age-related memory impairment. Neurobiol Learn Mem 2022; 189:107601. [PMID: 35202816 DOI: 10.1016/j.nlm.2022.107601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Aging is often characterized by changes in the ability to form and accurately recall episodic memories, and this is especially evident in neuropsychiatric conditions including Alzheimer's disease and dementia. Memory impairments and cognitive decline associated with aging mirror the impairments observed following damage to the retrosplenial cortex, suggesting that this region might be important for continued cognitive function throughout the lifespan. Here, we review lines of evidence demonstrating that degeneration of the retrosplenial cortex is critically involved in age-related memory impairment and suggest that preservation of function in this region as part of a larger circuit that supports memory maintenance will decrease the deleterious effects of aging on memory processing.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue University, United States.
| | | |
Collapse
|
19
|
Huff AE, McGraw SD, Winters BD. Muscarinic (M 1 ) cholinergic receptor activation within the dorsal hippocampus promotes destabilization of strongly encoded object location memories. Hippocampus 2021; 32:55-66. [PMID: 34881482 DOI: 10.1002/hipo.23396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/06/2021] [Accepted: 11/28/2021] [Indexed: 11/09/2022]
Abstract
Following the initial consolidation process, memories can become reactivated by exposure to a reminder of the original learning event. This can lead to the memory becoming destabilized and vulnerable to disruption or other forms of modification. The memory must then undergo the protein-synthesis dependent process of reconsolidation in order to be retained. However, older and/or stronger memories resist destabilization, but can become labile when reactivated in the presence of salient novelty. We have implicated the neurotransmitter acetylcholine, acting at M1 muscarinic cholinergic receptors (mAChRs) within perirhinal cortex (PRh), in novelty-induced destabilization of remote object memories. It remains unclear, however, whether mAChRs are involved in destabilization of other forms of memory. We hypothesized that the role of M1 mAChRs previously demonstrated for PRh-dependent object memory would extend to hippocampus-dependent spatial memory. Using the object location (OL) task, which relies on the dorsal hippocampus (dHPC), we showed that (a) reactivation-dependent reconsolidation of OL memories requires protein synthesis within the dHPC; (b) destabilization of relatively weak OL memories depends on M1 mAChR activation within the dHPC; (c) salient novelty during reactivation promotes destabilization of resistant strongly encoded OL memories; (d) novelty-induced destabilization of strong OL memories requires activation of mAChRs within the dHPC; and (e) M1 mAChR activation within the dHPC in the absence of novelty during memory reactivation mimics the effect of novelty, destabilizing strongly encoded OL memories. These results implicate ACh acting at M1 mAChRs in the destabilization of dHPC-dependent spatial memories, demonstrating generalizability of this cholinergic function beyond memory for object identity. These findings therefore enhance our understanding of the dynamics of long-term memory storage and suggest implications for the treatment of human conditions such as Alzheimer's disease and aging, which are characterized by behavioral and mnemonic inflexibility.
Collapse
Affiliation(s)
- Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Wright DS, Bodinayake KK, Kwapis JL. Investigating Memory Updating in Mice Using the Objects in Updated Locations Task. ACTA ACUST UNITED AC 2020; 91:e87. [PMID: 31985896 DOI: 10.1002/cpns.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the laboratory, memory is typically studied as a de novo experience, in which a naïve animal is exposed to a discrete learning event that is markedly different from its past experiences. Most real-world memories, however, are updates-modifications or additions-to existing memories. This is particularly true in the aging, experienced brain. To better understand memory updating, we have developed a new behavioral paradigm called the objects in updated locations (OUL) task. OUL relies on hippocampus-dependent spatial learning and has the advantage of being able to test both the original memory and the updated information in a single test session. Further, OUL relies on incidental learning that avoids unnecessary stress that might hinder the performance of aging animals. In OUL, animals first learn the location of two identical objects in a familiar context. This memory is then updated by moving one object to a new location. Finally, to assess the animals' memory for the original and the updated information, all animals are given a test session in which they are exposed to four copies of the object: two in the original training locations, one in the updated location, and one in a novel location. By comparing exploration of the novel location to the familiar locations, we can infer whether the animal remembers the original and updated object locations. OUL is a simple but powerful task that could provide new insights into the cellular, circuit-level, and molecular mechanisms that support memory updating. © 2020 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Destiny S Wright
- Department of Biology, Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, Pennsylvania
| | - Kasuni K Bodinayake
- Department of Biology, Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, Pennsylvania
| | - Janine L Kwapis
- Department of Biology, Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
21
|
Molecular Mechanisms of Reconsolidation-Dependent Memory Updating. Int J Mol Sci 2020; 21:ijms21186580. [PMID: 32916796 PMCID: PMC7555418 DOI: 10.3390/ijms21186580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Memory is not a stable record of experience, but instead is an ongoing process that allows existing memories to be modified with new information through a reconsolidation-dependent updating process. For a previously stable memory to be updated, the memory must first become labile through a process called destabilization. Destabilization is a protein degradation-dependent process that occurs when new information is presented. Following destabilization, a memory becomes stable again through a protein synthesis-dependent process called restabilization. Much work remains to fully characterize the mechanisms that underlie both destabilization and subsequent restabilization, however. In this article, we briefly review the discovery of reconsolidation as a potential mechanism for memory updating. We then discuss the behavioral paradigms that have been used to identify the molecular mechanisms of reconsolidation-dependent memory updating. Finally, we outline what is known about the molecular mechanisms that support the memory updating process. Understanding the molecular mechanisms underlying reconsolidation-dependent memory updating is an important step toward leveraging this process in a therapeutic setting to modify maladaptive memories and to improve memory when it fails.
Collapse
|
22
|
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int J Mol Sci 2020; 21:E5352. [PMID: 32731408 PMCID: PMC7432048 DOI: 10.3390/ijms21155352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is associated with cognitive decline, including impairments in the ability to accurately form and recall memories. Some behavioral and brain changes associated with aging are evident as early as middle age, making the understanding of associated neurobiological mechanisms essential to aid in efforts aimed at slowing cognitive decline throughout the lifespan. Here, we found that both 15-month-old and 22-month-old rats showed impaired memory recall following trace fear conditioning. This behavioral deficit was accompanied by increased zif268 protein accumulation relative to 3-month-old animals in the medial prefrontal cortex, the dorsal and ventral hippocampi, the anterior and posterior retrosplenial cortices, the lateral amygdala, and the ventrolateral periaqueductal gray. Elevated zif268 protein levels corresponded with decreases in phosphorylation of the Rpt6 proteasome regulatory subunit, which is indicative of decreased engagement of activity-driven protein degradation. Together, these results identify several brain regions differentially impacted by aging and suggest that the accumulation of proteins associated with memory retrieval, through reduced proteolytic activity, is associated with age-related impairments in memory retention.
Collapse
Affiliation(s)
| | | | - Fred J. Helmstetter
- Department of Psychology, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; (S.T.); (B.N.D.)
| |
Collapse
|
23
|
Activation of cortical M 1 muscarinic receptors and related intracellular signaling is necessary for reactivation-induced object memory updating. Sci Rep 2020; 10:9209. [PMID: 32514039 PMCID: PMC7280228 DOI: 10.1038/s41598-020-65836-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Reactivated long-term memories can become labile and sensitive to modification. Memories in this destabilized state can be weakened or strengthened, but there is limited research characterizing the mechanisms underlying retrieval-induced qualitative updates (i.e., information integration). We have previously implicated cholinergic transmission in object memory destabilization. Here we present a novel rodent paradigm developed to assess the role of this cholinergic mechanism in qualitative object memory updating. The post-reactivation object memory modification (PROMM) task exposes rats to contextual information following object memory reactivation. Subsequent object exploratory performance suggests that the contextual information is integrated with the original memory in a reactivation- and time-dependent manner. This effect is blocked by interference with M1 muscarinic receptors and several downstream signals in perirhinal cortex. These findings therefore demonstrate a hitherto unacknowledged cognitive function for acetylcholine with important implications for understanding the dynamic nature of long-term memory storage in the normal and aging brain.
Collapse
|