1
|
Guo X, Zhou J, Yu H, Cao H, Li X, Hu Q, Yu Y. Serum lipidomic study of long-chain fatty acids in psoriasis patients prior to and after anti-IL-17A monoclonal antibody treatment by quantitative GC‒MS analysis with in situ extraction. Lipids Health Dis 2024; 23:6. [PMID: 38185620 PMCID: PMC10773056 DOI: 10.1186/s12944-023-01999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Long-chain fatty acids (LCFAs) are involved in regulating multiple physiological processes as signalling molecules. Gas chromatography-mass spectrometry (GC-MS) is widely used to quantify LCFAs. However, current quantitative methods for LCFAs using GC-MS have demonstrated complicated issues. Psoriasis is a chronic inflammatory skin disease, and its pathogenesis may be related to the overproduction of interleukin-17A (IL-17A). Clinical efficacy of anti-IL-17A monoclonal antibody (mAb) treatment in psoriasis patients has been demonstrated. Recent studies suggest that LCFAs play varying roles in the pathogenesis of psoriasis. However, more comprehensive research is needed to illuminate the mechanism of LCFAs in psoriasis. METHODS The established in situ derivatization method for analysing LCFAs with a GC-MS platform was utilized to conduct serum lipidomics analysis of healthy volunteers and psoriasis patients receiving pretherapy and posttreatment with of anti-IL-17A mAb. Imiquimod (IMQ)-treated wild type (WT) and T-cell receptor delta chain knock-out (Tcrd-/-) mice were used to investigate the correlation between IL-17A and abnormal changes in LCFAs in psoriasis patients. RESULTS A rapid and sensitive in situ extraction derivatization method for quantifying LCFAs using GC-MS was established. Serum lipidomic results showed that psoriasis patients had higher levels of saturated fatty acids (SFAs) and ω-6 polyunsaturated fatty acids (PUFAs) but lower levels of monounsaturated fatty acids (MUFAs) and ω-3 PUFAs than healthy individuals, indicating impaired serum LCFA metabolism. Anti-IL-17A mAb treatment affected most of these LCFA changes. Analysis of LCFAs in IMQ-treated mice showed that LCFAs increased in the serum of WT mice, while there were no significant changes in the Tcrd-/- mice. SFAs increased in IMQ-treated WT mice, while MUFAs showed the opposite trend, and PUFAs did not change significantly. CONCLUSIONS This study presented a dependable method for quantifying LCFAs that enhanced sensitivity and reduced analysis time. The lipidomic analysis results showed that anti-IL-17A mAb not only ameliorated skin lesions in psoriasis patients but also affected abnormal LCFAs metabolism. Furthermore, the study indicated a potential correlation between IL-17A and abnormal LCFA metabolism in psoriasis patients, which was supported by the alterations in serum LCFAs observed in IMQ-treated WT and Tcrd-/- mice.
Collapse
Affiliation(s)
- XiaoYu Guo
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jianglu Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hong Yu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Han Cao
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China.
| | - YunQiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
2
|
Jin J, Huangfu B, Xing F, Xu W, He X. Combined exposure to deoxynivalenol facilitates lipid metabolism disorder in high-fat-diet-induced obesity mice. ENVIRONMENT INTERNATIONAL 2023; 182:108345. [PMID: 38008010 DOI: 10.1016/j.envint.2023.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deoxynivalenol (DON) is a trichothecene toxin that mainly produced by strains of Fusarium spp. DON contamination is widely distributed and is a global food safety threat. Existing studies have expounded its harmful effects on growth inhibition, endocrine disruption, immune function impairment, and reproductive toxicity. In energy metabolism, DON suppresses appetite, reduces body weight, triggers lipid oxidation, and negatively affects cholesterol and fatty acid homeostasis. In this study, high-fat diet (HFD) induced obese C57BL/6J mice were orally treated with 0.1 mg/kg bw/d and 1.0 mg/kg bw/d DON for 4 weeks. The lipid metabolism of mice and the molecular mechanisms were explored. The data showed that although DON reduced body weight and fat mass in HFD mice, it significantly increased their serum triglyceride concentrations, disturbance of serum lipid metabolites, impaired glucose, and resulted in insulin intolerance in mice. In addition, the transcriptional and expression changes of lipid metabolism genes in the liver and epididymis (EP) adipose indicate that the DON-mediated increase in serum triglycerides is caused by lipoprotein lipase (LPL) inhibition in EP adipose. Furthermore, DON down-regulates the expression of LPL through the PPARγ signaling pathway in EP adipose. These results are further confirmed by the serum lipidomics analysis. In conclusion, DON acts on the PPARγ pathway of white adipose to inhibit the expression of LPL, mediate the increase of serum triglyceride in obese mice, disturb the homeostasis of lipid metabolism, and increase the risk of cardiovascular disease. This study reveals the interference mechanism of DON on lipid metabolism in obese mice and provides a theoretical basis for its toxic effect in obese individuals.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P.R. China, Beijing 100193, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P.R. China, Beijing 100193, PR China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Suka Aryana IGP, Paulus IB, Kalra S, Daniella D, Kuswardhani RAT, Suastika K, Wibisono S. The Important Role of Intermuscular Adipose Tissue on Metabolic Changes Interconnecting Obesity, Ageing and Exercise: A Systematic Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:54-59. [PMID: 37313233 PMCID: PMC10258613 DOI: 10.17925/ee.2023.19.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 06/15/2023]
Abstract
As age increases, adipose tissue infiltrates muscle tissue and leads to sarcopenia. When excessive accumulation of adipose tissue accompanied progressive decrease in lean body mass especially visceral fat, termed as sarcopenic obesity (SO) and related metabolic intermuscular adipose tissue (IMAT) is an ectopic tissue found between muscle groups, and is distinct from subcutaneous adipose tissue. Until now, the association between IMAT and metabolic health was not understood. This study is the first systematic review assessing the association between IMAT and metabolic health. The PubMed, Science Direct and Cochrane databases were searched for studies reporting IMAT and metabolic risk. The descriptions of the extracted data are guided by the Preferred Reporting Items for Systematic Reviews (PRISMA) statement with a Grading of Recommendations Assessment, Development and Evaluation approach. This study is registered at PROSPERO (identifier: CRD42022337518). Six studies were pooled and reviewed using critical appraisal by the Newcastle Ottawa Scale and Centre for Evidence-Based Medicine checklist. Two clinical trials and four observational trials were included. Our results reveal that IMAT is associated with metabolic risk, especially in older adults and patients with obesity. However, in a person with abdominal obesity, VAT has a more significant role in metabolic risk than IMAT. The largest decrease in IMAT was achieved by combining aerobic with resistance training.
Collapse
Affiliation(s)
- I Gusti Putu Suka Aryana
- Geriatric Division, Department of Internal Medicine, Faculty of Medicine, Udayana University/Prof. I Goesti Ngoerah Gde Ngoerah Teaching Hospital, Denpasar, Bali, Indonesia
| | | | - Sanjay Kalra
- Bharti Hospital, Karnal, India
- Department of Research, Chandigarh University, Chandigarh, India
| | - Dian Daniella
- Department of Internal Medicine, Faculty of Medicine, Udayana University/ I Goesti Ngoerah Gde Ngoerah Teaching Hospital, Bali, Denpasar, Indonesia
| | - Raden Ayu Tuty Kuswardhani
- Geriatric Division, Department of Internal Medicine, Faculty of Medicine, Udayana University/ I Goesti Ngoerah Gde Ngoerah Teaching Hospital, Denpasar, Bali, Indonesia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicin, Faculty of Medicine, Udayana University/ I Goesti Ngoerah Gde Ngoerah Teaching Hospital, Denpasar, Bali, Indonesia
| | - Sony Wibisono
- Division of Endocrinology and Metabolism, Airlangga University, Soetomo Teaching Hospital, Surabaya, Indonesia
| |
Collapse
|
4
|
Benbaibeche H, Hichami A, Oudjit B, Haffaf EM, Kacimi G, Koceïr EA, Khan NA. Circulating mir-21 and mir-146a are associated with increased cytokines and CD36 in Algerian obese male participants. Arch Physiol Biochem 2022; 128:1461-1466. [PMID: 32536220 DOI: 10.1080/13813455.2020.1775655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The microRNAs have come up as crucial mediators of energy balance and metabolic control. CD36 is potential biomarker of obesity and metabolic syndrome. This study investigates the concentration of miR-146a and miR-21 and CD 36 in blood samples of obese and healthy young participants. We assessed the association of mir-146a and mir-21 with inflammatory states in Algerian young participants. METHODS Our study included male obese, without co-morbidities (n = 29), and healthy participants (n = 13). miRNA and CD36 expression was measured by real-time RT-PCR, respectively, in serum and blood. RESULTS miR-146a and miR-21 concentrations were significantly decreased; however, CD36 expression was increased in obese subjects. Interestingly, miR-146a and miR-21 concentrations were negatively correlated to IL-6, TNF-α, and CD36 in obese participants. CONCLUSION We demonstrate that the downregulation of miR-146a and miR-21 was associated with upregulation of inflammatory state and increased CD36 expression in obese participants.
Collapse
Affiliation(s)
- Hassiba Benbaibeche
- Département des Sciences de la Nature Et de la Vie, Faculté des Sciences, Université d'Alger, Algérie
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | | | | | | | - Elhadj Ahmed Koceïr
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| |
Collapse
|
5
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
7
|
Wołosowicz M, Dajnowicz-Brzezik P, Łukaszuk B, Żebrowska E, Maciejczyk M, Zalewska A, Kasacka I, Chabowski A. Diverse impact of N-acetylcysteine or alpha-lipoic acid supplementation during high-fat diet regime on fatty acid transporters in visceral and subcutaneous adipose tissue. Adv Med Sci 2022; 67:216-228. [PMID: 35594763 DOI: 10.1016/j.advms.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Adipose tissue's (AT) structural changes accompanying obesity may alter lipid transport protein expression and, thus, the fatty acids (FAs) transport and lipid balance of the body. Metabolic abnormalities within AT contribute to the elevated production of reactive oxygen species and increased oxidative/nitrosative stress. Although compounds such as N-acetylcysteine (NAC) and α-lipoic acid (ALA), which restore redox homeostasis, may improve lipid metabolism in AT, the mechanism of action of these antioxidants on lipid metabolism in AT is still unknown. This study aimed to examine the impact of NAC and ALA on the level and FA composition of the lipid fractions, and the expression of FA transporters in the visceral and subcutaneous AT of high-fat diet-fed rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into four groups. The mRNA levels and protein expression of FA transporters were assessed using real-time PCR and Western Blot analyses. The collected samples were subjected to histological evaluation. The level of lipids (FFA, DAG, and TAG) was measured using gas-liquid chromatography. RESULTS We found that antioxidants affect FA transporter expressions at both the transcript and protein levels, and, therefore, they promote changes in AT's lipid pools. One of the most remarkable findings of our research is that different antioxidant molecules may have a varying impact on AT phenotype. CONCLUSION NAC and ALA exert different influences on AT, which is reflected in histopathological images, FA transport proteins expression patterns, or even the lipid storage capacity of adipocytes.
Collapse
Affiliation(s)
- Marta Wołosowicz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
9
|
Miroshnikova VV, Polyakova EA, Pobozheva IA, Panteleeva AA, Razgildina ND, Kolodina DA, Belyaeva OD, Berkovich OA, Pchelina SN, Baranova EI. FABP4 and omentin-1 gene expression in epicardial adipose tissue from coronary artery disease patients. Genet Mol Biol 2021; 44:e20200441. [PMID: 34609443 PMCID: PMC8485182 DOI: 10.1590/1678-4685-gmb-2020-0441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/10/2021] [Indexed: 11/30/2022] Open
Abstract
Omentin-1 and fatty acid-binding protein 4 (FABP4) are adipose tissue adipokines linked to obesity-associated cardiovascular complications. The aim of this study was to investigate epicardial adipose tissue (EAT) omentin-1 and FABP4 gene expression in obese and non-obese patients with coronary artery disease (CAD). Omentin-1 and FABP4 mRNA levels in EAT and paired subcutaneous adipose tissue (SAT) as well as adipokine serum concentrations were assessed in 77 individuals (61 with CAD; 16 without CAD (NCAD)). EAT FABP4 mRNA level was decreased in obese CAD patients when compared to obese NCAD individuals (p=0.001). SAT FABP4 mRNA level was decreased in CAD patients compared to NCAD individuals without respect to their obesity status (p=0.001). Omentin-1 mRNA level in EAT and SAT did not differ between the CAD and NCAD groups. These findings suggest that omentin-1 gene expression in adipose tissue is not changed during CAD; downregulated FABP4 gene expression in SAT is associated with CAD while EAT FABP4 gene expression is decreased only in obesity-related CAD.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.,National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
| | - Ekaterina A Polyakova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Irina A Pobozheva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.,National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
| | - Aleksandra A Panteleeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.,National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
| | - Natalia D Razgildina
- National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
| | - Diana A Kolodina
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga D Belyaeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga A Berkovich
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Sofya N Pchelina
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.,National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
| | - Elena I Baranova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| |
Collapse
|
10
|
Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST. Natural Compound 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al from Momordica charantia Acts as PPARγ Ligand. Molecules 2021; 26:2682. [PMID: 34063700 PMCID: PMC8124227 DOI: 10.3390/molecules26092682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
Collapse
Affiliation(s)
- Nur Adelina Ahmad Noruddin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Mohamad Faiz Hamzah
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Zulfadli Rosman
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Nurul Hanim Salin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, Bayan Lepas 11900, Malaysia
| | | |
Collapse
|
11
|
Impact of Weight Loss on the Total Antioxidant/Oxidant Potential in Patients with Morbid Obesity-A Longitudinal Study. Antioxidants (Basel) 2020; 9:antiox9050376. [PMID: 32369921 PMCID: PMC7278687 DOI: 10.3390/antiox9050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
The assessment of total antioxidant activity seems to have a higher diagnostic value than the evaluation of individual antioxidants separately. Therefore, this is the first study to assess the total antioxidant/oxidant status in morbidly obese patients undergoing bariatric surgery. The study involved 60 patients with Class 3 obesity (BMI > 40 kg/m2) divided into two equal subgroups: morbidly obese patients without and with metabolic syndrome. The analyses were performed in plasma samples collected before surgery as well as 1, 3, 6, and 12 months after a laparoscopic sleeve gastrectomy. Total antioxidant capacity (TAC), ferric-reducing antioxidant power (FRAP), DPPH (2,2′-diphenyl-1-picrylhydrazyl) radical assay, and total oxidant status (TOS) were significantly higher before surgery (as compared to the healthy controls, n = 60) and generally decreased after bariatric treatment. Interestingly, all assessed biomarkers correlated positively with uric acid content. However, the total antioxidant/oxidant potential did not differ between obese patients without metabolic syndrome and those with both obesity and metabolic syndrome. Only DPPH differentiated the two subgroups (p < 0.0001; AUC 0.8) with 73% sensitivity and 77% specificity. Plasma TAC correlated positively with body mass index, waist–hip ratio, serum insulin, and uric acid. Therefore, TAC seems to be the best biomarker to assess the antioxidant status of obese patients.
Collapse
|
12
|
Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J Food Drug Anal 2019; 28:60-73. [PMID: 31883609 DOI: 10.1016/j.jfda.2019.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty acids play critical roles in biological systems. Imbalances in fatty acids are related to a variety of diseases, which makes the measurement of fatty acids in biological samples important. Many analytical strategies have been developed to investigate fatty acids in various biological samples. Due to the structural diversity of fatty acids, many factors need to be considered when developing analytical methods including extraction methods, derivatization methods, column selections, and internal standard selections. This review focused on gas chromatography-mass spectrometry (GC-MS)-based methods. We reviewed several commonly used fatty acid extraction approaches, including liquid-liquid extraction and solid-phase microextraction. Moreover, both acid and base derivatization methods and other specially designed methods were comprehensively reviewed, and their strengths and limitations were discussed. Having good separation efficiency is essential to building an accurate and reliable GC-MS platform for fatty acid analysis. We reviewed the separation performance of different columns and discussed the application of multidimensional GC for improving separations. The selection of internal standards was also discussed. In the final section, we introduced several biomedical studies that measured fatty acid levels in different sample matrices and provided hints on the relationships between fatty acid imbalances and diseases.
Collapse
|
13
|
Wang Y, Koch M, di Giuseppe R, Evans K, Borggrefe J, Nöthlings U, Handberg A, Jensen MK, Lieb W. Associations of plasma CD36 and body fat distribution. J Clin Endocrinol Metab 2019; 104:4016-4023. [PMID: 31034016 DOI: 10.1210/jc.2019-00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT CD36 is a class B scavenger-receptor involved in the uptake of fatty acids in liver and adipose tissue. It is unknown whether plasma CD36 levels are related to liver fat content or adipose tissue in the general population. METHODS We measured plasma CD36 from 575 participants of the community-based PopGen-cohort who underwent magnetic resonance imaging (MRI) to quantify visceral (VAT) and subcutaneous (SAT) adipose tissue and liver signal intensity (LSI), a proxy for liver fat content. Non-alcoholic fatty liver disease (NAFLD) was defined as LSI ≥3.0 in the absence of high alcohol intake. The relations between plasma CD36 and body mass index (BMI), VAT, SAT, LSI, and NAFLD were evaluated using multivariable-adjusted linear and logistic regression analysis. RESULTS Plasma CD36 concentrations were correlated with BMI (r=0.11; P=0.01), SAT (r=0.16; P<0.001), and VAT (r=0.15, P<0.001), but not with LSI (P=0.44). In multivariable-adjusted regression models, mean BMI values rose across CD36-quartiles (Q1: 27.8 kg/m2; Q4: 28.9 kg/m2; P-trend=0.013). Similarly, VAT (Q1: 4.13 dm3; Q4: 4.71 dm3; P-trend<0.001) and SAT (Q1: 7.61 dm3; Q4: 8.74 dm3; P-trend<0.001) rose across CD36 quartiles. Plasma CD36 concentrations were unrelated to LSI (P-trend=0.36), and NAFLD (P-trend=0.64). Participants with NAFLD and elevated alanine aminotransferase (ALT), a marker for liver damage, had higher CD36 compared to NAFLD participants with normal ALT. CONCLUSIONS Higher plasma concentrations of CD36 were associated with greater general and abdominal adiposity, but not with liver fat content or NAFLD in this community-based sample. However, plasma CD36 may reflect more severe liver damage in NAFLD.
Collapse
Affiliation(s)
- Yeli Wang
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kirsten Evans
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jan Borggrefe
- Department of Neuroradiology, University Hospital Cologne, Cologne, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| |
Collapse
|
14
|
Choromańska B, Myśliwiec P, Razak Hady H, Dadan J, Myśliwiec H, Chabowski A, Mikłosz A. Metabolic Syndrome is Associated with Ceramide Accumulation in Visceral Adipose Tissue of Women with Morbid Obesity. Obesity (Silver Spring) 2019; 27:444-453. [PMID: 30724038 PMCID: PMC6590193 DOI: 10.1002/oby.22405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Accelerated transmembrane transport of long-chain fatty acids dependent on fatty acid transporters is responsible for lipid accumulation and, eventually, the development of metabolic syndrome. This study determined the content of lipids (ceramide [CER], diacylglycerol [DAG], triacylglycerol, and free fatty acid [FFA]) and the expression of fatty acid translocase (FAT/CD36) and plasma membrane fatty acid-binding protein in visceral adipose tissue (VAT) and subcutaneous adipose tissue of women with morbid obesity without metabolic syndrome (MetSx-) or with metabolic syndrome (MetSx+) and compared the results with those of lean controls without metabolic syndrome. METHODS Lipid content and fatty acid composition in each lipid subclass were estimated by gas liquid chromatography. For total, plasma membrane, and mitochondrial expression of fatty acid transporters, subfractionation with subsequent Western blot technique was used. RESULTS A greater content of triacylglycerol in VAT of participants with obesity (MetSx-) was found. However, only the MetSx+ subjects had increased content of CER in VAT in relation to subcutaneous adipose tissue in MetSx+ and lean individuals. This was accompanied by increased total and membrane expression of FAT/CD36 in VAT in MetSx+ subjects. Accordingly, mitochondrial expression of FAT/CD36 and plasma membrane fatty acid-binding protein was decreased in both groups of subjects with obesity. CONCLUSIONS Metabolic syndrome is associated with the accumulation of CER in VAT, possibly related to increased FAT/CD36 protein expression.
Collapse
Affiliation(s)
- Barbara Choromańska
- Department of General and Endocrinological SurgeryMedical University of BiałystokBiałystokPoland
| | - Piotr Myśliwiec
- Department of General and Endocrinological SurgeryMedical University of BiałystokBiałystokPoland
| | - Hady Razak Hady
- Department of General and Endocrinological SurgeryMedical University of BiałystokBiałystokPoland
| | - Jacek Dadan
- Department of General and Endocrinological SurgeryMedical University of BiałystokBiałystokPoland
| | - Hanna Myśliwiec
- Department of Dermatology and VenereologyMedical University of BiałystokBiałystokPoland
| | - Adrian Chabowski
- Department of PhysiologyMedical University of BiałystokBiałystokPoland
| | - Agnieszka Mikłosz
- Department of PhysiologyMedical University of BiałystokBiałystokPoland
| |
Collapse
|