1
|
Feng Q, Dong Z, Nie R, Wang X. Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation. Interdiscip Sci 2024; 16:727-740. [PMID: 38637440 DOI: 10.1007/s12539-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024]
Abstract
Gliomas are highly heterogeneous in molecular, histology, and microenvironment. However, a classification of gliomas by integrating different tumor microenvironment (TME) components remains unexplored. Based on the enrichment scores of 17 pathways involved in immune, stromal, DNA repair, and nervous system signatures in diffuse gliomas, we performed consensus clustering to uncover novel subtypes of gliomas. Consistently in three glioma datasets (TCGA-glioma, CGGA325, and CGGA301), we identified three subtypes: Stromal-enriched (Str-G), Nerve-enriched (Ner-G), and mixed (Mix-G). Ner-G was charactered by low immune infiltration levels, stromal contents, tumor mutation burden, copy number alterations, DNA repair activity, cell proliferation, epithelial-mesenchymal transformation, stemness, intratumor heterogeneity, androgen receptor expression and EGFR, PTEN, NF1 and MUC16 mutation rates, while high enrichment of neurons and nervous system pathways, and high tumor purity, estrogen receptor expression, IDH1 and CIC mutation rates, temozolomide response rate and overall and disease-free survival rates. In contrast, Str-G displayed contrastive characteristics to Ner-G. Our analysis indicates that the heterogeneity between glioma cells and neurons is lower than that between glioma cells and immune and stromal cells. Furthermore, the abundance of neurons is positively associated with clinical outcomes in gliomas, while the enrichment of immune and stromal cells has a negative association with them. Our classification method provides new insights into the tumor biology of gliomas, as well as clinical implications for the precise management of this disease.
Collapse
Affiliation(s)
- Qiushi Feng
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongfang Nie
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Staedtke V, Anstett K, Bedwell D, Giovannini M, Keeling K, Kesterson R, Kim Y, Korf B, Leier A, McManus ML, Sarnoff H, Vitte J, Walker JA, Plotkin SR, Wallis D. Gene-targeted therapy for neurofibromatosis and schwannomatosis: The path to clinical trials. Clin Trials 2024; 21:51-66. [PMID: 37937606 DOI: 10.1177/17407745231207970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Numerous successful gene-targeted therapies are arising for the treatment of a variety of rare diseases. At the same time, current treatment options for neurofibromatosis 1 and schwannomatosis are limited and do not directly address loss of gene/protein function. In addition, treatments have mostly focused on symptomatic tumors, but have failed to address multisystem involvement in these conditions. Gene-targeted therapies hold promise to address these limitations. However, despite intense interest over decades, multiple preclinical and clinical issues need to be resolved before they become a reality. The optimal approaches to gene-, mRNA-, or protein restoration and to delivery to the appropriate cell types remain elusive. Preclinical models that recapitulate manifestations of neurofibromatosis 1 and schwannomatosis need to be refined. The development of validated assays for measuring neurofibromin and merlin activity in animal and human tissues will be critical for early-stage trials, as will the selection of appropriate patients, based on their individual genotypes and risk/benefit balance. Once the safety of gene-targeted therapy for symptomatic tumors has been established, the possibility of addressing a wide range of symptoms, including non-tumor manifestations, should be explored. As preclinical efforts are underway, it will be essential to educate both clinicians and those affected by neurofibromatosis 1/schwannomatosis about the risks and benefits of gene-targeted therapy for these conditions.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kara Anstett
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - Kim Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - YooRi Kim
- Gilbert Family Foundation, Detroit, MI, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
郑 婷, 朱 倍, 王 智, 李 青. [Gene therapy strategies and prospects for neurofibromatosis type 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1-8. [PMID: 38225833 PMCID: PMC10796236 DOI: 10.7507/1002-1892.202309071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the gene therapy strategies for neurofibromatosis type 1 (NF1) and related research progress. Methods The recent literature on gene therapy for NF1 at home and abroad was reviewed. The structure and function of the NF1 gene and its mutations were analyzed, and the current status as well as future prospects of the transgenic therapy and gene editing strategies were summarized. Results NF1 is an autosomal dominantly inherited tumor predisposition syndrome caused by mutations in the NF1 tumor suppressor gene, which impair the function of the neurofibromin and lead to the disease. It has complex clinical manifestations and is not yet curable. Gene therapy strategies for NF1 are still in the research and development stage. Existing studies on the transgenic therapy for NF1 have mainly focused on the construction and expression of the GTPase-activating protein-related domain in cells that lack of functional neurofibromin, confirming the feasibility of the transgenic therapy for NF1. Future research may focus on split adeno-associated virus (AAV) gene delivery, oversized AAV gene delivery, and the development of new vectors for targeted delivery of full-length NF1 cDNA. In addition, the gene editing tools of the new generation have great potential to treat monogenic genetic diseases such as NF1, but need to be further validated in terms of efficiency and safety. Conclusion Gene therapy, including both the transgenic therapy and gene editing, is expected to become an important new therapeutic approach for NF1 patients.
Collapse
Affiliation(s)
- 婷婷 郑
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 倍瑶 朱
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 智超 王
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 青峰 李
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
4
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
5
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Functional Assays Combined with Pre-mRNA-Splicing Analysis Improve Variant Classification and Diagnostics for Individuals with Neurofibromatosis Type 1 and Legius Syndrome. Hum Mutat 2023. [DOI: 10.1155/2023/9628049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Neurofibromatosis type 1 (NF1) and Legius syndrome (LS) are caused by inactivating variants in NF1 and SPRED1. NF1 encodes neurofibromin (NF), a GTPase-activating protein (GAP) for RAS that interacts with the SPRED1 product, Sprouty-related protein with an EVH (Ena/Vasp homology) domain 1 (SPRED1). Obtaining a clinical and molecular diagnosis of NF1 or LS can be challenging due to the phenotypic diversity, the size and complexity of the NF1 and SPRED1 loci, and uncertainty over the effects of some NF1 and SPRED1 variants on pre-mRNA splicing and/or protein expression and function. To improve NF1 and SPRED1 variant classification and establish pathogenicity for NF1 and SPRED1 variants identified in individuals with NF1 or LS, we analyzed patient RNA by RT-PCR and performed in vitro exon trap experiments and estimated NF and SPRED1 protein expression, RAS GAP activity, and interaction. We obtained evidence to support pathogenicity according to American College of Medical Genetics guidelines for 73/114 variants tested, demonstrating the utility of functional approaches for NF1 and SPRED1 variant classification and NF and LS diagnostics.
Collapse
|
7
|
Decraene B, Vanmechelen M, Clement P, Daisne JF, Vanden Bempt I, Sciot R, Garg AD, Agostinis P, De Smet F, De Vleeschouwer S. Cellular and molecular features related to exceptional therapy response and extreme long-term survival in glioblastoma. Cancer Med 2023. [PMID: 36776000 DOI: 10.1002/cam4.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023] Open
Abstract
Glioblastoma Multiforme (GBM) remains the most common malignant primary brain tumor with a dismal prognosis that rarely exceeds beyond 2 years despite extensive therapy, which consists of maximal safe surgical resection, radiotherapy, and/or chemotherapy. Recently, it has become clear that GBM is not one homogeneous entity and that both intra-and intertumoral heterogeneity contributes significantly to differences in tumoral behavior which may consequently be responsible for differences in survival. Strikingly and in spite of its dismal prognosis, small fractions of GBM patients seem to display extremely long survival, defined as surviving over 10 years after diagnosis, compared to the large majority of patients. Although the underlying mechanisms for this peculiarity remain largely unknown, emerging data suggest that still poorly characterized both cellular and molecular factors of the tumor microenvironment and their interplay probably play an important role. We hereby give an extensive overview of what is yet known about these cellular and molecular features shaping extreme long survival in GBM.
Collapse
Affiliation(s)
- B Decraene
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - M Vanmechelen
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - P Clement
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - J F Daisne
- Radiation Oncology Department, University Hospitals Leuven, Leuven, Belgium
| | - I Vanden Bempt
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Sciot
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - A D Garg
- KU Leuven, VIB Center for Cancer Biology Research, Leuven, Belgium
| | - P Agostinis
- KU Leuven, Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, Leuven, Belgium
| | - F De Smet
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium
| | - S De Vleeschouwer
- KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
8
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
9
|
Werner M, Lyu C, Stadlbauer B, Schrader I, Buchner A, Stepp H, Sroka R, Pohla H. The role of shikonin in improving 5-aminolevulinic acid-based photodynamic therapy and chemotherapy on glioblastoma stem cells. Photodiagnosis Photodyn Ther 2022; 39:102987. [PMID: 35760350 DOI: 10.1016/j.pdpdt.2022.102987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma multiforme remains a malignant neoplasia with a median survival of less than two years and without satisfactory therapeutic options. The so-called glioblastoma stem cells escape the established radio- and chemotherapies and lead to tumor recurrence in most cases. The alkaloid Shikonin with its various anti stem cell properties and the interstitial photodynamic therapy with 5-aminolevulinic acid seem to be promising new options in the therapy of glioblastoma. In this study, in vitro investigations were performed to observe the influence of Shikonin on viability, proliferation, induction of apoptosis and the capability of forming tumor spheres in U-87 MG and the primary glioblastoma cell line GB14. The combined effect with the chemotherapeutic temozolomide and photodynamic treatment on the mRNA expression of glioma specific stem cell markers and further examined intracellular protoporphyrin IX accumulation under Shikonin treatment was analyzed. Shikonin effectively inhibited the capability of forming tumor spheres and enhanced temozolomide effectiveness in the reduction of proliferation and in the induction of apoptosis. Additionally, Shikonin increased the mRNA expression of the tumor suppressing Neurofibromatosis type 1 (NF1) gene and showed modulating effects on intracellular protoporphyrin IX.
Collapse
Affiliation(s)
- Maxim Werner
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany.
| | - Chen Lyu
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Birgit Stadlbauer
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany; Department of Urology, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Isabel Schrader
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Alexander Buchner
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany; Department of Urology, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Herbert Stepp
- Department of Urology, LMU Klinikum, University Munich, 82151 Planegg, Germany; Laser-Forschungslabor, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Ronald Sroka
- Department of Urology, LMU Klinikum, University Munich, 82151 Planegg, Germany; Laser-Forschungslabor, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany
| | - Heike Pohla
- Laboratory of Tumor Immunology, LIFE Center, LMU Klinikum, University Munich, 82151 Planegg, Germany; Department of Urology, LMU Klinikum, University Munich, 82151 Planegg, Germany
| |
Collapse
|
10
|
Ding RF, Zhang Y, Wu LY, You P, Fang ZX, Li ZY, Zhang ZY, Ji ZL. Discovering Innate Driver Variants for Risk Assessment of Early Colorectal Cancer Metastasis. Front Oncol 2022; 12:898117. [PMID: 35795065 PMCID: PMC9252167 DOI: 10.3389/fonc.2022.898117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Metastasis is the main fatal cause of colorectal cancer (CRC). Although enormous efforts have been made to date to identify biomarkers associated with metastasis, there is still a huge gap to translate these efforts into effective clinical applications due to the poor consistency of biomarkers in dealing with the genetic heterogeneity of CRCs. In this study, a small cohort of eight CRC patients was recruited, from whom we collected cancer, paracancer, and normal tissues simultaneously and performed whole-exome sequencing. Given the exomes, a novel statistical parameter LIP was introduced to quantitatively measure the local invasion power for every somatic and germline mutation, whereby we affirmed that the innate germline mutations instead of somatic mutations might serve as the major driving force in promoting local invasion. Furthermore, via bioinformatic analyses of big data derived from the public zone, we identified ten potential driver variants that likely urged the local invasion of tumor cells into nearby tissue. Of them, six corresponding genes were new to CRC metastasis. In addition, a metastasis resister variant was also identified. Based on these eleven variants, we constructed a logistic regression model for rapid risk assessment of early metastasis, which was also deployed as an online server, AmetaRisk (http://www.bio-add.org/AmetaRisk). In summary, we made a valuable attempt in this study to exome-wide explore the genetic driving force to local invasion, which provides new insights into the mechanistic understanding of metastasis. Furthermore, the risk assessment model can assist in prioritizing therapeutic regimens in clinics and discovering new drug targets, and thus substantially increase the survival rate of CRC patients.
Collapse
Affiliation(s)
- Ruo-Fan Ding
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yun Zhang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lv-Ying Wu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pan You
- Department of Clinical Laboratory, Xiamen Xianyue Hospital, Xiamen, China
- Department of Clinical Laboratory, Zhongshan Hospital , affiliated to Xiamen University, Xiamen, China
- *Correspondence: Zhi-Liang Ji, ; Pan You,
| | - Zan-Xi Fang
- Department of Clinical Laboratory, Zhongshan Hospital , affiliated to Xiamen University, Xiamen, China
| | - Zhi-Yuan Li
- Department of Clinical Laboratory, Zhongshan Hospital , affiliated to Xiamen University, Xiamen, China
| | - Zhong-Ying Zhang
- Department of Clinical Laboratory, Zhongshan Hospital , affiliated to Xiamen University, Xiamen, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhi-Liang Ji, ; Pan You,
| |
Collapse
|
11
|
Li Q, Aishwarya S, Li JP, Pan DX, Shi JP. Gene Expression Profiling of Glioblastoma to Recognize Potential Biomarker Candidates. Front Genet 2022; 13:832742. [PMID: 35571016 PMCID: PMC9091202 DOI: 10.3389/fgene.2022.832742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is an aggressive malignant tumor of the brain and spinal cord. Due to the blood-brain barrier, the accessibility of its treatments still remains significantly challenging. Unfortunately, the recurrence rates of glioblastoma upon surgery are very high too. Hence, understanding the molecular drivers of disease progression is valuable. In this study, we aimed to investigate the molecular drivers responsible for glioblastoma progression and identify valid biomarkers. Three microarray expression profiles GSE90604, GSE50601, and GSE134470 containing healthy and glioblastoma-affected samples revealed overlapping differentially expressed genes (DEGs). The interrelational pathway enrichment analysis elucidated the halt of cell cycle checkpoints and activation of signaling pathways and led to the identification of 6 predominant hub genes. Validation of hub genes in comparison with The Cancer Genome Atlas datasets identified the potential biomarkers of glioblastoma. The study evaluated two significantly upregulated genes, SPARC (secreted protein acidic and rich in cysteine) and VIM (vimentin) for glioblastoma. The genes CACNA1E (calcium voltage-gated channel subunit alpha1 e), SH3GL2 (SH3 domain-containing GRB2-like 2, endophilin A1), and DDN (dendrin) were identified as under-expressed genes as compared to the normal and pan-cancer tissues along with prominent putative prognostic biomarker potentials. The genes DDN and SH3GL2 were found to be upregulated in the proneural subtype, while CACNA1E in the mesenchymal subtype of glioblastoma exhibits good prognostic potential. The mutational analysis also revealed the benign, possibly, and probably damaging substitution mutations. The correlation between the DEG and survival in glioblastoma was evaluated using the Kaplan-Meier plots, and VIM had a greater life expectancy of 60.25 months. Overall, this study identified key candidate genes that might serve as predictive biomarkers for glioblastoma.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - S. Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India
| | - Ji-Ping Li
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Dong-Xiao Pan
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jia-Pei Shi
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
12
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
13
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|
14
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
15
|
Kan LK, Drummond K, Hunn M, Williams D, O'Brien TJ, Monif M. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol Open 2020; 2:e000069. [PMID: 33681797 PMCID: PMC7871709 DOI: 10.1136/bmjno-2020-000069] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common central nervous system malignancies and present with significant morbidity and mortality. Treatment modalities are currently limited to surgical resection, chemotherapy and radiotherapy. Increases in survival rate over the previous decades are negligible, further pinpointing an unmet clinical need in this field. There is a continual struggle with the development of effective glioma diagnostics and therapeutics, largely due to a multitude of factors, including the presence of the blood–brain barrier and significant intertumoural and intratumoural heterogeneity. Importantly, there is a lack of reliable biomarkers for glioma, particularly in aiding tumour subtyping and measuring response to therapy. There is a need for biomarkers that would both overcome the complexity of the disease and allow for a minimally invasive means of detection and analysis. This is a comprehensive review evaluating the potential of current cellular, proteomic and molecular biomarker candidates for glioma. Significant hurdles faced in glioma diagnostics and therapy are also discussed here.
Collapse
Affiliation(s)
- Liyen Katrina Kan
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Martin Hunn
- Department of Neurosurgery, Alfred Health, Melbourne, Victoria, Australia
| | - David Williams
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Cui XW, Ren JY, Gu YH, Li QF, Wang ZC. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr Gene Ther 2020; 20:100-108. [PMID: 32767931 DOI: 10.2174/1566523220666200806111451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.
Collapse
Affiliation(s)
- Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
17
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
18
|
Karwacki MW. Breast cancer risk (un)awareness among women suffering from neurofibromatosis type 1 in Poland. Contemp Oncol (Pozn) 2020; 24:140-144. [PMID: 32774141 PMCID: PMC7403769 DOI: 10.5114/wo.2020.97637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
The main goal of this study was to draw the attention of physicians to commonly undisclosed risk of breast cancer (BrCa) in women suffering from neurofibromatosis type 1 (NF-1), which is 5-fold higher than in the general population. NF-1 related BrCa arises earlier (< 50 years) and is more advanced, with an increased mortality. NF-1 is one of the most frequent monogenic diseases worldwide and a tumor predisposition syndrome. The Nf1 gene is an important negative regulator of the Ras oncogene and belongs to the family of the 12 the most important BrCa predisposition genes. Planning introduction of BrCa screening guidelines for NF-1 women in Poland we started with assessment of BrCa risk awareness and current preventive practices in this population by a survey published in an open access internet profile dedicated exclusively to patients with NF-1 in Poland, with 1928 participants. As a result, we revealed that the awareness of this specific risk was declared by only 30% out of 138 responders, and only 21% of them received this information from medical professionals. In all 4 (2.89%) women suffering from BrCa the cancer was diagnosed before the 50th year of age. It exceeds significantly the expected prevalence of BrCa in the general population of Polish women. We conclude that the limited awareness of NF-1 related BrCa risk in Polish patients warrants the educational effort directed both to the NF-1 patients by professional counseling and to the medical community, in order to increase the efficacy of preventive measures and decrease BrCa mortality.
Collapse
Affiliation(s)
- Marek W. Karwacki
- Coordinated Medical Care Center for Neurofibromatoses and related RASopathies, Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|