1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Noda Y, Tokuyama Y, Sumita W, Kita M, Tsuta K. Hepatocyte nuclear factor 4α as a sensitive marker for uterine endocervical adenocarcinomas and their precursors. Hum Pathol 2025; 155:105714. [PMID: 39798855 DOI: 10.1016/j.humpath.2025.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
CONTEXT Hepatocyte nuclear factor (HNF)-4α is a marker of gastrointestinal tumor differentiation; however, its expression in endocervical tumors remains unclear. OBJECTIVE We aimed to assess the utility of HNF4α expression as a marker for endocervical adenocarcinomas (ECAs) and adenocarcinoma in situs (AISs), and to establish a minimal panel for distinguishing them from nonneoplastic endocervical glandular lesions and metastases. DESIGN HNF4α expression was analyzed immunohistochemically (positive, H-score ≥10) in 323 tissue samples: 57 endocervical neoplasms including 35 glandular neoplasms and 22 squamous neoplasms, 144 nonneoplastic endocervical lesions, and 122 tumors from other organs. The panel for distinguishing endocervical glandular neoplasms from nonneoplastic glands and from metastases comprised HNF4α, p16, CDX2, and SATB2; staining was assessed. RESULTS HNF4α was expressed significantly in ECAs and AISs, both HPV-independent and -associated types, but not in nonneoplastic glandular and squamous lesions (p < 0.05). The immunohistochemical detection sensitivity and specificity for endocervical ECA and AIS were 77% and 95%, respectively. For AIS alone, these were 79% and 94%, and for ECA alone, 75% and 94%, respectively. Either HNF4α(+) or p16(+) or double positive identified endocervical gland and squamous neoplasms (sensitivity, 96%; specificity, 76%). HNF4α(+) and SATB2(-) and CDX2(-) profiles suggested ECAs (sensitivity, 69%; specificity, 88%). HNF4α(+) and SATB2(+) or CDX2(+) profiles suggested adenocarcinomas of the gastrointestinal or genital tract (sensitivity, 81%; specificity, 88%). CONCLUSIONS HNF4α is a promising marker for detecting both HPV-independent and -associated ECAs and AIS with high accuracy. Its combination with p16, CDX2, and SATB2 has potential use in diagnostic panels.
Collapse
Affiliation(s)
- Yuri Noda
- Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Yoko Tokuyama
- Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Wataru Sumita
- Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Masato Kita
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
3
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
4
|
He B, Liao Y, Tian M, Tang C, Tang Q, Ma F, Zhou W, Leng Y, Zhong D. Identification and verification of a novel signature that combines cuproptosis-related genes with ferroptosis-related genes in osteoarthritis using bioinformatics analysis and experimental validation. Arthritis Res Ther 2024; 26:100. [PMID: 38741149 DOI: 10.1186/s13075-024-03328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.
Collapse
Affiliation(s)
- Baoqiang He
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
- Southwest Medical University, Lu Zhou City, China
| | - Yehui Liao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Minghao Tian
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Chao Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Qiang Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Fei Ma
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Wenyang Zhou
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Yebo Leng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Meishan Tianfu New Area People's Hospital, Meishan City, China.
| | - Dejun Zhong
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Southwest Medical University, Lu Zhou City, China.
| |
Collapse
|
5
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
6
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Zhu W, Qiong D, Yanli G, Min L, Ying Z, Qiyi H, Shenping Z, Xisheng W, Hui L. Proteomics and transcriptomics profiling reveals distinct aspects of kidney stone related genes in calculi rats. BMC Genomics 2023; 24:127. [PMID: 36932340 PMCID: PMC10024419 DOI: 10.1186/s12864-023-09222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUNDS Kidney stone also known as urolithiasis or nephrolithiasis, is one of the oldest diseases known to medicine, however, the gene expression changes and related kidney injury remains unclear. METHODS A calculi rat model was developed via ethylene glycol- and ammonium chloride-induction. Integrated proteomic and transcriptomic analysis was performed to characterize the distinct gene expression profiles in the kidney of calculi rat. Differential expressed genes (DEGs) were sub-clustered into distinct groups according to the consistency of transcriptome and proteome. Gene Ontology and KEGG pathway enrichment was performed to analyze the functions of each sub-group of DEGs. Immunohistochemistry was performed to validated the expression of identified proteins. RESULTS Five thousand eight hundred ninety-seven genes were quantified at both transcriptome and proteome levels, and six distinct gene clusters were identified, of which 14 genes were consistently dysregulated. Functional enrichment analysis showed that the calculi rat kidney was increased expression of injured & apoptotic markers and immune-molecules, and decreased expression of solute carriers & transporters and many metabolic related factors. CONCLUSIONS The present proteotranscriptomic study provided a data resource and new insights for better understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of new strategies for the recurrence prevention and treatment in patients with kidney stone disease.
Collapse
Affiliation(s)
- Wang Zhu
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Deng Qiong
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Gu Yanli
- Central Laboratory, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Li Min
- Department of Pathology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Zhang Ying
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Hu Qiyi
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Zhang Shenping
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China
| | - Wang Xisheng
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China.
| | - Liang Hui
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, People's Republic of China.
| |
Collapse
|
9
|
KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene 2023; 42:1392-1404. [PMID: 36922675 DOI: 10.1038/s41388-023-02661-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Cholangiocarcinoma (CCA), a highly lethal and fetal cancer derived from the hepatobiliary system, is featured by aggressive growth and early lymphatic metastasis. Elucidating the underlying mechanism and identifying the effective therapy are critical for advanced CCA patients. In the study, we detected that KIF14 was upregulated in CCA samples, especially in patients with lymph node metastasis and vascular invasion. CCA patients with higher KIF14 were associated with worse overall survival and recurrence-free survival after surgery. Gain-of and loss-of function studies showed that KIF14 enhanced CCA cells proliferation, migration, invasion and lymphatic metastasis whereas its silencing abolished the effects in vivo and in vitro. Mechanistic investigation showed that KIF14 bound to the G3BP1/YBX1 complex and facilitated their interaction, causing increased activity of the NF-κB promoter and activation of NF-κB pathway. Furthermore, increased KIF14 level enhanced chemotherapy-resistance to gemcitabine-based regimen and induced immunosuppressive microenvironment. In addition, KIF14 was direct target of HNF4A and inversely regulated by HNF4A. Together, these findings suggested that KIF14 could be a potential oncogene and a good indicator in predicting prognosis and chemotherapy guidance for CCA patients.
Collapse
|
10
|
Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Lu Z, Wang L. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antiviral Res 2023; 212:105558. [PMID: 36806814 PMCID: PMC9938000 DOI: 10.1016/j.antiviral.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. CDK4/6 inhibitor palbociclib was reported to be one of the top-scored repurposed drugs to treat COVID-19. As the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry, expression level of angiotensin-converting enzyme 2 (ACE2) is closely related to SARS-CoV-2 infection. In this study, we demonstrated that palbociclib and other methods could arrest cells in G0/G1 phase and up-regulate ACE2 mRNA and protein levels without altering its subcellular localization. Palbociclib inhibited ubiquitin-proteasome and lysosomal degradation of ACE2 through down-regulating S-phase kinase-associated protein 2 (SKP2). In addition, increased ACE2 expression induced by palbociclib and other cell cycle arresting compounds facilitated pseudotyped SARS-CoV-2 infection. This study suggested that ACE2 expression was down-regulated in proliferating cells. Cell cycle arresting compounds could increase ACE2 expression and facilitate SARS-CoV-2 cell entry, which may not be suitable therapeutic agents for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China.
| |
Collapse
|
11
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew C Tillman
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Briana R Davis
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Chen
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
13
|
Sang L, Wang X, Bai W, Shen J, Zeng Y, Sun J. The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 2022; 12:1011230. [PMID: 36249028 PMCID: PMC9554155 DOI: 10.3389/fonc.2022.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 Alpha (HNF4α) is a master transcription factor mainly expressed in the liver, kidney, intestine and endocrine pancreas. It regulates multiple target genes involved in embryonic development and metabolism. HNF4α-related diseases include non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and diabetes mellitus. Recently, HNF4α has been emerging as a key player in a variety of cancers. In this review, we summarized the role and mechanism of HNF4α in different types of cancers, especially in liver and colorectal cancer, aiming to provide additional guidance for intervention of these diseases.
Collapse
Affiliation(s)
- Lei Sang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells. Stem Cells Int 2022; 2022:1850305. [PMID: 36132168 PMCID: PMC9484933 DOI: 10.1155/2022/1850305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background. A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers’ attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2
-chloro-5
-nitrobenzenesulfonyl)−2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results. In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion. CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.
Collapse
|
15
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
16
|
Tabibzadeh S. Repair, regeneration and rejuvenation require un-entangling pluripotency from senescence. Ageing Res Rev 2022; 80:101663. [PMID: 35690382 DOI: 10.1016/j.arr.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
There is a notion that pluripotency and senescence, represent two extremes of life of cells. Pluripotent cells display epigenetic youth, unlimited proliferative capacity and pluripotent differentiating potential whereas cells that reach the Hayflick limit, transit to senescence, undergo permanent inhibition of cell replication and create an aging tissue landscape. However, pluripotency and senescence appear to be intimately linked and are jointly generated in many different contexts such as during embryogenesis or formation of tissue spheroids, in stem cell niches, cancer, or by induction of a pluripotent state (induced pluripotency). Tissue damage and senescence provide signals that are critical to generation of a pluripotent state and, in turn, pluripotency, induces senescence. Thus, it follows, that precisely timed control of senescence is required for harnessing the full benefits of both senescence and its associated pluripotency during tissue regeneration or rejuvenation.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618.
| |
Collapse
|
17
|
Guo Q, Zhang T, Gong Y, Tao Y, Gao Y, Wang Y, Tian J, Zhang S, Wang H, Rodriguez R, Wang Z. Aldehyde dehydrogenase 6 family member A1 negatively regulates cell growth and to cisplatin sensitivity in bladder cancer. Mol Carcinog 2022; 61:690-701. [PMID: 35472711 DOI: 10.1002/mc.23411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/03/2023]
Abstract
Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is a highly conserved member of aldehyde dehydrogenase (ALDHs) family. Recent studies reveal that it broadly involved in tumorigenesis and drug metabolism in kinds of cancer. However, the critical role of ALDH6A1 in bladder cancer progression and cisplatin resistance of cancer cells are still poorly understood. In this study, we researched the significant function of ALDH6A1 in bladder cancer. Our results showed that ALDH6A1 exhibited a decreased expression in clinical bladder cancer tissues and bladder cancer cell lines. Stable ALDH6A1 knockdown not only could promote cell growth and colony formation in bladder cancer cells, but also enhance drug resistance to cisplatin treatment. On the contrary, we found the active transcript factor hepatocyte nuclear factor 4α (HNF4α, NR2A1) by alveriene could upregulate ALDH6A1 expression, significantly inhibit the cell growth and colony formation of bladder cancer cells, and improve cisplatin sensitivity of bladder cancer cells. Together, our results show that ALDH6A1 plays as a tumor suppressor in bladder cancer, which regulated by HNF4a. ALDH6A1 could be a promising diagnostic marker and treatment target in bladder cancer.
Collapse
Affiliation(s)
- Qi Guo
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuwen Gong
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yan Tao
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yanjun Gao
- Gansu Provincial Hospital, Lanzhou, China
| | - Yuhan Wang
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Su Zhang
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhiping Wang
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Yang J, Liu M, Hong D, Zeng M, Zhang X. The Paradoxical Role of Cellular Senescence in Cancer. Front Cell Dev Biol 2021; 9:722205. [PMID: 34458273 PMCID: PMC8388842 DOI: 10.3389/fcell.2021.722205] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.
Collapse
Affiliation(s)
- Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongchun Hong
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
20
|
Doxorubicin and doxorubicin-loaded nanoliposome induce senescence by enhancing oxidative stress, hepatotoxicity, and in vivo genotoxicity in male Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1803-1813. [PMID: 34219194 DOI: 10.1007/s00210-021-02119-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
The senescence phenomenon is historically considered as a tumor-suppressing mechanism that can permanently arrest the proliferation of damaged cells, and prevent tumor eradication by activating cell cycle regulatory pathways. Doxorubicin (DX) as an antineoplastic agent has been used for the treatment of solid and hematological malignancies for a long time, but its clinical use is limited due to irreversible toxicity on off-target tissues. Thereby, the encapsulation of plain drugs in a vehicle may decrease the side effects while increasing their permeability and availability in target cells. Here, we aimed to investigate and compare the effects of DX and DX-loaded nanoliposome (NLDX) on the induction of senescence via assessment of the occurrence of apoptosis/necrosis, genomic damage, oxidative stress, and liver pathologies. The study groups included DX (0.75, 0.5, 0.1 mg/kg/BW), NLDX groups (0.1, 0.05, 0.025 mg/kg/BW), and an untreated control group. The liver tissues were used to investigate the oxidative stress parameters and probable biochemical and histopathological alterations. Annexin V/PI staining was carried out to find the type of cellular death in the liver tissue of healthy rats exposed to different concentrations of DOX and LDOX. Data revealed that the highest dose of NLDX (0.1 mg/kg/BW) could significantly induce cellular senescence throughout significant increasing the level of genotoxic damage (p < 0.0001) and the oxidative stress (p < 0.001) compared with a similar dose of DX, in which the obtained results were further confirmed by flow cytometry and histopathological assessments of the liver tissue. This investigation provides sufficient evidence of improved therapeutic efficacy of NLDX compared with plain DX in male Wistar rats.
Collapse
|
21
|
Transcriptomic analysis of castration, chemo-resistant and metastatic prostate cancer elucidates complex genetic crosstalk leading to disease progression. Funct Integr Genomics 2021; 21:451-472. [PMID: 34184132 DOI: 10.1007/s10142-021-00789-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/05/2020] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Prostate adenocarcinoma, with its rising numbers and high fatality rate, is a daunting healthcare challenge to clinicians and researchers alike. The mainstay of our meta-analysis was to decipher differentially expressed genes (DEGs), their corresponding transcription factors (TFs), miRNAs (microRNA) and interacting pathways underlying the progression of prostate cancer (PCa). We have chosen multiple datasets from primary, castration-resistant, chemo-resistant and metastatic prostate cancer stages for investigation. From our tissue-specific and disease-specific co-expression networks, fifteen hub genes such as ACTB, ACTN1, CDH1, CDKN1A, DDX21, ELF3, FLNA, FLNC, IKZF1, ILK, KRT13, KRT18, KRT19, SVIL and TRIM29 were identified and validated by molecular complex detection analysis as well as survival analysis. In our attempt to highlight hub gene-associated mutations and drug interactions, FLNC was found to be most commonly mutated and CDKN1A gene was found to have highest druggability. Moreover, from DAVID and gene set enrichment analysis, the focal adhesion and oestrogen signalling pathways were found enriched which indicates the involvement of hub genes in tumour invasiveness and metastasis. Finally by Enrichr tool and miRNet, we identified transcriptional factors SNAI2, TP63, CEBPB and KLF11 and microRNAs, namely hsa-mir-1-3p, hsa-mir-145-5p, hsa-mir-124-3p and hsa-mir-218-5p significantly controlling the hub gene expressions. In a nutshell, our report will help to gain a deeper insight into complex molecular intricacies and thereby unveil the probable biomarkers and therapeutic targets involved with PCa progression.
Collapse
|
22
|
Wang R, Sun L, Xia S, Wu H, Ma Y, Zhan S, Zhang G, Zhang X, Shi T, Chen W. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis 2021; 12:453. [PMID: 33958586 PMCID: PMC8102521 DOI: 10.1038/s41419-021-03736-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that cellular senescence induced by chemotherapy has been recognized as a new weapon for cancer therapy. This study aimed to research novel functions of B7-H3 in cellular senescence induced by a low dose of doxorubicin (DOX) in colorectal cancer (CRC). Here, our results demonstrated that B7-H3 knockdown promoted, while B7-H3 overexpression inhibited, DOX-induced cellular senescence. B7-H3 knockdown dramatically enhanced the growth arrest of CRC cells after low-dose DOX treatment, but B7-H3 overexpression had the opposite effect. By RNA-seq analysis and western blot, we showed that B7-H3 prevented cellular senescence and growth arrest through the AKT/TM4SF1/SIRT1 pathway. Blocking the AKT/TM4SF1/SIRT1 pathway dramatically reversed B7-H3-induced resistance to cellular senescence. More importantly, B7-H3 inhibited DOX-induced cellular senescence of CRC cells in vivo. Therefore, targeting B7-H3 or the B7-H3/AKT/TM4SF1/SIRT1 pathway might be a new strategy for promoting cellular senescence-like growth arrest during drug treatment in CRC.
Collapse
Affiliation(s)
- Ruoqin Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hongya Wu
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanchao Ma
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Shenghua Zhan
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| |
Collapse
|
23
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Controversial roles of hepatocyte nuclear receptor 4 α on tumorigenesis. Oncol Lett 2021; 21:356. [PMID: 33747213 PMCID: PMC7968000 DOI: 10.3892/ol.2021.12617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear receptor 4 α (HNF4α) is known to be a master transcription regulator of gene expression in multiple biological processes, particularly in liver development and liver function. To date, the function of HNF4α in human cancers has been widely investigated; however, the critical roles of HNF4α in tumorigenesis remain unclear. Numerous controversies exist, even in studies from different research groups but on the same type of cancer. In the present review, the critical roles of HNF4α in tumorigenesis will be summarized and discussed. Furthermore, HNF4α expression profile and alterations will be examined by pan-cancer analysis through bioinformatics, in order to provide a better understanding of the functional roles of this gene in human cancers.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
24
|
Wang Y, Gao W, Li Y, Chow ST, Xie W, Zhang X, Zhou J, Chan FL. Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer. Mol Aspects Med 2020; 78:100921. [PMID: 33121737 DOI: 10.1016/j.mam.2020.100921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
It is well-established that both the initial and advanced growth of prostate cancer depends critically on androgens and thus on the activated androgen receptor (AR) -mediated signaling pathway. The unique hormone-dependent feature of prostate cancer forms the biological basis of hormone or androgen-deprivation therapy (ADT) that aims to suppress the AR signaling by androgen depletion or AR antagonists. ADT still remains the mainstay treatment option for locally advanced or metastatic prostate cancer. However, most patients upon ADT will inevitably develop therapy-resistance and progress to relapse in the form of castration-resistant disease (castration-resistant prostate cancer or CRPC) or even a more aggressive androgen-independent subtype (therapy-related neuroendocrine prostate cancer or NEPC). Recent advances show that besides AR, some ligand-independent members of nuclear receptor superfamily-designated as orphan nuclear receptors (ONRs), as their endogenous physiological ligands are either absent or not yet identified to date, also play significant roles in the growth regulation of prostate cancer via multiple AR-dependent or -independent (AR-bypass) pathways or mechanisms. In this review, we summarize the recent progress in the newly elucidated roles of ONRs in prostate cancer, with a focus on their interplay in the AR-dependent pathways (intratumoral androgen biosynthesis and suppression of AR signaling) and AR-independent pathways or cellular processes (hypoxia, oncogene- or tumor suppressor-induced senescence, apoptosis and regulation of prostate cancer stem cells). These ONRs with their newly characterized roles not only can serve as novel biomarkers but also as potential therapeutic targets for management of advanced prostate cancer.
Collapse
Affiliation(s)
- Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weijie Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Ting Chow
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjuan Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingxing Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianfu Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510370, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Gumpinger AC, Lage K, Horn H, Borgwardt K. Prediction of cancer driver genes through network-based moment propagation of mutation scores. Bioinformatics 2020; 36:i508-i515. [PMID: 32657361 PMCID: PMC7355253 DOI: 10.1093/bioinformatics/btaa452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Gaining a comprehensive understanding of the genetics underlying cancer development and progression is a central goal of biomedical research. Its accomplishment promises key mechanistic, diagnostic and therapeutic insights. One major step in this direction is the identification of genes that drive the emergence of tumors upon mutation. Recent advances in the field of computational biology have shown the potential of combining genetic summary statistics that represent the mutational burden in genes with biological networks, such as protein-protein interaction networks, to identify cancer driver genes. Those approaches superimpose the summary statistics on the nodes in the network, followed by an unsupervised propagation of the node scores through the network. However, this unsupervised setting does not leverage any knowledge on well-established cancer genes, a potentially valuable resource to improve the identification of novel cancer drivers. RESULTS We develop a novel node embedding that enables classification of cancer driver genes in a supervised setting. The embedding combines a representation of the mutation score distribution in a node's local neighborhood with network propagation. We leverage the knowledge of well-established cancer driver genes to define a positive class, resulting in a partially labeled dataset, and develop a cross-validation scheme to enable supervised prediction. The proposed node embedding followed by a supervised classification improves the predictive performance compared with baseline methods and yields a set of promising genes that constitute candidates for further biological validation. AVAILABILITY AND IMPLEMENTATION Code available at https://github.com/BorgwardtLab/MoProEmbeddings. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anja C Gumpinger
- Department of Biosystems Science and Engineering, Machine Learning and Computational Biology Lab, ETH Zürich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heiko Horn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, Machine Learning and Computational Biology Lab, ETH Zürich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
26
|
Abu N, Othman N, W Hon K, Nazarie WF, Jamal R. Integrative meta-analysis for the identification of hub genes in chemoresistant colorectal cancer. Biomark Med 2020; 14:525-537. [PMID: 32462912 DOI: 10.2217/bmm-2019-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Finding a new target or a new drug to overcome chemoresistance is difficult due to the heterogenous nature of cancer. Meta-analysis was performed to combine the analysis of different microarray studies to get a robust discovery. Materials & methods: Herein, we analyzed three microarray datasets on combination of folinic acid, fluorouracil, and oxaliplatin drugs (FOLFOX) resistance that fit our inclusion/exclusion criteria and performed a meta-analysis using the OmiCC system. Results: We identified several deregulated genes and we discovered HNF4A as a hub gene. We performed functional validation and observed that by targeting HNF4A, HCT116 cells were more sensitive toward both oxaliplatin and 5-fluorouracil significantly. Conclusion: Our findings show that HNF4A could be a potential target in overcoming FOLFOX chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Norahayu Othman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Kha W Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Wan Fwm Nazarie
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Serum Omentin Levels in Patients with Prostate Cancer and Associations with Sex Steroids and Metabolic Syndrome. J Clin Med 2020; 9:jcm9041179. [PMID: 32326011 PMCID: PMC7230956 DOI: 10.3390/jcm9041179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms linking obesity and prostate cancer (PC) include increased insulin signaling, persistent inflammation, and altered adipocytokines secretion. Previous studies indicated that omentin may play a potential role in cancerogenesis of different sites, including the prostate. In this study, we focused on the hormonal and metabolic characteristics of men recruited for prostate biopsy. We evaluated serum concentrations of adipocytokines and sex steroids where concentrations are related to the adiposity: omentin, leptin, testosterone, estradiol, and sex hormone-binding globulin (SHBG). Aim: The aim of the study was to assess the concentration of serum omentin in men with PC. We also investigated relationships between omentin, leptin, sex steroids, SHBG, age, and metabolic syndrome (MS). Methods: Our study was conducted on 72 patients with PC and 65 men with benign prostate hyperplasia (BPH). Both groups were compared for body mass index. Results: Comparing men with PC to subjects with BPH there were significantly higher serum concentrations of omentin, estradiol, and prostate specific antigen (PSA) in the former. Estradiol/testosterone ratio, which is a marker of testosterone to estradiol conversion, was also significantly higher in the PC group. MS was diagnosed in 47 men with PC and in 30 men with BPH, the prevalence was significantly higher in the PC group. When the subjects with PC were subdivided into two subgroups, the serum omentin did not differ between those with MS and without MS. In the overall sample serum, omentin was positively associated with age, SHBG, and leptin. A positive correlation was also found between omentin and estradiol/testosterone ratio, and negatively with testosterone/SHBG ratio. Positive correlations were noted between age and SHBG, PSA and estradiol/testosterone ratio. In our study, a drop of total testosterone and testosterone/SHBG ratio, due to age, was also demonstrated. Conclusions: In patients with prostate cancer, serum omentin may be a diagnostic indicator. Omentin levels do not correlate with estradiol or testosterone concentrations but they are related to the testosterone/SHBG ratio. Omentin is not associated with an increased likelihood of having metabolic syndrome in men with prostate cancer.
Collapse
|
28
|
Bioinformatic framework for analysis of transcription factor changes as the molecular link between replicative cellular senescence signaling pathways and carcinogenesis. Biogerontology 2020; 21:357-366. [PMID: 32100207 DOI: 10.1007/s10522-020-09866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a natural condition of irreversible cell cycle arrest and apoptotic resistance that occurs in cells exposed to various stress factors, such as replicative stress or overexpression of oncogenes. Unraveling the complex regulation of senescence in cells is essential to strengthen senescence-related therapeutic approaches in cancer, as cellular senescence plays a dual role in tumorigenesis, having both anti- and pro-tumorigenic effects. In our study we created a model of replicative cellular senescence, based on transcriptomic data, including an extra intermediate time-point prior to cells entering senescence, to elucidate the interplay of networks governing cellular senescence with networks involved in tumorigenesis. We reveal specific changes that occur in transcription factor activity at different timepoints before and after cells entering senescence and model the signaling networks that govern these changes.
Collapse
|