1
|
Xu Q, Yao J, Xing C, Xu X, Chen YC, Zhang T, Zheng JX. Structural and covariance network alterations of the hippocampus and amygdala in congenital hearing loss children. Neuroscience 2024; 562:182-189. [PMID: 39442858 DOI: 10.1016/j.neuroscience.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The hippocampus and amygdala, as important components of the limbic system, play crucial roles in central remodeling in congenital hearing loss. This study aimed to investigate the morphological integrity and network properties of the subfields of hippocampus and amygdala in children with congenital hearing loss. METHODS A total of 24 children with congenital hearing loss and 17 age- and sex- matched healthy controls (HC) are included in the study. T1-weighted images are analyzed by segmenting the brain into cortical and subcortical regions. Intergroup difference of volumes were explored. Structural covariance networks for the whole brain and hippocampus-amygdala subregions were constructed. Between-group differences of network property are investigated by comparing area under a range of network sparsity. RESULTS Patients with congenital hearing loss exhibited significantly larger volumes in the right dentate gyrus and CA3 of the hippocampus. However, there were no significant differences in total hippocampal or showed decreased global efficiency and increased characteristic path length, indicating reduced network integration. Lower betweenness centrality was observed in the left hippocampal fissure in the hearing loss group. The changes in volume and network topological properties are not affected by age and sex. CONCLUSION Children with congenital hearing loss display specific volumetric increases in hippocampal subregions, suggesting compensatory adaptations to auditory deprivation. The hippocampus-amygdala network shows significant reorganization, potentially underpinning cognitive and behavioral development issues associated with congenital hearing loss. These findings highlight the importance of targeted neural substrates in understanding and addressing the developmental challenges faced by children with congenital hearing loss.
Collapse
Affiliation(s)
- Qianhui Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Radiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Jin-Xia Zheng
- Department of Radiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
2
|
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field. Mol Psychiatry 2024; 29:3223-3244. [PMID: 38632413 PMCID: PMC11449801 DOI: 10.1038/s41380-024-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Almost three decades have passed since the first posttraumatic stress disorder (PTSD) neuroimaging study was published. Since then, the field of clinical neuroscience has made advancements in understanding the neural correlates of PTSD to create more efficacious treatment strategies. While gold-standard psychotherapy options are available, many patients do not respond to them, prematurely drop out, or never initiate treatment. Therefore, elucidating the neurobiological mechanisms that define the disorder can help guide clinician decision-making and develop individualized mechanisms-based treatment options. To this end, this narrative review highlights progress made in the last decade in adult and youth samples on three outstanding questions in PTSD research: (1) Which neural alterations serve as predisposing (pre-exposure) risk factors for PTSD development, and which are acquired (post-exposure) alterations? (2) Which neural alterations can predict treatment outcomes and define clinical improvement? and (3) Can neuroimaging measures be used to define brain-based biotypes of PTSD? While the studies highlighted in this review have made progress in answering the three questions, the field still has much to do before implementing these findings into clinical practice. Overall, to better answer these questions, we suggest that future neuroimaging studies of PTSD should (A) utilize prospective longitudinal designs, collecting brain measures before experiencing trauma and at multiple follow-up time points post-trauma, taking advantage of multi-site collaborations/consortiums; (B) collect two scans to explore changes in brain alterations from pre-to-post treatment and compare changes in neural activation between treatment groups, including longitudinal follow up assessments; and (C) replicate brain-based biotypes of PTSD. By synthesizing recent findings, this narrative review will pave the way for personalized treatment approaches grounded in neurobiological evidence.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Grace C George
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Ziv Ben-Zion
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Seligowski AV, Harnett NG, Ellis RA, Grasser LR, Hanif M, Wiltshire C, Ely TD, Lebois LAM, van Rooij SJH, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Harris E, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Bruce SE, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS, Jovanovic T. Probing the neurocardiac circuit in trauma and posttraumatic stress. J Psychiatr Res 2024; 176:173-181. [PMID: 38875773 PMCID: PMC11283955 DOI: 10.1016/j.jpsychires.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
The neurocardiac circuit is integral to physiological regulation of threat and trauma-related responses. However, few direct investigations of brain-behavior associations with replicable physiological markers of PTSD have been conducted. The current study probed the neurocardiac circuit by examining associations among its core regions in the brain (e.g., insula, hypothalamus) and the periphery (heart rate [HR], high frequency heart rate variability [HF-HRV], and blood pressure [BP]). We sought to characterize these associations and to determine whether there were differences by PTSD status. Participants were N = 315 (64.1 % female) trauma-exposed adults enrolled from emergency departments as part of the prospective AURORA study. Participants completed a deep phenotyping session (e.g., fear conditioning, magnetic resonance imaging) two weeks after emergency department admission. Voxelwise analyses revealed several significant interactions between PTSD severity 8-weeks posttrauma and psychophysiological recordings on hypothalamic connectivity to the prefrontal cortex (PFC), insula, superior temporal sulcus, and temporoparietaloccipital junction. Among those with PTSD, diastolic BP was directly correlated with right insula-hypothalamic connectivity, whereas the reverse was found for those without PTSD. PTSD status moderated the association between systolic BP, HR, and HF-HRV and hypothalamic connectivity in the same direction. While preliminary, our findings may suggest that individuals with higher PTSD severity exhibit compensatory neural mechanisms to down-regulate autonomic imbalance. Additional study is warranted to determine how underlying mechanisms (e.g., inflammation) may disrupt the neurocardiac circuit and increase cardiometabolic disease risk in PTSD.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Nathaniel G Harnett
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Robyn A Ellis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Lana R Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Mubeena Hanif
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Charis Wiltshire
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA; Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; The Many Brains Project, Belmont, MA, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA; Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Harris
- Department of Emergency Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Lee J, Jeong Y, Park S, Kim S, Oh H, Jin JA, Sohn JW, Kim D, Shin HS, Do Heo W. Phospholipase C beta 1 in the dentate gyrus gates fear memory formation through regulation of neuronal excitability. SCIENCE ADVANCES 2024; 10:eadj4433. [PMID: 38959322 PMCID: PMC11221510 DOI: 10.1126/sciadv.adj4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCβ1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCβ1 in memory function has not been elucidated. Here, we demonstrate that PLCβ1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCβ1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCβ1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCβ1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCβ1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.
Collapse
Affiliation(s)
- Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonji Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seahyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hyunsik Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ju-Ae Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
6
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
7
|
Ben-Zion Z, Korem N, Spiller TR, Duek O, Keynan JN, Admon R, Harpaz-Rotem I, Liberzon I, Shalev AY, Hendler T. Longitudinal volumetric evaluation of hippocampus and amygdala subregions in recent trauma survivors. Mol Psychiatry 2023; 28:657-667. [PMID: 36280750 PMCID: PMC9918676 DOI: 10.1038/s41380-022-01842-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The hippocampus and the amygdala play a central role in post-traumatic stress disorder (PTSD) pathogenesis. While alternations in volumes of both regions have been consistently observed in individuals with PTSD, it remains unknown whether these reflect pre-trauma vulnerability traits or acquired post-trauma consequences of the disorder. Here, we conducted a longitudinal panel study of adult civilian trauma survivors admitted to a general hospital emergency department (ED). One hundred eligible participants (mean age = 32.97 ± 10.97, n = 56 females) completed both clinical interviews and structural MRI scans at 1-, 6-, and 14-months after ED admission (alias T1, T2, and T3). While all participants met PTSD diagnosis at T1, only n = 29 still met PTSD diagnosis at T3 (a "non-Remission" Group), while n = 71 did not (a "Remission" Group). Bayesian multilevel modeling analysis showed robust evidence for smaller right hippocampus volume (P+ of ~0.014) and moderate evidence for larger left amygdala volume (P+ of ~0.870) at T1 in the "non-Remission" group, compared to the "Remission" group. Subregion analysis further demonstrated robust evidence for smaller volume in the subiculum and right CA1 hippocampal subregions (P+ of ~0.021-0.046) in the "non-Remission" group. No time-dependent volumetric changes (T1 to T2 to T3) were observed across all participants or between groups. Results support the "vulnerability trait" hypothesis, suggesting that lower initial volumes of specific hippocampus subregions are associated with non-remitting PTSD. The stable volume of all hippocampal and amygdala subregions does not support the idea of consequential, progressive, stress-related atrophy during the first critical year following trauma exposure.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, CT, USA.
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA.
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tobias R Spiller
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jackob Nimrod Keynan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Israel Liberzon
- Department of Psychiatry, College of Medicine, Texas A&M, College Station, TX, USA
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
| | - Talma Hendler
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Social Sciences and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
de Voogd LD, Kampen RA, Kaldewaij R, Zhang W, Hashemi MM, Koch SBJ, Klumpers F, Glennon JC, Roelofs K. Trauma-induced human glucocorticoid receptor expression increases predict subsequent HPA-axis blunting in a prospective longitudinal design. Psychoneuroendocrinology 2022; 146:105909. [PMID: 36162182 DOI: 10.1016/j.psyneuen.2022.105909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
One of the hallmarks of post-traumatic stress disorder (PTSD) is abnormalities in the HPA-axis. This includes alterations in its negative feedback regulation. Although altered glucocorticoid receptor (GR) mRNA expression is thought to play a crucial role herein, direct longitudinal evidence in humans is lacking to support this assumption. The current prospective longitudinal study assessed the consequence of repeated trauma exposure on GR mRNA expression from saliva samples in early-career police recruits (n = 112) by assessing them before and after trauma exposure. We did not observe a relationship between change in GR mRNA expression and development of PTSD symptom severity. However, the more traumatic events were experienced during police training the stronger GR mRNA expression was increased. Moreover, increases in GR mRNA expression were associated with blunted HPA-axis stress-reactivity at follow-up compared to baseline. This study provides the first longitudinal evidence of a dose-response relationship between trauma and human GR mRNA expression (extracted from saliva) changes; therefore, replication is warranted. Our finding might contribute a possible explanatory framework for blunted HPA-axis function associated with PTSD.
Collapse
Affiliation(s)
- Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands.
| | - Rosalie Anne Kampen
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinoud Kaldewaij
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Wei Zhang
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Mahur Melina Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Ireland
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Roeckner AR, Sogani S, Michopoulos V, Hinrichs R, van Rooij SJH, Rothbaum BO, Jovanovic T, Ressler KJ, Stevens JS. Sex-dependent risk factors for PTSD: a prospective structural MRI study. Neuropsychopharmacology 2022; 47:2213-2220. [PMID: 36114284 PMCID: PMC9630503 DOI: 10.1038/s41386-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Female individuals are more likely to be diagnosed with PTSD following trauma exposure than males, potentially due, in part, to underlying neurobiological factors. Several brain regions underlying fear learning and expression have previously been associated with PTSD, with the hippocampus, amygdala, dorsal anterior cingulate cortex (dACC), and rostral ACC (rACC) showing altered volume and function in those with PTSD. However, few studies have examined how sex impacts the predictive value of subcortical volumes and cortical thickness in longitudinal PTSD studies. As part of an emergency department study completed at the Grady Trauma Project in Atlanta, GA, N = 93 (40 Female) participants were enrolled within 24 h following a traumatic event. Multi-echo T1-weighted MRI images were collected one-month post-trauma exposure. Bilateral amygdala and hippocampal volumes and rACC and dACC cortical thickness were segmented. To assess the longitudinal course of PTSD, the PTSD Symptom Scale (PSS) was collected 6 months post-trauma. We investigated whether regional volume/thickness interacted with sex to predict later PTSD symptom severity, controlling for PSS score at time of scan, age, race, and trauma type, as well as intracranial volume (ICV) for subcortical volumes. There was a significant interaction between sex and rACC for 6-month PSS, such that right rACC thickness was positively correlated with 6-month PSS scores in females, but not in males. In examining PTSD symptom subtypes and depression symptoms, greater rACC thickness in females predicted greater avoidance symptoms, while smaller rACC thickness in males predicted greater depression symptoms. Amygdala and hippocampus volume and dACC thickness showed no main effect or interaction with sex. The current findings provide evidence for sex-based differences in how brain volume predicts future PTSD severity and symptoms and supports the rACC as being a vital region regarding PTSD. Gender differences should be assessed in future longitudinal PTSD MRI studies for more accurate identification of future PTSD risk following trauma.
Collapse
|
10
|
Grupe DW, Fitch D, Vack NJ, Davidson RJ. The effects of perceived stress and anhedonic depression on mnemonic similarity task performance. Neurobiol Learn Mem 2022; 193:107648. [PMID: 35679999 PMCID: PMC9378521 DOI: 10.1016/j.nlm.2022.107648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Previous research has demonstrated hippocampal alterations in individuals experiencing elevated stress. The Mnemonic Similarity Task (MST) is a hippocampal-dependent task sensitive to age-related hippocampal decline, but it is unknown how performance on this task is related to one's experience of daily stress. We conducted separate discovery and replication analyses in 510 participants who completed the MST across four different Mechanical Turk studies. We hypothesized that higher scores on the Perceived Stress Scale would be associated with poorer discrimination of "lure" items from previously seen targets - a behavioral index of pattern separation - but not with recognition memory. The zero-order relationship between perceived stress and lure discrimination was not significant in the discovery or replication sample. Exploratory analyses involving anhedonic depression symptoms (from the Mood and Anxiety Symptoms Questionnaire) revealed a robust perceived stress*anhedonic depression interaction in the discovery sample that was confirmed in the replication sample. In both samples, individuals with low but not high anhedonic depression symptoms showed an inverse association between perceived stress and lure discrimination ability. Contrary to hypotheses, a similar interaction was observed for recognition memory. The novel association between perceived stress and behavioral pattern separation suggests a candidate behavioral process associated with stress-related hippocampal deficits. The specificity of this effect for individuals with low anhedonic depression symptoms - and the lack of behavioral specificity - highlight the need for additional research to unpack the clinical and neurobiological significance of these findings.
Collapse
Affiliation(s)
- Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, USA.
| | - Dan Fitch
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - Nathan J Vack
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, USA; Department of Psychology, University of Wisconsin-Madison, USA; Department of Psychiatry, University of Wisconsin-Madison, USA
| |
Collapse
|
11
|
Harnett NG, Finegold KE, Lebois LAM, van Rooij SJH, Ely TD, Murty VP, Jovanovic T, Bruce SE, House SL, Beaudoin FL, An X, Zeng D, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Harris E, Chang AM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Miller MW, Pietrzak RH, Joormann J, Barch DM, Pizzagalli DA, Sheridan JF, Harte SE, Elliott JM, Kessler RC, Koenen KC, McLean SA, Nickerson LD, Ressler KJ, Stevens JS. Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis. Transl Psychiatry 2022; 12:321. [PMID: 35941117 PMCID: PMC9360028 DOI: 10.1038/s41398-022-02085-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 01/16/2023] Open
Abstract
Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic resonance imaging data (n = 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant's loadings on the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus. Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms. Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting PTSD symptoms.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | | | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Emergency Medicine & Department of Health Services, Policy, and Practice, The Alpert Medical School of Brown University, Rhode Island Hospital and The Miriam Hospital, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anna M Chang
- Department of Emergency Medicine, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Diego A Pizzagalli
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James M Elliott
- Kolling Institute, University of Sydney, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, New South Wales, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Grupe DW, Barnes AL, Gresham L, Kirvin-Quamme A, Nord E, Alexander AL, Abercrombie HC, Schaefer SM, Davidson RJ. Perceived stress associations with hippocampal-dependent behavior and hippocampal subfield volume. Neurobiol Stress 2022; 19:100469. [PMID: 35859546 PMCID: PMC9289864 DOI: 10.1016/j.ynstr.2022.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Background Individual differences in stress appraisals influence trajectories of risk and resilience following exposure to chronic and acute stressors. Smaller hippocampal volume may contribute to elevated stress appraisals via deficient pattern separation, a process depending on dentate gyrus (DG)/CA3 hippocampal subfields. Here, we investigated links between perceived stress, DG/CA3 volume, and behavioral pattern separation to test hypothesized mechanisms underlying stress-related psychopathology. Methods We collected the Perceived Stress Scale (PSS) and ratings of subjective stress reactivity during the Trier Social Stress Test (TSST) from 71 adult community participants. We obtained high-resolution T2 MRI scans and used Automatic Segmentation of Hippocampal Subfields to estimate DG/CA3 volume in 56 of these participants. Participants completed the mnemonic similarity task, which provides a behavioral index of pattern separation. Analyses investigated associations between perceived stress, DG/CA3 volume, and behavioral pattern separation, controlling for age, gender, hemisphere, and intracranial volume. Results Greater PSS scores and TSST subjective stress reactivity were each independently related to poorer behavioral pattern separation, together accounting for 15% of variance in behavioral performance in a simultaneous regression. Contrary to hypotheses, DG/CA3 volume was not associated with either stress measure, although exploratory analyses suggested a link between hippocampal volume asymmetry and PSS scores. Conclusions We observed novel associations between laboratory and questionnaire measures of perceived stress and a behavioral assay of pattern separation. Additional work is needed to clarify the involvement of the hippocampus in this stress-behavior relationship and determine the relevance of behavioral pattern separation for stress-related disorders.
Collapse
Affiliation(s)
- Daniel W Grupe
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA.,University of Wisconsin-Madison Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Alexandra L Barnes
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA
| | - Lauren Gresham
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA
| | - Andrew Kirvin-Quamme
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA
| | - Elizabeth Nord
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA
| | - Andrew L Alexander
- University of Wisconsin-Madison Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave, Madison, WI, 53705, USA.,University of Wisconsin-Madison Department of Medical Physics, 1111 Highland Ave, Madison, WI, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, 6001 Research Park Blvd, Madison, WI, 53719, USA
| | - Heather C Abercrombie
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA.,University of Wisconsin-Madison Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Stacey M Schaefer
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA.,University of Wisconsin-Madison Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Richard J Davidson
- University of Wisconsin-Madison Center for Healthy Minds, 625 W Washington Ave, Madison, WI, 53703, USA.,University of Wisconsin-Madison Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave, Madison, WI, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, 6001 Research Park Blvd, Madison, WI, 53719, USA.,University of Wisconsin-Madison Department of Psychology, 1202 W Johnson St, Madison, WI, 53706, USA
| |
Collapse
|
13
|
Picci G, Christopher-Hayes NJ, Petro NM, Taylor BK, Eastman JA, Frenzel MR, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Amygdala and hippocampal subregions mediate outcomes following trauma during typical development: Evidence from high-resolution structural MRI. Neurobiol Stress 2022; 18:100456. [PMID: 35542044 PMCID: PMC9079354 DOI: 10.1016/j.ynstr.2022.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of individuals experience trauma within their lifetime. Yet, most people do not go on to develop clinical levels of psychopathology. Recently, studies have highlighted the potential protective effects of having larger amygdala and hippocampal volumes, such that larger volumes may promote adaptive functioning following trauma. However, research has not yet elucidated whether certain subregions of these stress-sensitive structures have specific protective effects. Herein, we examined the mediating effects of amygdala and hippocampal subregions on the relationship between traumatic exposure and concurrent or longitudinal changes in psychiatric symptom levels in typically developing youth (9-15 years of age). Using high-resolution T1-and T2-weighted structural MRI scans, we found that the volume of the right basolateral complex of the amygdala mediated associations between trauma exposure and internalizing symptoms. Specifically, greater levels of childhood trauma related to larger volumes, and larger volumes were associated with fewer internalizing symptoms. The volume of the right CA4/dentate gyrus (DG) of the hippocampus yielded similar mediation results, such that greater trauma was related to larger volumes, which in turn were associated with decreases in internalizing symptoms across time. These findings provide initial support for potentially protective effects of larger right amygdala and hippocampal subregion volumes against internalizing symptomology concurrently and longitudinally during adolescence.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Nicholas J. Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Nathan M. Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D. Calhoun
- Mind Research Network, Albuquerque, NM, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
14
|
Yan Y, Aierken A, Wang C, Jin W, Quan Z, Wang Z, Qing H, Ni J, Zhao J. Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist 2022; 29:332-351. [PMID: 35057666 DOI: 10.1177/10738584211069977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
15
|
Kelley DP, Venable K, Destouni A, Billac G, Ebenezer P, Stadler K, Nichols C, Barker S, Francis J. Pharmahuasca and DMT Rescue ROS Production and Differentially Expressed Genes Observed after Predator and Psychosocial Stress: Relevance to Human PTSD. ACS Chem Neurosci 2022; 13:257-274. [PMID: 34990116 DOI: 10.1021/acschemneuro.1c00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Katy Venable
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Aspasia Destouni
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Gerald Billac
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Philip Ebenezer
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Charles Nichols
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Steven Barker
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Zilcha‐Mano S, Zhu X, Lazarov A, Suarez‐Jimenez B, Helpman L, Kim Y, Maitlin C, Neria Y, Rutherford BR. Structural brain features signaling trauma, PTSD, or resilience? A systematic exploration. Depress Anxiety 2022; 39:695-705. [PMID: 35708133 PMCID: PMC9588504 DOI: 10.1002/da.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies have searched for neurobiological markers of trauma exposure, posttraumatic stress disorder (PTSD) diagnosis, and resilience to trauma to identify therapeutic targets for PTSD. Despite some promising results, findings are inconsistent. AIMS The present study adopted a data-driven approach to systematically explore whether structural brain markers of trauma, PTSD, or resilience emerge when all are explored. MATERIALS & METHODS Differences between clusters in the proportion of PTSD, healthy controls (HC), and trauma-exposed healthy controls (TEHC) served to indicate the presence of PTSD, trauma, and resilience markers, respectively. A total of 129 individuals, including 46 with PTSD, 49 TEHCs, and 34 HCs not exposed to trauma were scanned. Volumes, cortical thickness, and surface areas of interest were obtained from T1 structural MRI and used to identify data-driven clusters. RESULTS Two clusters were identified, differing in the proportion of TEHCs but not of PTSDs or HCs. The cluster with the higher proportion of TEHCs, referred to as the resilience cluster, was characterized by higher volume in brain regions implicated in trauma exposure, especially the thalamus and rostral middle frontal gyrus. Cross-validation established the robustness and consistency of the identified clusters. DISCUSSION & CONCLUSION Findings support the existence of structural brain markers of resilience.
Collapse
Affiliation(s)
| | - Xi Zhu
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Amit Lazarov
- School of Psychological SciencesTel‐Aviv UniversityTel‐AvivIsrael,Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Benjamin Suarez‐Jimenez
- New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA,Department of NeuroscienceUniversity of RochesterRochesterNew YorkUSA
| | - Liat Helpman
- Department of Counseling and Human DevelopmentUniversity of HaifaMount CarmelHaifaIsrael,Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yoojean Kim
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Carly Maitlin
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Yuval Neria
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Bret R. Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric InstituteNew York CityNew YorkUSA
| |
Collapse
|
17
|
Roeckner AR, Oliver KI, Lebois LAM, van Rooij SJH, Stevens JS. Neural contributors to trauma resilience: a review of longitudinal neuroimaging studies. Transl Psychiatry 2021; 11:508. [PMID: 34611129 PMCID: PMC8492865 DOI: 10.1038/s41398-021-01633-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Resilience in the face of major life stressors is changeable over time and with experience. Accordingly, differing sets of neurobiological factors may contribute to an adaptive stress response before, during, and after the stressor. Longitudinal studies are therefore particularly effective in answering questions about the determinants of resilience. Here we provide an overview of the rapidly-growing body of longitudinal neuroimaging research on stress resilience. Despite lingering gaps and limitations, these studies are beginning to reveal individual differences in neural circuit structure and function that appear protective against the emergence of future psychopathology following a major life stressor. Here we outline a neural circuit model of resilience to trauma. Specifically, pre-trauma biomarkers of resilience show that an ability to modulate activity within threat and salience networks predicts fewer stress-related symptoms. In contrast, early post-trauma biomarkers of subsequent resilience or recovery show a more complex pattern, spanning a number of major circuits including attention and cognitive control networks as well as primary sensory cortices. This novel synthesis suggests stress resilience may be scaffolded by stable individual differences in the processing of threat cues, and further buttressed by post-trauma adaptations to the stressor that encompass multiple mechanisms and circuits. More attention and resources supporting this work will inform the targets and timing of mechanistic resilience-boosting interventions.
Collapse
Affiliation(s)
- Alyssa R. Roeckner
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Katelyn I. Oliver
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Lauren A. M. Lebois
- grid.240206.20000 0000 8795 072XDivision of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Sanne J. H. van Rooij
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Jennifer S. Stevens
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
18
|
Voorendonk EM, Meyer T, Duken SB, van Ast VA. Cardiorespiratory fitness as protection against the development of memory intrusions: A prospective trauma analogue study. Biol Psychol 2021; 165:108189. [PMID: 34517067 DOI: 10.1016/j.biopsycho.2021.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Intrusive and distressing memories are at the core of post-traumatic stress disorder (PTSD). Since cardiorespiratory fitness (CRF) has been linked with improved mental health, emotion regulation, and memory function, CRF may, by promoting these capabilities, protect against the development of intrusions after trauma. We investigated the CRF-intrusion relationship and its potential mediators in 115 healthy individuals, using a trauma film to induce intrusions. As potential mediators, we assessed indices of pre-trauma mental health such as heart rate variability, subjective and psychobiological peri-traumatic responses, and memory. Critically, results showed that higher CRF was related to fewer intrusions, but no mediators emerged for the CRF-intrusion relationship. These results indicate that individuals displaying higher CRF are less prone to develop traumatic memory intrusions. Future studies may want to investigate whether promoting fitness prior to possible trauma exposure can boost resilience against the development of debilitating re-experiencing symptoms of PTSD.
Collapse
Affiliation(s)
- Eline M Voorendonk
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Research Department, PSYTREC, Bilthoven, The Netherlands; Radboud University Nijmegen, Behavioural Science Institute (BSI), The Netherlands.
| | - Thomas Meyer
- Institute of Psychology, University of Münster, Münster, Germany
| | - Sascha B Duken
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|