1
|
Maddern XJ, Walker LC, Campbell EJ, Arunogiri S, Haber PS, Morley K, Manning V, Millan EZ, McNally GP, Lubman DI, Lawrence AJ. Can we enhance the clinical efficacy of cognitive and psychological approaches to treat substance use disorders through understanding their neurobiological mechanisms? Neurosci Biobehav Rev 2022; 142:104899. [PMID: 36183863 DOI: 10.1016/j.neubiorev.2022.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
Despite decades of research in the field of addiction, relapse rates for substance use disorders remain high. Consequently, there has been growing focus on providing evidence-based treatments for substance use disorders, resulting in the increased development and use of cognitive and psychological interventions. Such treatment approaches, including contingency management, community-reinforcement approach, and cognitive bias modification, have shown promising clinical efficacy in reducing substance use and promoting abstinence during treatment. However, these interventions are still somewhat limited in achieving sustained periods of abstinence post-treatment. The neurobiological mechanisms underpinning these treatment approaches remain largely unknown and under-studied, in part, due to a lack of translational animal models. The adoption of a reverse translational approach may assist in development of more representative models that can facilitate elucidation of the mechanisms behind these clinically relevant interventions. This review examines our current understanding of addiction neurobiology from clinical, preclinical research and existing animal models, and considers how the efficacy of such behavioral-oriented interventions alone, or in combination with pharmacotherapy, may be enhanced to improve treatment outcomes.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia
| | - Erin J Campbell
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Shalini Arunogiri
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia; Turning Point, Eastern Health, Melbourne, Australia
| | - Paul S Haber
- Edith Collins Centre, Drug Health Services, Sydney Local Health District, Camperdown, Australia; Sydney Medical School, University of Sydney, NSW, Australia
| | - Kirsten Morley
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Victoria Manning
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia; Turning Point, Eastern Health, Melbourne, Australia
| | | | | | - Dan I Lubman
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia; Turning Point, Eastern Health, Melbourne, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
3
|
Fine JM, Hayden BY. The whole prefrontal cortex is premotor cortex. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200524. [PMID: 34957853 PMCID: PMC8710885 DOI: 10.1098/rstb.2020.0524] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
We propose that the entirety of the prefrontal cortex (PFC) can be seen as fundamentally premotor in nature. By this, we mean that the PFC consists of an action abstraction hierarchy whose core function is the potentiation and depotentiation of possible action plans at different levels of granularity. We argue that the apex of the hierarchy should revolve around the process of goal-selection, which we posit is inherently a form of optimization over action abstraction. Anatomical and functional evidence supports the idea that this hierarchy originates on the orbital surface of the brain and extends dorsally to motor cortex. Accordingly, our viewpoint positions the orbitofrontal cortex in a key role in the optimization of goal-selection policies, and suggests that its other proposed roles are aspects of this more general function. Our proposed perspective will reframe outstanding questions, open up new areas of inquiry and align theories of prefrontal function with evolutionary principles. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Justin M. Fine
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y. Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Golec K, Draps M, Stark R, Pluta A, Gola M. Aberrant orbitofrontal cortex reactivity to erotic cues in Compulsive Sexual Behavior Disorder. J Behav Addict 2021; 10:646-656. [PMID: 34437297 PMCID: PMC8997235 DOI: 10.1556/2006.2021.00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Compulsive Sexual Behavior Disorder (CSBD) is characterized by increased reactivity to erotic reward cues. Cue-encoded reward parameters, such as type (e.g. erotic or monetary) or probability of anticipated reward, shape reward-related motivational processes, increase the attractiveness of cues and therefore might enhance maladaptive behavioral patterns in CSBD. Studies on the neural patterns of cue processing in individuals with CSBD have been limited mainly to ventral striatal responses. Therefore, here we aimed to examine the cue reactivity of multiple key structures in the brain's reward system, taking into account not only the type of predicted reward but also its probability. METHODS Twenty Nine men seeking professional help due to CSBD and 24 healthy volunteers took part in an fMRI study with a modified Incentive Delay Task with erotic and monetary rewards preceded by cues indicating a 25%, 50%, or 75% chance of reward. Analyses of functional patterns of activity related to cue type and probability were conducted on the whole-brain and ROI levels. RESULTS Increased anticipatory response to cues predictive of erotic rewards was observed among CSBD participants when compared to controls, in the ventral striatum and anterior orbitofrontal cortex (aOFC). The activity in aOFC was modulated by reward probability. DISCUSSION AND CONCLUSIONS Type of anticipated reward (erotic vs monetary) affects reward-related behavioral motivation in CSBD more strongly than reward probability. We present evidence of abnormal aOFC function in CSBD by demonstrating the recruitment of additional subsections of this region by erotic reward cues.
Collapse
Affiliation(s)
- Karolina Golec
- Faculty of Psychology, University of Warsaw, Warsaw, Poland,Corresponding author. E-mail:
| | - Małgorzata Draps
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany,Bender Institute of Neuroimaging, Justus Liebig University of Giessen, Giessen, Germany
| | | | - Mateusz Gola
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland,Swartz Center for Computational Neuroscience, Institute for Neural Computations, University of California, San Diego, CA, USA
| |
Collapse
|
5
|
Han MJ, Park CU, Kang S, Kim B, Nikolaidis A, Milham MP, Hong SJ, Kim SG, Baeg E. Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates. Neuroimage 2021; 236:118077. [PMID: 33878384 DOI: 10.1016/j.neuroimage.2021.118077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in functional magnetic resonance imaging (fMRI) have significantly enhanced our understanding of the striatal system of both humans and non-human primates (NHP) over the last few decades. However, its circuit-level functional anatomy remains poorly understood, partly because in-vivo fMRI cannot directly perturb a brain system and map its casual input-output relationship. Also, routine 3T fMRI has an insufficient spatial resolution. We performed electrical microstimulation (EM) of the striatum in lightly-anesthetized NHPs while simultaneously mapping whole-brain activation, using contrast-enhanced fMRI at ultra-high-field 7T. By stimulating multiple positions along the striatum's main (dorsal-to-ventral) axis, we revealed its complex functional circuit concerning mutually connected subsystems in both cortical and subcortical areas. Indeed, within the striatum, there were distinct brain activation patterns across different stimulation sites. Specifically, dorsal stimulation revealed a medial-to-lateral elongated shape of activation in upper caudate and putamen areas, whereas ventral stimulation evoked areas confined to the medial and lower caudate. Such dorsoventral gradients also appeared in neocortical and thalamic activations, indicating consistent embedding profiles of the striatal system across the whole brain. These findings reflect different forms of within-circuit and inter-regional neuronal connectivity between the dorsal and ventromedial striatum. These patterns both shared and contrasted with previous anatomical tract-tracing and in-vivo resting-state fMRI studies. Our approach of combining microstimulation and whole-brain fMRI mapping in NHPs provides a unique opportunity to integrate our understanding of a targeted brain area's meso- and macro-scale functional systems.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chan-Ung Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Byounghoon Kim
- Neuroscience, University of Wisconsin - Madison, Madison, WI, United States
| | - Aki Nikolaidis
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, New York, NY, United States
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,; Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| | - Eunha Baeg
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| |
Collapse
|
6
|
Bariselli S, Miyazaki NL, Creed MC, Kravitz AV. Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nat Commun 2020; 11:3996. [PMID: 32778725 PMCID: PMC7417999 DOI: 10.1038/s41467-020-17763-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Psychomotor stimulants increase dopamine levels in the striatum and promote locomotion; however, their effects on striatal pathway function in vivo remain unclear. One model that has been proposed to account for these motor effects suggests that stimulants drive hyperactivity via activation and inhibition of direct and indirect pathway striatal neurons, respectively. Although this hypothesis is consistent with the cellular actions of dopamine receptors and received support from optogenetic and chemogenetic studies, it has been rarely tested with in vivo recordings. Here, we test this model and observe that cocaine increases the activity of both pathways in the striatum of awake mice. These changes are linked to a dopamine-dependent cocaine-induced strengthening of upstream orbitofrontal cortex (OFC) inputs to the dorsomedial striatum (DMS) in vivo. Finally, depressing OFC-DMS pathway with a high frequency stimulation protocol in awake mice over-powers the cocaine-induced potentiation of OFC-DMS pathway and attenuates the expression of locomotor sensitization, directly linking OFC-DMS potentiation to cocaine-induced hyperactivity.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), Laboratory for Integrative Neuroscience (LIN), Bethesda, MD, 20892-9412, USA
| | - Nanami L Miyazaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Meaghan C Creed
- Washington University Pain Center, St Louis, MO, 63110, USA
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Claustral Neurons Projecting to Frontal Cortex Mediate Contextual Association of Reward. Curr Biol 2020; 30:3522-3532.e6. [PMID: 32707061 DOI: 10.1016/j.cub.2020.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.
Collapse
|