1
|
Powers A, Angelos PA, Bond A, Farina E, Fredericks C, Gandhi J, Greenwald M, Hernandez-Busot G, Hosein G, Kelley M, Mourgues C, Palmer W, Rodriguez-Sanchez J, Seabury R, Toribio S, Vin R, Weleff J, Woods S, Benrimoh D. A Computational Account of the Development and Evolution of Psychotic Symptoms. Biol Psychiatry 2025; 97:117-127. [PMID: 39260466 PMCID: PMC11634669 DOI: 10.1016/j.biopsych.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The mechanisms of psychotic symptoms such as hallucinations and delusions are often investigated in fully formed illness, well after symptoms emerge. These investigations have yielded key insights but are not well positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing a compensatory relative overreliance on prior beliefs. This overreliance on priors predisposes to hallucinations and covaries with hallucination severity. An overreliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptoms as a point of equilibrium among competing biological forces.
Collapse
Affiliation(s)
- Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut.
| | - Phillip A Angelos
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Alexandria Bond
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Emily Farina
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Carolyn Fredericks
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Jay Gandhi
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Maximillian Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Gabriela Hernandez-Busot
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Gabriel Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Megan Kelley
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - William Palmer
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Silmilly Toribio
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Raina Vin
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Jeremy Weleff
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Scott Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Rogeau A, Boer AJ, Guedj E, Sala A, Sommer IE, Veronese M, van der Weijden-Germann M, Van Weehaeghe D, Cecchin D, Verger A, Albert NL, Brendel M, Yakushev I, Traub-Weidinger T, Barthel H, Tolboom N, Fraioli F. EANM perspective on clinical PET and SPECT imaging in schizophrenia-spectrum disorders: a systematic review of longitudinal studies. Eur J Nucl Med Mol Imaging 2024. [DOI: 10.1007/s00259-024-06987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 01/03/2025]
Abstract
Abstract
Purpose
There is a need for biomarkers in psychiatry to improve diagnosis, prognosis and management, and with confirmed value in follow-up care. Radionuclide imaging, given its molecular imaging characteristics, is well-positioned for translation to the clinic. This systematic review lays the groundwork for integrating PET and SPECT imaging in the clinical management of schizophrenia-spectrum disorders.
Methods
Systematic search of PubMed, Embase, Web of Science and Cochrane library databases was conducted from the earliest date available until February 2024. The focus was on longitudinal studies evaluating PET or SPECT imaging in individuals with a schizophrenia-spectrum or another psychotic disorders. Quality assessment was done using the Newcastle-Ottawa Scale (NOS), NIH scale for before-after studies and Cochrane Risk of Bias tool version 2 (Cochrane RoB2). Studies were further categorised into three groups: preclinical and diagnosis, predicting disease course or personalising treatment.
Results
Fifty-six studies were included in the systematic review investigating in total 1329 patients over a median of 3 months. Over two-thirds used PET tracers, whereas the remaining studies employed SPECT tracers. The most frequently investigated system was dopaminergic transmission, followed by cerebral metabolism and blood flow. [18F]FDOPA demonstrated large effect size in predicting conversion of subjects at risk and treatment response. Additionally, treatment dosage could be optimised to reduce side effects using [123I]IBZM or [11C]raclopride.
Conclusion
Molecular imaging holds significant promise for real-life application in schizophrenia, with two particularly encouraging avenues being the prediction of conversion/response to antipsychotic medication and the improved management of antipsychotic dosage. Further longitudinal studies and clinical trials will be essential for validating both the clinical effectiveness and economic sustainability, as well as for exploring new applications.
Collapse
|
3
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
4
|
Davies C, Bossong MG, Martins D, Wilson R, Appiah-Kusi E, Blest-Hopley G, Allen P, Zelaya F, Lythgoe DJ, Brammer M, Perez J, McGuire P, Bhattacharyya S. Hippocampal Glutamate, Resting Perfusion and the Effects of Cannabidiol in Psychosis Risk. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad022. [PMID: 39145348 PMCID: PMC11207663 DOI: 10.1093/schizbullopen/sgad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background Preclinical and human data suggest that psychosis onset involves hippocampal glutamatergic dysfunction, driving hyperactivity and hyperperfusion in a hippocampal-midbrain-striatal circuit. Whether glutamatergic dysfunction is related to cerebral perfusion in patients at clinical high risk (CHR) for psychosis, and whether cannabidiol (CBD) has ameliorative effects on glutamate or its relationship with perfusion remains unknown. Methods Using a double-blind, parallel-group design, 33 CHR patients were randomized to a single 600 mg dose of CBD or placebo; 19 healthy controls did not receive any drug. Proton magnetic resonance spectroscopy was used to measure glutamate concentrations in left hippocampus. We examined differences relating to CHR status (controls vs placebo), effects of CBD (placebo vs CBD), and linear between-group effects, such that placebo>CBD>controls or controls>CBD>placebo. We also examined group × glutamate × cerebral perfusion (measured using Arterial Spin Labeling) interactions. Results Compared to controls, CHR-placebo patients had significantly lower hippocampal glutamate (P =.015) and a significant linear relationship was observed across groups, such that glutamate was highest in controls, lowest in CHR-placebo, and intermediate in CHR-CBD (P =.031). Moreover, there was a significant interaction between group (controls vs CHR-placebo), hippocampal glutamate, and perfusion in the putamen and insula (P FWE =.012), with a strong positive correlation in CHR-placebo vs a negative correlation in controls. Conclusions Our findings suggest that hippocampal glutamate is lower in CHR patients and may be partially normalized by a single dose of CBD. Furthermore, we provide the first in vivo evidence of an abnormal relationship between hippocampal glutamate and perfusion in the striatum and insula in CHR.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Matthijs G Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Elizabeth Appiah-Kusi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Michael Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research (IBSAL), Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
5
|
Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci 2022; 43:1098-1112. [PMID: 36273943 DOI: 10.1016/j.tips.2022.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Modern interest in muscarinic acetylcholine receptor (mAChR) activators for schizophrenia began in the 1990s when xanomeline, an M1/M4-preferring mAChR agonist developed for cognitive symptoms of Alzheimer's disease (AD), had unexpected antipsychotic activity. However, strategies to address tolerability concerns associated with activation of peripheral mAChRs were not available at that time. The discovery of specific targeted ligands and combination treatments to reduce peripheral mAChR engagement have advanced the potential of mAChR activators as effective treatments for psychotic disorders. This review provides perspectives on the background of the identification of mAChRs as potential antipsychotics, advances in the preclinical understanding of mAChRs as targets, and the current state of mAChR activators under active clinical development for schizophrenia.
Collapse
|
6
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
7
|
van Hooijdonk CF, Drukker M, van de Giessen E, Booij J, Selten JP, van Amelsvoort TA. Dopaminergic alterations in populations at increased risk for psychosis: a systematic review of imaging findings. Prog Neurobiol 2022; 213:102265. [DOI: 10.1016/j.pneurobio.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
8
|
Abstract
Schizophrenia, characterised by psychotic symptoms and in many cases social and occupational decline, remains an aetiological and therapeutic challenge. Contrary to popular belief, the disorder is modestly more common in men than in women. Nor is the outcome uniformly poor. A division of symptoms into positive, negative, and disorganisation syndromes is supported by factor analysis. Catatonic symptoms are not specific to schizophrenia and so-called first rank symptoms are no longer considered diagnostically important. Cognitive impairment is now recognised as a further clinical feature of the disorder. Lateral ventricular enlargement and brain volume reductions of around 2% are established findings. Brain functional changes occur in different subregions of the frontal cortex and might ultimately be understandable in terms of disturbed interaction among large-scale brain networks. Neurochemical disturbance, involving dopamine function and glutamatergic N-methyl-D-aspartate receptor function, is supported by indirect and direct evidence. The genetic contribution to schizophrenia is now recognised to be largely polygenic. Birth and early life factors also have an important aetiological role. The mainstay of treatment remains dopamine receptor-blocking drugs; a psychological intervention, cognitive behavioural therapy, has relatively small effects on symptoms. The idea that schizophrenia is better regarded as the extreme end of a continuum of psychotic symptoms is currently influential. Other areas of debate include cannabis and childhood adversity as causative factors, whether there is progressive brain change after onset, and the long-term success of early intervention initiatives.
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Mandy Johnstone
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK; National Psychosis Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Peter J McKenna
- FIDMAG Hermanas Hospitalarias Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| |
Collapse
|
9
|
Corripio I, Roldán A, McKenna P, Sarró S, Alonso-Solís A, Salgado L, Álvarez E, Molet J, Pomarol-Clotet E, Portella M. Target selection for deep brain stimulation in treatment resistant schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110436. [PMID: 34517055 DOI: 10.1016/j.pnpbp.2021.110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
The use of deep brain stimulation (DBS) in treatment resistant patients with schizophrenia is of considerable current interest, but where to site the electrodes is challenging. This article reviews rationales for electrode placement in schizophrenia based on evidence for localized brain abnormality in the disorder and the targets that have been proposed and employed to date. The nucleus accumbens and the subgenual anterior cingulate cortex are of interest on the grounds that they are sites of potential pathologically increased brain activity in schizophrenia and so susceptible to the local inhibitory effects of DBS; both sites have been employed in trials of DBS in schizophrenia. Based on other lines of reasoning, the ventral tegmental area, the substantia nigra pars reticulata and the habenula have also been proposed and in some cases employed. The dorsolateral prefrontal cortex has not been suggested, probably reflecting evidence that it is underactive rather than overactive in schizophrenia. The hippocampus is also of theoretical interest but there is no clear functional imaging evidence that it shows overactivity in schizophrenia. On current evidence, the nucleus accumbens may represent the strongest candidate for DBS electrode placement in schizophrenia, with the substantia nigra pars reticulata also showing promise in a single case report; the ventral tegmental area is also of potential interest, though it remains untried.
Collapse
Affiliation(s)
- Iluminada Corripio
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Alexandra Roldán
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Peter McKenna
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Anna Alonso-Solís
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Laura Salgado
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Enric Álvarez
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Joan Molet
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Maria Portella
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
10
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
11
|
Westhoff MLS, Ladwig J, Heck J, Schülke R, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Early Detection and Prevention of Schizophrenic Psychosis-A Review. Brain Sci 2021; 12:11. [PMID: 35053755 PMCID: PMC8774083 DOI: 10.3390/brainsci12010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Psychotic disorders often run a chronic course and are associated with a considerable emotional and social impact for patients and their relatives. Therefore, early recognition, combined with the possibility of preventive intervention, is urgently warranted since the duration of untreated psychosis (DUP) significantly determines the further course of the disease. In addition to established diagnostic tools, neurobiological factors in the development of schizophrenic psychoses are increasingly being investigated. It is shown that numerous molecular alterations already exist before the clinical onset of the disease. As schizophrenic psychoses are not elicited by a single mutation in the deoxyribonucleic acid (DNA) sequence, epigenetics likely constitute the missing link between environmental influences and disease development and could potentially serve as a biomarker. The results from transcriptomic and proteomic studies point to a dysregulated immune system, likely evoked by epigenetic alterations. Despite the increasing knowledge of the neurobiological mechanisms involved in the development of psychotic disorders, further research efforts with large population-based study designs are needed to identify suitable biomarkers. In conclusion, a combination of blood examinations, functional imaging techniques, electroencephalography (EEG) investigations and polygenic risk scores should be considered as the basis for predicting how subjects will transition into manifest psychosis.
Collapse
Affiliation(s)
- Martin Lennart Schulze Westhoff
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Ladwig
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Adrian Groh
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Kirsten Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| |
Collapse
|
12
|
McCutcheon RA, Merritt K, Howes OD. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 2021; 20:405-416. [PMID: 34505389 PMCID: PMC8429330 DOI: 10.1002/wps.20893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopaminergic and glutamatergic dysfunction is believed to play a central role in the pathophysiology of schizophrenia. However, it is unclear if abnormalities predate the onset of schizophrenia in individuals at high clinical or genetic risk for the disorder. We systematically reviewed and meta-analyzed studies that have used neuroimaging to investigate dopamine and glutamate function in individuals at increased clinical or genetic risk for psychosis. EMBASE, PsycINFO and Medline were searched form January 1, 1960 to November 26, 2020. Inclusion criteria were molecular imaging measures of striatal presynaptic dopaminergic function, striatal dopamine receptor availability, or glutamate function. Separate meta-analyses were conducted for genetic high-risk and clinical high-risk individuals. We calculated standardized mean differences between high-risk individuals and controls, and investigated whether the variability of these measures differed between the two groups. Forty-eight eligible studies were identified, including 1,288 high-risk individuals and 1,187 controls. Genetic high-risk individuals showed evidence of increased thalamic glutamate + glutamine (Glx) concentrations (Hedges' g=0.36, 95% CI: 0.12-0.61, p=0.003). There were no significant differences between high-risk individuals and controls in striatal presynaptic dopaminergic function, striatal D2/D3 receptor availability, prefrontal cortex glutamate or Glx, hippocampal glutamate or Glx, or basal ganglia Glx. In the meta-analysis of variability, genetic high-risk individuals showed reduced variability of striatal D2/D3 receptor availability compared to controls (log coefficient of variation ratio, CVR=-0.24, 95% CI: -0.46 to -0.02, p=0.03). Meta-regressions of publication year against effect size demonstrated that the magnitude of differences between clinical high-risk individuals and controls in presynaptic dopaminergic function has decreased over time (estimate=-0.06, 95% CI: -0.11 to -0.007, p=0.025). Thus, other than thalamic glutamate concentrations, no neurochemical measures were significantly different between individuals at risk for psychosis and controls. There was also no evidence of increased variability of dopamine or glutamate measures in high-risk individuals compared to controls. Significant heterogeneity, however, exists between studies, which does not allow to rule out the existence of clinically meaningful differences.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Modinos G, Richter A, Egerton A, Bonoldi I, Azis M, Antoniades M, Bossong M, Crossley N, Perez J, Stone JM, Veronese M, Zelaya F, Grace AA, Howes OD, Allen P, McGuire P. Interactions between hippocampal activity and striatal dopamine in people at clinical high risk for psychosis: relationship to adverse outcomes. Neuropsychopharmacology 2021; 46:1468-1474. [PMID: 33941857 PMCID: PMC8209204 DOI: 10.1038/s41386-021-01019-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Preclinical models propose that increased hippocampal activity drives subcortical dopaminergic dysfunction and leads to psychosis-like symptoms and behaviors. Here, we used multimodal neuroimaging to examine the relationship between hippocampal regional cerebral blood flow (rCBF) and striatal dopamine synthesis capacity in people at clinical high risk (CHR) for psychosis and investigated its association with subsequent clinical and functional outcomes. Ninety-five participants (67 CHR and 28 healthy controls) underwent arterial spin labeling MRI and 18F-DOPA PET imaging at baseline. CHR participants were followed up for a median of 15 months to determine functional outcomes with the global assessment of function (GAF) scale and clinical outcomes using the comprehensive assessment of at-risk mental states (CAARMS). CHR participants with poor functional outcomes (follow-up GAF < 65, n = 25) showed higher rCBF in the right hippocampus compared to CHRs with good functional outcomes (GAF ≥ 65, n = 25) (pfwe = 0.026). The relationship between rCBF in this right hippocampal region and striatal dopamine synthesis capacity was also significantly different between groups (pfwe = 0.035); the association was negative in CHR with poor outcomes (pfwe = 0.012), but non-significant in CHR with good outcomes. Furthermore, the correlation between right hippocampal rCBF and striatal dopamine function predicted a longitudinal increase in the severity of positive psychotic symptoms within the total CHR group (p = 0.041). There were no differences in rCBF, dopamine, or their associations in the total CHR group relative to controls. These findings indicate that altered interactions between the hippocampus and the subcortical dopamine system are implicated in the pathophysiology of adverse outcomes in the CHR state.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Anja Richter
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matilda Azis
- Department of Psychology, Northwestern University, Chicago, IL, USA
| | - Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthijs Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nicolas Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jesus Perez
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Department of Neuroscience, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.,South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK.,MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychology, University of Roehampton, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.,South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
14
|
Raballo A, Poletti M, Preti A. Negative Prognostic Effect of Baseline Antipsychotic Exposure in Clinical High Risk for Psychosis (CHR-P): Is Pre-Test Risk Enrichment the Hidden Culprit? Int J Neuropsychopharmacol 2021; 24:710-720. [PMID: 34036323 PMCID: PMC8453273 DOI: 10.1093/ijnp/pyab030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Sample enrichment is a key factor in contemporary early-detection strategies aimed at the identification of help-seekers at increased risk of imminent transition to psychosis. We undertook a meta-analytic investigation to ascertain the role of sample enrichment in the recently highlighted negative prognostic effect of baseline antipsychotic (AP) exposure in clinical high-risk (CHR-P) of psychosis individuals. METHODS Systematic review and meta-analysis of all published studies on CHR-P were identified according to a validated diagnostic procedure. The outcome was the proportion of transition to psychosis, which was calculated according to the Freeman-Tukey double arcsine transformation. RESULTS Thirty-three eligible studies were identified, including 16 samples with details on AP exposure at baseline and 17 samples with baseline AP exposure as exclusion criterion for enrollment. Those with baseline exposure to AP (n = 395) had higher transition rates (29.9%; 95% CI: 25.1%-34.8%) than those without baseline exposure to AP in the same study (n = 1289; 17.2%; 15.1%-19.4%) and those coming from samples that did not include people who were exposed to AP at baseline (n = 2073; 16.2%; 14.6%-17.8%; P < .05 in both the fixed-effects and the random-effects models). Heterogeneity within studies was substantial, with values above 75% in all comparisons. CONCLUSIONS Sample enrichment is not a plausible explanation for the higher risk of transition to psychosis of CHR-P individuals who were already exposed to AP at the enrollment in specialized early-detection programs. Baseline exposure to AP at CHR-P assessment is a major index of enhanced, imminent risk of psychosis.
Collapse
Affiliation(s)
- Andrea Raballo
- Section of Psychiatry, Clinical Psychology and Rehabilitation, Department of Medicine, University of Perugia, Perugia, Italy,Center for Translational, Phenomenological and Developmental Psychopathology (CTPDP), Perugia University Hospital, Perugia, Italy,Correspondence: Andrea Raballo, MD, PhD, Section of Psychiatry, Clinical Psychology and Rehabilitation, Department of Medicine, University of Perugia Piazzale Lucio Severi 1, 06132, Perugia, Italy ()
| | - Michele Poletti
- Department of Mental Health and Pathological Addiction, Child and Adolescent Neuropsychiatry Service, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Preti
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Rubio JM, Malhotra AK, Kane JM. Towards a framework to develop neuroimaging biomarkers of relapse in schizophrenia. Behav Brain Res 2021; 402:113099. [PMID: 33417996 DOI: 10.1016/j.bbr.2020.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a chronic disorder that often requires long-term relapse-prevention treatment. This treatment is effective for most individuals, yet approximately 20-30 % of them may still relapse despite confirmed adherence. Alternatively, for about 15 % it may be safe to discontinue medications over the long term, but since there are no means to identify who those individuals will be, the recommendation is that all individuals receive long-term relapse-prevention treatment with antipsychotic maintenance. Thus, the current approach to prevent relapse in schizophrenia may be suboptimal for over one third of individuals, either by being insufficient to protect against relapse, or by unnecessarily exposing them to medication side effects. There is great need to identify biomarkers of relapse in schizophrenia to stratify treatment according to the risk and develop therapeutics targeting its pathophysiology. In order to develop a line of research that meets those needs, it is necessary to create a framework by identifying the challenges to this type of study as well as potential areas for biomarker identification and development. In this manuscript we review the literature to create such a framework.
Collapse
Affiliation(s)
- Jose M Rubio
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| |
Collapse
|
16
|
Sonnenschein SF, Grace AA. Emerging therapeutic targets for schizophrenia: a framework for novel treatment strategies for psychosis. Expert Opin Ther Targets 2021; 25:15-26. [PMID: 33170748 PMCID: PMC7855878 DOI: 10.1080/14728222.2021.1849144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Antipsychotic drugs are central to the treatment of schizophrenia, but their limitations necessitate improved treatment strategies. Multiple lines of research have implicated glutamatergic dysfunction in the hippocampus as an early source of pathophysiology in schizophrenia. Novel compounds have been designed to treat glutamatergic dysfunction, but they have produced inconsistent results in clinical trials. Areas covered: This review discusses how the hippocampus is thought to drive psychotic symptoms through its influence on the dopamine system. It offers the reader an evaluation of proposed treatment strategies including direct modulation of GABA or glutamate neurotransmission or reducing the deleterious impact of stress on circuit development. Finally, we offer a perspective on aspects of future research that will advance our knowledge and may create new therapeutic opportunities. PubMed was searched for relevant literature between 2010 and 2020 and related studies. Expert opinion: Targeting aberrant excitatory-inhibitory neurotransmission in the hippocampus and its related circuits has the potential to alleviate symptoms and reduce the risk of transition to psychosis if implemented as an early intervention. Longitudinal multimodal brain imaging combined with mechanistic theories generated from animal models can be used to better understand the progression of hippocampal-dopamine circuit dysfunction and heterogeneity in treatment response.
Collapse
Affiliation(s)
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Metabolite abnormalities in psychosis risk: A meta-analysis of proton magnetic resonance spectroscopy studies. Asian J Psychiatr 2020; 54:102220. [PMID: 32653847 DOI: 10.1016/j.ajp.2020.102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Accumulating evidence implicates that individuals at high-risk of psychosis have already exhibited pathophysiological changes in brain metabolites including glutamate, gamma-Aminobutyric Acid (GABA), N-Acetylaspartate (NAA), creatine (Cr), myo-inositol (MI) and choline (Cho). These changes may contribute to the development of schizophrenia and associate with psychotic genes. However, specific metabolic changes of brain sub-regions in individuals at risk have still been controversial. Thus, the current study aimed to investigate the brain metabolic changes including glutamate, Glx, GABA, GABA/Glx, NAA, Cr, MI and Cho levels in individuals at risk by conducting a case-control meta-analysis and meta-regression of proton magnetic resonance spectroscopy studies. Primary outcomes revealed that individuals at risk exhibited increased Cr levels at the rostral medial prefrontal cortex (rmPFC), decreased NAA and Cr levels at the thalamus, and increased MI levels at the dorsolateral prefrontal cortex. Sub-group analyses further indicated that individuals with clinical high-risk (CHR) exhibited increased Cr levels at the medial prefrontal cortex (mPFC) and decreased Glx levels at the thalamus, while individuals with genetic risk (siblings of psychiatric patients) exhibited significant increased Glx and MI levels at the mPFC. However, GABA, GABA/Glx and Cho levels showed no significant result. These findings suggest that the dysfunctional metabolites at the mPFC and the thalamus may be an essential neurobiological basis at the early stage of psychosis.
Collapse
|
18
|
Shang B, Zhang H, Lu Y, Zhou X, Wang Y, Ma M, Ma K. Insights from the Perspective of Traditional Chinese Medicine to Elucidate Association of Lily Disease and Yin Deficiency and Internal Heat of Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8899079. [PMID: 33299463 PMCID: PMC7710406 DOI: 10.1155/2020/8899079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 11/13/2020] [Indexed: 12/05/2022]
Abstract
Lily disease was first recorded in Synopsis of the Golden Chamber by Zhang Zhongjing. It is a disease of heart and lung internal heat by Yin deficiency, which belongs to the category of emotion disease in Chinese medicine. In recent years, researchers believe that lily disease and depression syndrome of Yin deficiency and internal heat have many similarities in etiology, pathogenesis, and clinical manifestations. This review summarizes the clinical symptoms, etiology, pathogenesis, and therapeutic medication of lily disease and modern Yin-deficient internal heat depression and discusses the relationship between them. Furthermore, the relationship between coronavirus disease 2019 (COVID-19) and lily disease was discussed from the etiology, pathogenesis, and treatment. It provides new ideas for the treatment of COVID-19 and the treatment of psychological problems after recovery.
Collapse
Affiliation(s)
- Bingxian Shang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- College of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongxiu Zhang
- Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyu Zhou
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yong Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Minghan Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
19
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
20
|
Ellis JK, Walker EF, Goldsmith DR. Selective Review of Neuroimaging Findings in Youth at Clinical High Risk for Psychosis: On the Path to Biomarkers for Conversion. Front Psychiatry 2020; 11:567534. [PMID: 33173516 PMCID: PMC7538833 DOI: 10.3389/fpsyt.2020.567534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
First episode psychosis (FEP), and subsequent diagnosis of schizophrenia or schizoaffective disorder, predominantly occurs during late adolescence, is accompanied by a significant decline in function and represents a traumatic experience for patients and families alike. Prior to first episode psychosis, most patients experience a prodromal period of 1-2 years, during which symptoms first appear and then progress. During that time period, subjects are referred to as being at Clinical High Risk (CHR), as a prodromal period can only be designated in hindsight in those who convert. The clinical high-risk period represents a critical window during which interventions may be targeted to slow or prevent conversion to psychosis. However, only one third of subjects at clinical high risk will convert to psychosis and receive a formal diagnosis of a primary psychotic disorder. Therefore, in order for targeted interventions to be developed and applied, predicting who among this population will convert is of critical importance. To date, a variety of neuroimaging modalities have identified numerous differences between CHR subjects and healthy controls. However, complicating attempts at predicting conversion are increasingly recognized co-morbidities, such as major depressive disorder, in a significant number of CHR subjects. The result of this is that phenotypes discovered between CHR subjects and healthy controls are likely non-specific to psychosis and generalized for major mental illness. In this paper, we selectively review evidence for neuroimaging phenotypes in CHR subjects who later converted to psychosis. We then evaluate the recent landscape of machine learning as it relates to neuroimaging phenotypes in predicting conversion to psychosis.
Collapse
Affiliation(s)
- Justin K Ellis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|