1
|
Bosgana P, Nikou S, Dimitrakopoulos FI, Bravou V, Kalophonos C, Kourea E, Tzelepi V, Zolota V, Sampsonas F. Expression of Pluripotency Factors OCT4 and LIN28 Correlates with Survival Outcome in Lung Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:870. [PMID: 38929487 PMCID: PMC11205930 DOI: 10.3390/medicina60060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Lung adenocarcinoma is a leading cause of cancer-related mortality despite recent therapeutic advances. Cancer stem cells have gained increasing attention due to their ability to induce cancer cell proliferation through self-renewal and differentiation into multiple cell lineages. OCT4 and LIN28 (and their homologs A and B) have been identified as key regulators of pluripotency in mammalian embryonic (ES) and induced stem (IS) cells, and they are the crucial regulators of cancer progression. However, their exact role in lung adenocarcinoma has not yet been clarified. Materials and Methods: The aim of this study was to explore the role of the pluripotency factors OCT4 and LIN28 in a cohort of surgically resected human lung adenocarcinomas to reveal possible biomarkers for lung adenocarcinoma prognosis and potential therapeutic targets. The expressions of OCT4, LIN28A and LIN28B were analyzed in formalin-fixed, paraffin-embedded tissue samples from 96 patients with lung adenocarcinoma by immunohistochemistry. The results were analyzed with clinicopathologic parameters and were related to the prognosis of patients. Results: Higher OCT4 expression was related to an improved 5-year overall survival (OS) rate (p < 0.001). Nuclear LIN28B expression was lower in stage I and II tumors (p < 0.05) compared to advanced stage tumors. LIN28B cytoplasmic expression was associated with 5-year OS rates not only in univariate (p < 0.005), but also in multivariate analysis (where age, gender, histopathological subtype and stage were used as cofactors, p < 0.01 HR = 2.592). Patients with lower LIN28B expression showed improved 5-year OS rates compared to patients with increased LIN28B expression. Conclusions: Our findings indicate that OCT4 and LIN28B are implicated in lung adenocarcinoma progression and prognosis outcome; thus, they serve as promising prognostic biomarkers and putative therapeutic targets in lung adenocarcinomas.
Collapse
Affiliation(s)
- Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Sophia Nikou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | | | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | - Charalambos Kalophonos
- Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504 Rion, Greece; (F.-I.D.); (C.K.)
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vasiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vassiliki Zolota
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Fotios Sampsonas
- Department of Pulmonology, Medical School, University of Patras, 26504 Rion, Greece
| |
Collapse
|
2
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
5
|
Chu X, Xu Y, Li Y, Zhou Y, Chu L, Yang X, Ni J, Li Y, Guo T, Zheng Z, Zheng Q, Yao Q, Li Y, Zhou X, Zhu Z. Neuroendocrine transformation from EGFR/ALK-wild type or TKI-naïve non-small cell lung cancer: An under-recognized phenomenon. Lung Cancer 2022; 169:22-30. [DOI: 10.1016/j.lungcan.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
|
6
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett 2021; 50:128311. [PMID: 34438011 DOI: 10.1016/j.bmcl.2021.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Poor wound healing is a common complication in diabetic patients. It often leads to intractable infections and lower limb amputations and is associated with cardiovascular morbidity and mortality. NcRNAs, which can regulate gene expression, have emerged as important regulators of various physiological processes. Herein, we summarize the diverse roles of ncRNAs in the key stages of diabetic wound healing, including inflammation, angiogenesis, re-epithelialization, and extracellular matrix remodeling. Meanwhile, the potential use of ncRNAs as novel therapeutic targets for wound healing in diabetic patients is also discussed. In addition, we summarize the role of RNA-binding proteins (RBPs) in the regulation of gene expression and signaling pathways during skin repair, which may provide opportunities for therapeutic intervention for this potentially devastating disease. However, so far, research on the modulated drug based on ncRNAs that lead to significantly altered gene expression in diabetic patients is scarce. We have compiled some drugs that may be able to modulate ncRNAs, which significantly regulate the gene expression in diabetic patients.
Collapse
Affiliation(s)
- Xue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, People's Republic of China.
| |
Collapse
|
8
|
Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021; 10:cells10092415. [PMID: 34572067 PMCID: PMC8469079 DOI: 10.3390/cells10092415] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer has long been viewed as a disease of normal development gone awry. Cancer stem-like cells (CSCs), also termed as tumor-initiating cells (TICs), are increasingly recognized as a critical tumor cell population that drives not only tumorigenesis but also cancer progression, treatment resistance and metastatic relapse. The let-7 family of microRNAs (miRNAs), first identified in C. elegans but functionally conserved from worms to human, constitutes an important class of regulators for diverse cellular functions ranging from cell proliferation, differentiation and pluripotency to cancer development and progression. Here, we review the current state of knowledge regarding the roles of let-7 miRNAs in regulating cancer stemness. We outline several key RNA-binding proteins, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) involved in the regulation of let-7 biogenesis, maturation and function. We then highlight key gene targets and signaling pathways that are regulated or mutually regulated by the let-7 family of miRNAs to modulate CSC characteristics in various types of cancer. We also summarize the existing evidence indicating distinct metabolic pathways regulated by the let-7 miRNAs to impact CSC self-renewal, differentiation and treatment resistance. Lastly, we review current preclinical studies and discuss the clinical implications for developing let-7-based replacement strategies as potential cancer therapeutics that can be delivered through different platforms to target CSCs and reduce/overcome treatment resistance when applied alone or in combination with current chemo/radiation or molecularly targeted therapies. By specifically targeting CSCs, these strategies have the potential to significantly improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Max S. Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| |
Collapse
|
9
|
The Role of miRNAs, miRNA Clusters, and isomiRs in Development of Cancer Stem Cell Populations in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031424. [PMID: 33572600 PMCID: PMC7867000 DOI: 10.3390/ijms22031424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype. Our goal herein is to provide a review of: (i) current research on miRNAs and their targets in colorectal cancer (CRC), and (ii) miRNAs that are differentially expressed in colon CSCs. MicroRNAs can work in clusters or alone when targeting different SC genes to influence CSC phenotype. Accordingly, we discuss the specific miRNA cluster classifications and isomiRs that are predicted to target the ALDH1, CD166, BMI1, LRIG1, and LGR5 SC genes. miR-23b and miR-92A are of particular interest because our previously reported studies on miRNA expression in isolated normal versus malignant human colonic SCs showed that miR-23b and miR-92a are regulators of the LGR5 and LRIG1 SC genes, respectively. We also identify additional miRNAs whose expression inversely correlated with mRNA levels of their target genes and associated with CRC patient survival. Altogether, our deliberation on miRNAs, their clusters, and isomiRs in regulation of SC genes could provide insight into how dysregulation of miRNAs leads to the emergence of different CSC populations and SC overpopulation in CRC.
Collapse
|
10
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
11
|
Tang M, Zhou J, You L, Cui Z, Zhang H. LIN28B/IRS1 axis is targeted by miR-30a-5p and promotes tumor growth in colorectal cancer. J Cell Biochem 2020; 121:3720-3729. [PMID: 31713927 DOI: 10.1002/jcb.29529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Insulin receptor substrate 1 (IRS1) is a potential oncogene that has been implicated in several malignant tumors. However, the regulatory mechanism of IRS1 remains to be investigated. The aim of our current study is to unveil the mechanism by which IRS1 exerts functions in tumorigenesis of colorectal cancer (CRC). The expression level of IRS1 was found to be higher in CRC cells in comparison with the normal cell. To determine the role of IRS1 in regulating CRC cellular processes, loss-of-function assays were designed and carried out in two CRC cell lines. Both in vitro and in vivo functional assays indicated that silencing of IRS1 suppressed CRC cell survival. Based on bioinformatics prediction and mechanism experiments, IRS1 was identified as a downstream target of miR-30a-5p. Furthermore, RNA-binding protein lin-28 homolog B (LIN28B) was determined to be a stabilizer of IRS1 messenger RNA. More importantly, LIN28B also acted as a target of miR-30a-5p.Through rescue assays, we proved that LIN28B-stablized IRS1 mediated miR-30a-5p-mediated CRC cell growth. In conclusion, this study revealed that LIN28B and LIN28B-stablized IRS1 promoted CRC cell growth by cooperating with miR-30a-5p.
Collapse
Affiliation(s)
- Mei Tang
- Department of General Internal Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Zhou
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Lirui You
- Department of General Internal Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhirong Cui
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Hui Zhang
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Chen Q, Shen H, Zhu X, Liu Y, Yang H, Chen H, Xiong S, Chi H, Xu W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci 2020; 111:3279-3291. [PMID: 32619088 PMCID: PMC7469761 DOI: 10.1111/cas.14555] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Long noncoding RNAs play important roles in breast cancer tumorigenesis and chemoresistance. However, the involvement and regulation of lncRNAs in breast cancer chemoresistance are not completely understood. Here, we reported that Linc00839 was localized in the nucleus and upregulated in chemoresistant breast cancer cells and tissues, and high level of Linc00839 was associated with a poor prognosis. Knockdown of Linc00839 significantly suppressed proliferation, invasion, and migration, sensitized cells to paclitaxel in vitro and inhibited transplant tumor development in vivo. Mechanistically, we found that Myc could directly bind to the promoter region of Linc00839 and activate its transcription. Furthermore, Linc00839 overexpression increased the expression of Myc and the RNA‐binding protein Lin28B and activated the PI3K/AKT signaling pathway. We also discovered that Lin28B positively interacted with Linc00839 and was upregulated in breast cancer tissues. Taken together, for the first time, we showed that Linc00839 was activated by Myc and promoted proliferation and chemoresistance in breast cancer through binding with Lin28B. These findings provide new insight into the regulatory mechanism of Linc00839 and propose a Myc/Linc00839/Lin28B feedback loop that could be used as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| | - Huiling Shen
- Department of Oncology, Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Yang
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Chen
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Shangwan Xiong
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Huamao Chi
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Fu X, Ou B. miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling. J Cell Biochem 2019; 121:954-962. [PMID: 31609010 DOI: 10.1002/jcb.28978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes contributing to blindness in patients. Inhibiting retinal neovascularization is a potent strategy for diabetic retinopathy treatment. Reportedly, the stable expression of lin-28 homolog B (LIN28B), a member of the highly conserved RNA-binding protein LIN28 family, could promote vascular endothelial growth factor (VEGF) expression; herein, we investigated the role and mechanism of LIN28B in diabetic retinopathy progression from the perspective of microRNA (miRNA) regulation. We identified miR-152 as a miRNA that may target the LIN28B 3'-untranslated region and can be significantly downregulated under high-glucose (HG) condition. The expression of miR-152 was remarkably suppressed, whereas the expression of LIN28B was significantly increased under HG condition within both human retinal endothelial cells (hRECs) and retinal microvascular endothelial cell line (hRMECs). miR-152 overexpression significantly suppressed, while LIN28B overexpression promoted the angiogenesis and the protein levels of proangiogenesis factors in both hRECs and hRMECs. More importantly, LIN28B overexpression could remarkably attenuate the effect of miR-152 overexpression. In summary, miR-152 overexpression could inhibit HG-induced angiogenesis in both hRECs and hRMECs via targeting LIN28B and suppressing VEGF signaling. Further, in vivo experiments are needed for the application of miR-152/LIN28B axis in the treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaolin Fu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Hainan Western Central Hospital, Danzhou, Hainan, China
| | - Bo Ou
- Department of Ophthalmology, Hainan General Hospital, Haikou, Hainan, China
| |
Collapse
|
14
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
15
|
Yong W, Yu D, Jun Z, Yachen D, Weiwei W, Midie X, Xingzhu J, Xiaohua W. Long noncoding RNA NEAT1, regulated by LIN28B, promotes cell proliferation and migration through sponging miR-506 in high-grade serous ovarian cancer. Cell Death Dis 2018; 9:861. [PMID: 30154460 PMCID: PMC6113267 DOI: 10.1038/s41419-018-0908-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/06/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) has been reported frequently in specific cancers, including high-grade serous ovarian cancer (HGSOC). The purpose of the present study was to explore the clinical significance and underlying mechanisms of a significantly dysregulated lncRNA (NEAT1) in HGSOC. Our results showed that elevated NEAT1 expression in human HGSOC specimens correlated with a poor prognosis. Functional experiments demonstrated that knockdown of NEAT1 significantly prohibited ovarian cancer cell proliferation and invasion in vitro and restrained tumor growth in vivo. LIN28B was identified by bioinformatics analysis along with experimental evidence as a direct actor that enhanced NEAT1 stability. A rescue functional assay confirmed that the LIN28B/NEAT1 axis contributed to oncogenic functions in ovarian cancer cells. Moreover, gene expression profile data and dual luciferase reporter assay results demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for miR-506 to promote cell proliferation and migration. Taken together, our results showed that NEAT1, stabilized by LIN28B, promoted HGSOC progression by sponging miR-506. Thus, NEAT1 can be regarded as a vital diagnostic biomarker for HGSOC and a therapeutic target.
Collapse
Affiliation(s)
- Wu Yong
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deng Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhu Jun
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duan Yachen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weng Weiwei
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xu Midie
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ju Xingzhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wu Xiaohua
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
RNA binding protein Lin28B confers gastric cancer cells stemness via directly binding to NRP-1. Biomed Pharmacother 2018; 104:383-389. [PMID: 29787985 DOI: 10.1016/j.biopha.2018.05.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023] Open
Abstract
This work aims to explore the roles and related mechanisms of RNA binding protein Lin28B in gastric cancer cells stemness. We found that Lin28B expression was negatively correlated with the overall survival (OS) of gastric cancer patients, and significantly increased in gastric cancer cells compared with that in gastric epithelial cells. Lin28B overexpression increased spheroid formation, expression of gastric cancer stemness-related markers, and decreased cisplatin sensitivity in gastric cancer cells. Mechanistically, Lin28B could directly bind to NRP-1 3'UTR, thus increasing NRP-1 mRNA stability and expression, and activate the downstream Wnt/β-catenin signaling. Knockdown of NRP-1 or treatment with Wnt/β-catenin antagonist could rescue the promotive effects of Lin28B on gastric cancer stemness. Thus, thes results indicate that Lin28B could facilitate gastric cancer stemness via directly binding to NRP-1 3'UTR and activating the downstream Wnt/β-catenin signaling.
Collapse
|