1
|
Gritters NM, Harmata GIS, Buyukgok D, Hazegh P, Hoth KF, Barsotti EJ, Fiedorowicz JG, Williams AJ, Richards JG, Sathyaputri L, Schmitz SL, Long JD, Wemmie JA, Magnotta VA. Associations between NIH Toolbox Emotion Battery measures and previous suicide attempt in bipolar I disorder. J Affect Disord 2024; 372:470-480. [PMID: 39672472 DOI: 10.1016/j.jad.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Suicide attempts are more prevalent in people with bipolar I disorder (BD-I) than in the general population. Most prior studies of suicide in BD-I have focused on separate emotion-related assays or clinician-administered scales, whereas a single, brief, and multidimensional battery of self-report measures has not yet been explored. Here, we utilized the NIH Toolbox Emotion Battery (NIHTB-EB) to assess various emotional measures, determine which were cross-sectionally associated with prior suicide attempt in BD-I, evaluate whether the NIHTB-EB could be used to identify past suicide attempt in BD-I with machine learning, and compare model performance versus using clinical mood scales. The study included 39 participants with BD-I and history of suicide attempt, 48 with BD-I without history of suicide attempt, and 58 controls. We found that 9 of the 17 measures were associated with past suicide attempt in BD-I. The initial random forest model indicated that the most important distinguishing variables were perceived stress, emotional support, anger-hostility, anger-physical aggression, perceived rejection, loneliness, and self-efficacy. Overall, the models utilizing NIHTB-EB measures performed better (69.0 % to 70.1 % accuracy) than the model containing clinical mood scale information without the NIHTB-EB measures (57.5 % accuracy). These findings suggest the NIHTB-EB could be a useful and easy-to-deploy tool in understanding the role of emotion-related measures in suicide in BD-I. Furthermore, these results highlight specific emotional subdomains that could be promising targets for longitudinal studies or interventions aimed at reducing suicide in BD-I.
Collapse
Affiliation(s)
- Noah M Gritters
- Carver College of Medicine, The University of Iowa, IA, United States; Department of Radiology, The University of Iowa, IA, United States
| | - Gail I S Harmata
- Department of Radiology, The University of Iowa, IA, United States; Department of Psychiatry, The University of Iowa, IA, United States; Iowa Neuroscience Institute, The University of Iowa, IA, United States.
| | - Deniz Buyukgok
- Department of Radiology, The University of Iowa, IA, United States; Department of Psychiatry, Istanbul University, Turkey
| | - Pooya Hazegh
- Department of Radiology, The University of Iowa, IA, United States
| | - Karin F Hoth
- Carver College of Medicine, The University of Iowa, IA, United States; Department of Psychiatry, The University of Iowa, IA, United States; Iowa Neuroscience Institute, The University of Iowa, IA, United States
| | - Ercole John Barsotti
- Department of Radiology, The University of Iowa, IA, United States; Department of Epidemiology, The University of Iowa, IA, United States
| | - Jess G Fiedorowicz
- Department of Psychiatry, The University of Iowa, IA, United States; Department of Psychiatry, University of Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ontario, Canada; Department of Mental Health, Ottawa Hospital Research Institute, Ontario, Canada
| | - Aislinn J Williams
- Department of Psychiatry, The University of Iowa, IA, United States; Iowa Neuroscience Institute, The University of Iowa, IA, United States
| | | | | | | | - Jeffrey D Long
- Department of Psychiatry, The University of Iowa, IA, United States; Department of Biostatistics, University of Iowa, IA, United States
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, IA, United States; Iowa Neuroscience Institute, The University of Iowa, IA, United States; Department of Molecular Physiology and Biophysics, The University of Iowa, IA, United States; Department of Neurosurgery, The University of Iowa, IA, United States; Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa, IA, United States; Department of Psychiatry, The University of Iowa, IA, United States; Iowa Neuroscience Institute, The University of Iowa, IA, United States; Department of Biomedical Engineering, The University of Iowa, IA, United States
| |
Collapse
|
2
|
Jia Z, Qiu F, He Y, Chen H, Yang C, Liu H, Zheng T, Xu S, Wang S, Li Y. The fetal origins of metabolic health: exploring the association between newborn biological age and metabolism hormones in childhood. BMC Med 2024; 22:429. [PMID: 39379967 PMCID: PMC11462715 DOI: 10.1186/s12916-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Telomere length (TL), mitochondrial DNA copy number (mtDNAcn), and DNA methylation age (DNAmAge) are common aging biomarkers. However, research on the associations between these three markers at birth and subsequent metabolic status was limited. This study aimed to evaluate the association between TL, mtDNAcn, and DNAmAge in newborns and the variation in metabolic hormones of children at 3 years old. METHODS This research involved 895 mother-child pairs from a birth cohort in China, with TL and mtDNAcn measured using quantitative real-time PCR, DNA methylation (DNAm) assessed using Infinium MethylationEPIC Beadchip, and DNAm age (DNAmAge) determined using Horvath's epigenetic clock. Insulin and leptin levels were measured via electrochemiluminescence assay. Multivariable adjusted linear regression and restricted cubic spline (RCS) analysis were utilized to examine the association between aging markers and metabolic hormones. RESULTS The linear regression analysis indicated the percentage change of metabolism hormones for per doubling of aging biomarkers alterations and found significant associations between DNAmAge and insulin levels (adjusted percent change (95% CI), - 13.22 (- 23.21 to - 1.94)), TL and leptin levels (adjusted percent change (95% CI), 15.32 (1.32 to 31.24)), and mtDNAcn and leptin levels (adjusted percent change (95% CI), - 14.13 (- 21.59 to - 5.95)). The RCS analysis revealed significant non-linear associations between TL (Ln transformed) and insulin (Ln transformed) (P = 0.024 for nonlinearity), as well as DNAmAge (Ln transformed) and leptin (Ln transformed) (P = 0.043 for nonlinearity). Specifically, for TL and insulin, a positive association was observed when TL (Ln transformed) was less than - 0.05, which transitioned to an inverse association when TL (Ln transformed) was greater than - 0.05. Regarding DNAmAge and leptin, there was a sharp decline when DNAmAge (Ln transformed) was less than - 1.35, followed by a plateau between - 1.35 and - 0.67 and then a further decline when DNAmAge (Ln transformed) was greater than - 0.67. CONCLUSIONS In this prospective birth cohort study, variation in metabolic hormones of children at 3 years old was associated with TL, mtDNAcn, and DNAmAge at birth. These findings suggested that TL, mtDNAcn, and DNAmAge might play a role in the biological programming of metabolic health from birth.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China.
| | - Shiqiong Wang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430016, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Tessema T, Diniz BS, Vieira EM, Mendes-Silva AP, Voineskos AN, Gildengers AG, Husain MI, Ortiz A, Blumberger DM, Rajji TK, Mulsant BH. Elevated senescence-associated secretory phenotype index in late-life bipolar disorder. J Affect Disord 2024; 360:163-168. [PMID: 38795779 PMCID: PMC11209851 DOI: 10.1016/j.jad.2024.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND The senescence-associated secretory phenotype (SASP) is a biomarker index based on the profile of 22 blood proteins associated with cellular senescence. The SASP index has not been assessed in older patients with bipolar disorder (BD). We hypothesized that older adults with BD will have elevated cellular senescence burden as measured by the SASP index. METHODS We measured the 22 SASP proteins to calculate the SASP index in 38 older patients with BD and 34 non-psychiatric comparison individuals (HC). RESULTS The SASP index scores were significantly higher in BD than HC after controlling for age, sex, psychopathology, and physical health (F(1,8) = 5.37, p = 0.024, η2 = 0.08). SASP index scores were also associated with higher age, more severe depressive symptoms, and physical illness burden (p < 0.05) in the whole sample. LIMITATION Cross-sectional study and small sample size. CONCLUSION This is the first report of increased SASP index scores in older adults with BD. Our results suggest that dysregulation of age-related biological processes may contribute to more severe depressive symptoms and worse physical health in older adults with BD.
Collapse
Affiliation(s)
- Tselot Tessema
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Breno S Diniz
- UConn Center on Aging & Department of Psychiatry, UConn School of Medicine, University of Connecticut Health Center, United States of America.
| | - Erica M Vieira
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ariel G Gildengers
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - M Ishrat Husain
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Abigail Ortiz
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Argue BMR, Casten LG, McCool S, Alrfooh A, Gringer Richards J, Wemmie JA, Magnotta VA, Williams AJ, Michaelson J, Fiedorowicz JG, Scroggins SM, Gaine ME. Patterns of Immune Dysregulation in Bipolar Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311078. [PMID: 39211848 PMCID: PMC11361205 DOI: 10.1101/2024.07.26.24311078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Bipolar disorder is a debilitating mood disorder associated with a high risk of suicide and characterized by immune dysregulation. In this study, we used a multi-faceted approach to better distinguish the pattern of dysregulation of immune profiles in individuals with BD. Methods We analyzed peripheral blood mononuclear cells (bipolar disorder N=39, control N=30), serum cytokines (bipolar disorder N=86, control N=58), whole blood RNA (bipolar disorder N=25, control N=25), and whole blood DNA (bipolar disorder N=104, control N=66) to identify immune-related differences in participants diagnosed with bipolar disorder compared to controls. Results Flow cytometry revealed a higher proportion of monocytes in participants with bipolar disorder together with a lower proportion of T helper cells. Additionally, the levels of 18 cytokines were significantly elevated, while two were reduced in participants with bipolar disorder. Most of the cytokines altered in individuals with bipolar disorder were proinflammatory. Forty-nine genes were differentially expressed in our bipolar disorder cohort and further analyses uncovered several immune-related pathways altered in these individuals. Genetic analysis indicated variants associated with inflammatory bowel disease also influences bipolar disorder risk. Discussion Our findings indicate a significant immune component to bipolar disorder pathophysiology and genetic overlap with inflammatory bowel disease. This comprehensive study supports existing literature, whilst also highlighting novel immune targets altered in individuals with bipolar disorder. Specifically, multiple lines of evidence indicate differences in the peripheral representation of monocytes and T cells are hallmarks of bipolar disorder.
Collapse
|
5
|
Alrfooh A, Casten LG, Richards JG, Wemmie JA, Magnotta VA, Fiedorowicz JG, Michaelson J, Williams AJ, Gaine ME. Investigating the relationship between DNA methylation, genetic variation, and suicide attempt in bipolar disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305263. [PMID: 38633806 PMCID: PMC11023653 DOI: 10.1101/2024.04.03.24305263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Individuals with bipolar disorder are at increased risk for suicide, and this can be influenced by a range of biological, clinical, and environmental risk factors. Biological components associated with suicide include DNA modifications that lead to changes in gene expression. Common genetic variation and DNA methylation changes are some of the most frequent types of DNA findings associated with an increased risk for suicidal behavior. Importantly, the interplay between genetic predisposition and DNA methylation patterns is becoming more prevalent in genetic studies. We hypothesized that DNA methylation patterns in specific loci already genetically associated with suicide would be altered in individuals with bipolar disorder and a history of suicide attempt. To test this hypothesis, we searched the literature to identify common genetic variants (N=34) previously associated with suicidal thoughts and behaviors in individuals with bipolar disorder. We then created a customized sequencing panel that covered our chosen genomic loci. We profiled DNA methylation patterns from blood samples collected from bipolar disorder participants with suicidal behavior (N=55) and without suicidal behavior (N=51). We identified seven differentially methylated CpG sites and five differentially methylated regions between the two groups. Additionally, we found that DNA methylation changes in MIF and CACNA1C were associated with lethality or number of suicide attempts. Finally, we identified three meQTLs in SIRT1 , IMPA2 , and INPP1 . This study illustrates that DNA methylation is altered in individuals with bipolar disorder and a history of suicide attempts in regions known to harbor suicide-related variants.
Collapse
|
6
|
Mirza S, Lima CNC, Del Favero-Campbell A, Rubinstein A, Topolski N, Cabrera-Mendoza B, Kovács EHC, Blumberg HP, Richards JG, Williams AJ, Wemmie JA, Magnotta VA, Fiedorowicz JG, Gaine ME, Walss-Bass C, Quevedo J, Soares JC, Fries GR. Blood epigenome-wide association studies of suicide attempt in adults with bipolar disorder. Transl Psychiatry 2024; 14:70. [PMID: 38296944 PMCID: PMC10831084 DOI: 10.1038/s41398-024-02760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Suicide attempt (SA) risk is elevated in individuals with bipolar disorder (BD), and DNA methylation patterns may serve as possible biomarkers of SA. We conducted epigenome-wide association studies (EWAS) of blood DNA methylation associated with BD and SA. DNA methylation was measured at >700,000 positions in a discovery cohort of n = 84 adults with BD with a history of SA (BD/SA), n = 79 adults with BD without history of SA (BD/non-SA), and n = 76 non-psychiatric controls (CON). EWAS revealed six differentially methylated positions (DMPs) and seven differentially methylated regions (DMRs) between BD/SA and BD/non-SA, with multiple immune-related genes implicated. There were no epigenome-wide significant differences when BD/SA and BD/non-SA were each compared to CON, and patterns suggested that epigenetics differentiating BD/SA from BD/non-SA do not differentiate BD/non-SA from CON. Weighted gene co-methylation network analysis and trait enrichment analysis of the BD/SA vs. BD/non-SA contrast further corroborated immune system involvement, while gene ontology analysis implicated calcium signalling. In an independent replication cohort of n = 48 BD/SA and n = 47 BD/non-SA, fold changes at the discovery cohort's significant sites showed moderate correlation across cohorts and agreement on direction. In both cohorts, classification accuracy for SA history among individuals with BD was highest when methylation at the significant CpG sites as well as information from clinical interviews were combined, with an AUC of 88.8% (CI = 83.8-93.8%) and 82.1% (CI = 73.6-90.5%) for the combined epigenetic-clinical classifier in the discovery and replication cohorts, respectively. Our results provide novel insight to the role of immune system functioning in SA and BD and also suggest that integrating information from multiple levels of analysis holds promise to improve risk assessment for SA in adults with BD.
Collapse
Affiliation(s)
- Salahudeen Mirza
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
- Institute of Child Development, University of Minnesota, 55455, Minneapolis, MN, USA
- Department of Psychiatry, Yale School of Medicine, 06510, New Haven, CT, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
| | - Alexandre Rubinstein
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054, Houston, TX, USA
| | | | - Emese H C Kovács
- Department of Neuroscience and Pharmacology, The University of Iowa, 51 Newton Rd, 52242, Iowa City, IA, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, 06510, New Haven, CT, USA
| | - Jenny Gringer Richards
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Aislinn J Williams
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Jess G Fiedorowicz
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute, 501 Smyth, K1H 8L6, Ottawa, ON, Canada
| | - Marie E Gaine
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054, Houston, TX, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054, Houston, TX, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054, Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054, Houston, TX, USA.
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, 1941 East Rd, 77054, Houston, TX, USA.
| |
Collapse
|
7
|
Bourdon C, Etain B, Spano L, Belzeaux R, Leboyer M, Delahaye-Duriez A, Ibrahim EC, Lutz PE, Gard S, Schwan R, Polosan M, Courtet P, Passerieux C, Bellivier F, Marie-Claire C. Accelerated aging in bipolar disorders: An exploratory study of six epigenetic clocks. Psychiatry Res 2023; 327:115373. [PMID: 37542794 DOI: 10.1016/j.psychres.2023.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Bipolar disorder (BD) is a chronic and severe psychiatric disorder associated with significant medical morbidity and reduced life expectancy. In this study, we assessed accelerated epigenetic aging in individuals with BD using various DNA methylation (DNAm)-based markers. For this purpose, we used five epigenetic clocks (Horvath, Hannum, EN, PhenoAge, and GrimAge) and a DNAm-based telomere length clock (DNAmTL). DNAm profiles were obtained using Infinium MethylationEPIC Arrays from whole-blood samples of 184 individuals with BD. We also estimated blood cell counts based on DNAm levels for adjustment. Significant correlations between chronological age and each epigenetic age estimated using the six different clocks were observed. Following adjustment for blood cell counts, we found that the six epigenetic AgeAccels (age accelerations) were significantly associated with the body mass index. GrimAge AgeAccel was significantly associated with male sex, smoking status and childhood maltreatment. DNAmTL AgeAccel was significantly associated with smoking status. Overall, this study showed that distinct epigenetic clocks are sensitive to different aspects of aging process in BD. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings of potential determinants of an accelerated epigenetic aging in BD.
Collapse
Affiliation(s)
- Céline Bourdon
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France.
| | - Bruno Etain
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, F-75010, France; Fondation Fondamental, F-94010, Créteil, France
| | - Luana Spano
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| | - Raoul Belzeaux
- Pôle Universitaire de Psychiatrie, CHU de Montpellier, France; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France; Université Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France
| | - Marion Leboyer
- Fondation Fondamental, F-94010, Créteil, France; Université Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | | | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, 13005 Marseille, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, F-67000 Strasbourg, France
| | - Sébastien Gard
- Fondation Fondamental, F-94010, Créteil, France; Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Raymund Schwan
- Fondation Fondamental, F-94010, Créteil, France; Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Mircea Polosan
- Fondation Fondamental, F-94010, Créteil, France; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble, Institut Neurosciences, Grenoble, France
| | - Philippe Courtet
- Fondation Fondamental, F-94010, Créteil, France; IGF, Univ. Montpellier France, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Christine Passerieux
- Fondation Fondamental, F-94010, Créteil, France; Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'adulte et d'addictologie, Le Chesnay, France; DisAP-DevPsy-CESP, INSERM UMR1018, Université de Versailles Saint-Quentin-En-Yvelines, Université Paris-Saclay, Villejuif, France
| | - Frank Bellivier
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, F-75010, France; Fondation Fondamental, F-94010, Créteil, France
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| |
Collapse
|
8
|
Mirza S, de Carvalho Lima CN, Del Favero-Campbell A, Rubinstein A, Topolski N, Cabrera-Mendoza B, Kovács EH, Blumberg HP, Richards JG, Williams AJ, Wemmie JA, Magnotta VA, Fiedorowicz JG, Gaine ME, Walss-Bass C, Quevedo J, Soares JC, Fries GR. Blood epigenome-wide association studies of suicide attempt in adults with bipolar disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.20.23292968. [PMID: 37546994 PMCID: PMC10402220 DOI: 10.1101/2023.07.20.23292968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Suicide attempt (SA) risk is elevated in individuals with bipolar disorder (BD), and DNA methylation patterns may serve as possible biomarkers of SA. We conducted epigenome-wide association studies (EWAS) of blood DNA methylation associated with BD and SA. DNA methylation was measured at > 700,000 positions in a discovery cohort of n = 84 adults with BD with a history of SA (BD/SA), n = 79 adults with BD without history of SA (BD/non-SA), and n = 76 non-psychiatric controls (CON). EWAS revealed six differentially methylated positions (DMPs) and seven differentially methylated regions (DMRs) between BD/SA and BD/non-SA, with multiple immune-related genes implicated. There were no epigenome-wide significant differences when BD/SA and BD/non-SA were each compared to CON, and patterns suggested that epigenetics differentiating BD/SA from BD/non-SA do not differentiate BD/non-SA from CON. Weighted gene co-methylation network analysis and trait enrichment analysis of the BD/SA vs. BD/non-SA contrast further corroborated immune system involvement, while gene ontology analysis implicated calcium signalling. In an independent replication cohort of n = 48 BD/SA and n = 47 BD/non-SA, fold-changes at the discovery cohort's significant sites showed moderate correlation across cohorts and agreement on direction. In both cohorts, classification accuracy for SA history among individuals with BD was highest when methylation at the significant CpG sites as well as information from clinical interviews were combined, with an AUC of 88.8% (CI = 83.8-93.8%) and 82.1% (CI = 73.6-90.5%) for the combined epigenetic-clinical predictor in the discovery and replication cohorts, respectively. Our results provide novel insight to the role of immune system functioning in SA and BD and also suggest that integrating information from multiple levels of analysis holds promise to improve risk assessment for SA in adults with BD.
Collapse
Affiliation(s)
- Salahudeen Mirza
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Institute of Child Development, University of Minnesota, 55455 Minneapolis, Minnesota, USA
| | - Camila N. de Carvalho Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
| | - Alexandre Rubinstein
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054 Houston, Texas, USA
| | | | - Emese H.C. Kovács
- Department of Neuroscience and Pharmacology, The University of Iowa, 51 Newton Rd, 52242 Iowa City, Iowa, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, 06510 New Haven, Connecticut, USA
| | - Jenny Gringer Richards
- Department of Radiology, The University of Iowa. 200 Hawkins Dr, 52242 Iowa City, Iowa, USA
| | - Aislinn J. Williams
- Department of Psychiatry, The University of Iowa. 200 Hawkins Dr, 52242 Iowa City, Iowa, USA
- Iowa Neuroscience Institute, The University of Iowa. 169 Newton Rd, 52242 Iowa City, Iowa USA
| | - John A. Wemmie
- Department of Psychiatry, The University of Iowa. 200 Hawkins Dr, 52242 Iowa City, Iowa, USA
- Iowa Neuroscience Institute, The University of Iowa. 169 Newton Rd, 52242 Iowa City, Iowa USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Vincent A. Magnotta
- Department of Radiology, The University of Iowa. 200 Hawkins Dr, 52242 Iowa City, Iowa, USA
- Department of Psychiatry, The University of Iowa. 200 Hawkins Dr, 52242 Iowa City, Iowa, USA
| | - Jess G. Fiedorowicz
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute. 501 Smyth, K1H 8L6, Ottawa, Ontario, Canada
| | - Marie E. Gaine
- Iowa Neuroscience Institute, The University of Iowa. 169 Newton Rd, 52242 Iowa City, Iowa USA
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, Iowa, USA
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054 Houston, Texas, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054 Houston, Texas, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, Texas, USA
| | - Jair C. Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054 Houston, Texas, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, Texas, USA
| | - Gabriel R. Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), 77054 Houston, Texas, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77054 Houston, Texas, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, Texas, USA
| |
Collapse
|
9
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|