1
|
Yi Z, Liu P, Zhang Y, Mamuti D, Zhou W, Liu Z, Chen Z. METTL3 aggravates renal fibrogenesis in obstructive nephropathy via the miR-199a-3p/PAR4 axis. Eur J Pharmacol 2024; 982:176931. [PMID: 39182553 DOI: 10.1016/j.ejphar.2024.176931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is among the major factors contributing to the development of chronic kidney disease. In this regard, although N6-methyladenosine (m6A) modification and micro-RNAs (miRNAs) have been established to play key roles in diverse physiological processes and disease/disorder development, further research is required to identify the probable mechanisms and processes associated with their involvement in renal fibrosis. In this study, we show that transforming growth factor β1 (TGF-β1)-induced human proximal tubule epithelial cells (HK2) are characterized by dose-dependently higher methyltransferase-like 3 (METTL3) expression. Furthermore, METTL3 was found to enhance pri-miR-199a-3p maturation and miR-199a-3p expression in an m6A-dependent manner, whereas miR-199a-3p sponges prostate apoptotic response 4 (Par4), thereby regulating its expression. Collectively, our findings in this study indicate that the METTL3/miR-199a-3p/Par4 axis plays a key role in the development of obstructive nephrogenic fibrosis.
Collapse
Affiliation(s)
- Zhenglin Yi
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Peihua Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yinfan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Dilishati Mamuti
- The Sixth Clinical Medical College Hospital, Xinjiang Medical University, Urumchi, China
| | - Weimin Zhou
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Chen
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
2
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ma Y, Lv H, Xing F, Xiang W, Wu Z, Feng Q, Wang H, Yang W. Cancer stem cell-immune cell crosstalk in the tumor microenvironment for liver cancer progression. Front Med 2024; 18:430-445. [PMID: 38600350 DOI: 10.1007/s11684-023-1049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 04/12/2024]
Abstract
Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
6
|
Yuan Y, Li J, Lu X, Chen M, Liang H, Chen XP, Long X, Zhang B, Gong S, Huang X, Zhao J, Chen Q. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front Med 2024; 18:538-557. [PMID: 38769281 DOI: 10.1007/s11684-024-1079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xun Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Song Gong
- Department of Trauma Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei Huang
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
El-Kholy MA, Abu-Seadah SS, Hasan A, Elhussiny MEA, Abdelwahed MS, Hanbazazh M, Samman A, Alrashdi SA, Rashed ZF, Ashmawy D, Othman AE, Abdelaleem MF, Abo-Saif AIA, Abdel-Maqsoud RR, Attiah SM, Assiri ES, Nasr M, Ismail KA, Saad DZ, El-Mosely MM. The Role of Epithelial Cell Adhesion Molecule Cancer Stem Cell Marker in Evaluation of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:915. [PMID: 38929532 PMCID: PMC11205386 DOI: 10.3390/medicina60060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Hepatocellular carcinoma (HCC) is a prevalent form of malignancy that is characterized by high mortality rates and prognosis that remain suboptimal, largely due to treatment resistance mechanisms. Recent studies have implicated cancer stem cells (CSCs), particularly those expressing epithelial cell adhesion molecule (EpCAM), in HCC progression and resistance. In the present study, we sought to assess EpCAM expression in HCC patients and its correlation with various clinicopathological parameters. Materials and Methods: Tissue samples from 42 HCC patients were subjected to immunohistochemical staining to evaluate EpCAM expression. Clinicopathological data were obtained including the size, grade and stage of tumors, vascular invasion status, alpha-fetoprotein levels, and cirrhosis status. The Chi square and Fisher's exact tests were employed to assess the association between categorical groups. Independent Student-t test or Mann-Whitney U test was used to investigate the association between continuous patient characteristics and survival. Results: Immunohistochemical analysis revealed EpCAM expression in 52.5% of HCC cases. EpCAM-positive tumors exhibited characteristics indicative of aggressive disease, including larger tumor sizes (p = 0.006), greater tumor multiplicity (p = 0.004), higher grades (p = 0.002), more advanced stages (p = 0.003), vascular invasion (p = 0.023), elevated alpha-fetoprotein levels (p = 0.013), and cirrhosis (p = 0.052). Survival analysis demonstrated that EpCAM expression was significantly associated with lower overall rates of survival and higher rates of recurrence in HCC patients. Conclusions: Our findings suggest that EpCAM expression may serve as a prognostic biomarker for HCC with a potential role in patient management. Targeting EpCAM-positive CSCs may represent a promising approach to overcome treatment resistance and improve clinical outcomes in HCC. However, further investigation into the molecular mechanisms underlying EpCAM's role in HCC progression is warranted to facilitate the development of personalized therapeutic interventions.
Collapse
Affiliation(s)
- Marwa A. El-Kholy
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Shimaa S. Abu-Seadah
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Abdulkarim Hasan
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed E. A. Elhussiny
- General Medicine Practice Program, Histology Department, Batterjee Medical Collage, Aseer 61421, Saudi Arabia
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S. Abdelwahed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mehenaz Hanbazazh
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Abdulhadi Samman
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Saeed A. Alrashdi
- Laboratory Department, Al-Mezailef General Hospital, Ministry of Health, Al-Mezailef 21912, Saudi Arabia
| | - Zaky F. Rashed
- Anesthesia Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
- Anesthesia, Intensive Care and Pain Management Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Diaa Ashmawy
- Pathology Department, Faculty of Medicine, Al-Azhar University, Damietta 34517, Egypt
| | - Alyaa E. Othman
- Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Amany I. A. Abo-Saif
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Rania R. Abdel-Maqsoud
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Samah M. Attiah
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Eissa Saeed Assiri
- Laboratory Department, Aseer Central Hospital, Ministry of Health, Abha 62523, Saudi Arabia
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Khadiga Ahmed Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Diana Z. Saad
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Marwa M. El-Mosely
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Sun YM, Wu Y, Li GX, Liang HF, Yong TY, Li Z, Zhang B, Chen XP, Jin GN, Ding ZY. TGF-β downstream of Smad3 and MAPK signaling antagonistically regulate the viability and partial epithelial-mesenchymal transition of liver progenitor cells. Aging (Albany NY) 2024; 16:6588-6612. [PMID: 38604156 PMCID: PMC11042936 DOI: 10.18632/aging.205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-β promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-β activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFβ-Smad signaling induced growth inhibition and partial EMT, whereas TGFβ-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-β was mutually restricted in LPCs. Mechanistically, we found that TGF-β activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFβ-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-β-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-β-induced cytostasis and partial EMT. CONCLUSION These results suggested that TGF-β downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-β under fibrotic conditions and maintain partial EMT and progenitor phenotypes.
Collapse
Affiliation(s)
- Yi-Min Sun
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Present address: Department of Gastrointestinal Surgery, Affiliated First Hospital, Yangtze University, Jingzhou, Hubei 434000, China
| | - Yu Wu
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gan-Xun Li
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tu-Ying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430071, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430071, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guan-Nan Jin
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Present address: Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Hubei Province for The Clinical Medicine Research Center of Hepatic Surgery and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
9
|
Rawal P, Tripathi DM, Hemati H, Kumar J, Tyagi P, Sarin SK, Nain V, Kaur S. Targeted HBx gene editing by CRISPR/Cas9 system effectively reduces epithelial to mesenchymal transition and HBV replication in hepatoma cells. Liver Int 2024; 44:614-624. [PMID: 38105495 DOI: 10.1111/liv.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.
Collapse
Affiliation(s)
- Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Hamed Hemati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| |
Collapse
|
10
|
Zhang MH, Yuan YF, Liu LJ, Wei YX, Yin WY, Zheng LZY, Tang YY, Lv Z, Zhu F. Dysregulated microRNAs as a biomarker for diagnosis and prognosis of hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:4706-4735. [PMID: 37664153 PMCID: PMC10473924 DOI: 10.3748/wjg.v29.i31.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high incidence and fatality rate worldwide. Hepatitis B virus (HBV) infection is one of the most important risk factors for its occurrence and development. Early detection of HBV-associated HCC (HBV-HCC) can improve clinical decision-making and patient outcomes. Biomarkers are extremely helpful, not only for early diagnosis, but also for the development of therapeutics. MicroRNAs (miRNAs), a subset of non-coding RNAs approximately 22 nucleotides in length, have increasingly attracted scientists' attention due to their potential utility as biomarkers for cancer detection and therapy. HBV profoundly impacts the expression of miRNAs potentially involved in the development of hepatocarcinogenesis. In this review, we summarize the current progress on the role of miRNAs in the diagnosis and treatment of HBV-HCC. From a molecular standpoint, we discuss the mechanism by which HBV regulates miRNAs and investigate the exact effect of miRNAs on the promotion of HCC. In the near future, miRNA-based diagnostic, prognostic, and therapeutic applications will make their way into the clinical routine.
Collapse
Affiliation(s)
- Ming-He Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Feng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li-Juan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Xin Wei
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wan-Yue Yin
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Lan-Zhuo-Yin Zheng
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ying-Ying Tang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
11
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
12
|
Li X, Zhu Q, Ye B, Zhu C, Dong Y, Ni Q. JNK/c-Jun pathway activation is essential for HBx-induced IL-35 elevation to promote persistent HBV infection. J Clin Lab Anal 2023; 37:e24860. [PMID: 36916737 PMCID: PMC10098067 DOI: 10.1002/jcla.24860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immunoregulation plays pivotal roles during chronic hepatitis B virus (HBV) infection. Studies have shown that Interleukin (IL)-35 is an important molecule associated with inadequate immune response against HBV. However, the mechanisms involved in the up-regulation of IL-35 expression during persistent HBV infection remain unknown. METHODS In this study, we constructed a plasmid expressing the HBV X protein (pCMV-HBx) to evaluate the relationship between HBx and IL-35. Activation of the JNK/c-Jun pathway was analyzed and chromatin immunoprecipitation followed by sequencing and luciferase reporter assays were performed to determine whether c-Jun could regulate IL-35 transcription. RESULTS HBx can significantly activate IL-35 promoter in both LO2 and HepG2 cells compared to the control plasmid (pCMV-Tag2) using the dual-luciferase assay. Whereas other viral proteins, such as S, preS1, the core protein, had no significant effect on IL-35 expression. Similarly, WB and qRT-PCR also showed that HBx can significantly promote IL-35 expression at protein and mRNA levels in the aforementioned cells. The relevant pathway mechanism showed that the expression of JNK and c-Jun genes was significantly higher in transfected cells carrying pCMV-HBx than in the pCMV-Tag2-transfected and -untransfected cells. WB analysis revealed that phosphorylated JNK and c-Jun were overexpressed after HBx action. Conversely, the addition of the JNK/c-Jun signaling pathway inhibitor could significantly suppress HBx-induced IL-35 expression in a dose-dependent manner. CONCLUSIONS A novel molecular mechanism of HBV-induced IL-35 expression was revealed, which involves JNK/c-Jun signaling in up-regulating IL-35 expression via HBx, resulting in transactivation of the IL-35 subunit EBI3 and p35 promoter.
Collapse
Affiliation(s)
- Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoyun Zhu
- Central Laboratory, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Ye
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxia Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Ni
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
USF2-mediated upregulation of TXNRD1 contributes to hepatocellular carcinoma progression by activating Akt/mTOR signaling. Cell Death Dis 2022; 13:917. [PMID: 36319631 PMCID: PMC9626593 DOI: 10.1038/s41419-022-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Thioredoxin reductase 1 (TXNRD1) is one of the major redox regulators in mammalian cells, which has been reported to be involved in tumorigenesis. However, its roles and regulatory mechanism underlying the progression of HCC remains poorly understood. In this study, we demonstrated that TXNRD1 was significantly upregulated in HCC tumor tissues and correlated with poor survival in HCC patients. Functional studies indicated TXNRD1 knockdown substantially suppressed HCC cell proliferation and metastasis both in vitro and in vivo, and its overexpression showed opposite effects. Mechanistically, TXNRD1 attenuated the interaction between Trx1 and PTEN which resulting in acceleration of PTEN degradation, thereby activated Akt/mTOR signaling and its target genes which conferred to elevated HCC cell mobility and metastasis. Moreover, USF2 was identified as a transcriptional suppressor of TXNRD1, which directly interacted with two E-box sites in TXNRD1 promoter. USF2 functioned as tumor suppressor through the downstream repression of TXNRD1. Further clinical data revealed negative co-expression correlations between USF2 and TXNRD1. In conclusion, our findings reveal that USF2-mediated upregulation of TXNRD1 contributes to hepatocellular carcinoma progression by activating Akt/mTOR signaling.
Collapse
|
15
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
16
|
Yang L, Zou T, Chen Y, Zhao Y, Wu X, Li M, Du F, Chen Y, Xiao Z, Shen J. Hepatitis B virus X protein mediated epigenetic alterations in the pathogenesis of hepatocellular carcinoma. Hepatol Int 2022; 16:741-754. [PMID: 35648301 DOI: 10.1007/s12072-022-10351-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem. Hepatitis B virus X protein (HBx), a pleiotropic regulatory protein encoded by HBV, is necessary for the transcription of HBV covalently closed circular DNA (cccDNA) minichromosomes, and affects the epigenetic regulation of host cells. The epigenetic reprogramming of HBx on host cell genome is strongly involved in HBV-related HCC carcinogenesis. Here, we review the latest findings of the epigenetic regulation induced by HBx protein in hepatocellular carcinoma (HCC), including DNA methylation, histone modification and non-coding RNA expression. The influence of HBx on the epigenetic regulation of cccDNA is also summarized. In addition, preliminary studies of targeted drugs for epigenetic changes induced by HBx are also discussed. The exploration of epigenetic markers as potential targets will help to develop new prevention and/or treatment methods for HBx-related HCC.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Tao Zou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
17
|
Zhang YZ, Zeb A, Cheng LF. Exploring the molecular mechanism of hepatitis virus inducing hepatocellular carcinoma by microarray data and immune infiltrates analysis. Front Immunol 2022; 13:1032819. [PMID: 36439183 PMCID: PMC9697180 DOI: 10.3389/fimmu.2022.1032819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The number of new cases of hepatocellular carcinoma (HCC) worldwide reached 910,000, ranking the sixth, 80% HCC is associated with viruses, so exploring the molecular mechanism of viral carcinogenicity is imperative. The study showed that both HBV and HCV associated HCC and non-viral HCC have the same molecular phenotype (low gene expression and inhibition of immune pathways), but in the tumor immune micro-environment, there is excessive M2-type macrophage polarization in virus-associated hepatocellular carcinoma. To address this phenomenon, the data sets were analyzed and identified five hub genes (POLR2A, POLR2B, RPL5, RPS6, RPL23A) involved in viral gene expression and associated with PI3K-Akt-mTOR pathway activation by six algorithms. In addition, numerous studies have reported that M2-type macrophages participate in the hepatic fibro-pathological process of the development of HCC and are regulated by the PI3K-Akt-mTOR pathway. On this basis, the study showed that hepatitis virus causes abnormal expression of hub genes, leading to the activation of the pathway, which in turn promote the differentiation of M2-type macrophages and eventually promote the formation of liver fibrosis, leading to the occurrence of HCC. In addition, these hub genes are regulated by transcription factors and m6A enzyme, and have good prognosis and diagnostic value. With regard to drug reuse, the results suggest that patients with virus-related HCC for whom Cytidine triphosphate disodium salt and Guanosine-5'-Triphosphate are used as supplementary therapy, and may have a better prognosis. In conclusion, the study has identified novel molecules that are carcinogenic to hepatitis viruses and are expected to serve as molecular markers and targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Amir Zeb
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
18
|
Hepatic Cancer Stem Cells: Molecular Mechanisms, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2021; 13:cancers13184550. [PMID: 34572776 PMCID: PMC8472624 DOI: 10.3390/cancers13184550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. HCC is associated with multiple risk factors and is characterized by a marked tumor heterogeneity that makes its molecular classification difficult to apply in the clinics. The lack of circulating biomarkers for the diagnosis, prognosis, and prediction of response to treatments further undermines the possibility of developing personalized therapies. Accumulating evidence affirms the involvement of cancer stem cells (CSCs) in tumor heterogeneity, recurrence, and drug resistance. Owing to the contribution of CSCs to treatment failure, there is an urgent need to develop novel therapeutic strategies targeting, not only the tumor bulk, but also the CSC subpopulation. Clarification of the molecular mechanisms influencing CSC properties, and the identification of their functional roles in tumor progression, may facilitate the discovery of novel CSC-based therapeutic targets to be used alone, or in combination with current anticancer agents, for the treatment of HCC. Here, we review the driving forces behind the regulation of liver CSCs and their therapeutic implications. Additionally, we provide data on their possible exploitation as prognostic and predictive biomarkers in patients with HCC.
Collapse
|
19
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
20
|
Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci 2021; 22:ijms22115497. [PMID: 34071064 PMCID: PMC8197097 DOI: 10.3390/ijms22115497] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.
Collapse
|
21
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|