1
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
2
|
Ma S, Pan X, Gan J, Guo X, He J, Hu H, Wang Y, Ning S, Zhi H. DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma. Epigenetics 2024; 19:2318506. [PMID: 38439715 PMCID: PMC10936651 DOI: 10.1080/15592294.2024.2318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.
Collapse
Affiliation(s)
- Shuangyue Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaxin Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoyu Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Lu HT, Chen YY, Yu YJ, Liao XS, Liang H, Liang L, Mo PL, Huang XK, Ding S, Liu C, Feng DQ. Gene Expression Profile Identifies LncRNA AL355974.3 As a Potential Glioma Biomarker. Curr Med Sci 2024; 44:1047-1057. [PMID: 39145837 DOI: 10.1007/s11596-024-2899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/15/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Glioma is a central nervous system tumor arising from glial cells. Despite significant advances in diagnosis and treatment, most patients with high-grade gliomas have a poor prognosis. Many studies have shown that long noncoding RNAs (lncRNAs) may play important roles in the development, progression and treatment of many tumors, including gliomas. Molecularly targeted therapy may be a new direction for the adjuvant treatment of glioma. Therefore, we hope that by studying differentially expressed lncRNAs (DElncRNAs) in glioma, we can discover lncRNAs that can serve as biomarkers for glioma and provide better therapeutic modalities for glioma patients. METHODS First, the expression of lncRNAs in 5 normal brain (NB) tissues and 10 glioma tissues was examined by RNA sequencing (RNA-seq). Next, we performed Kaplan-Meier analysis of data from The Cancer Genome Atlas (TCGA) database to assess the prognostic value of these variables. Finally, functional analysis of the DElncRNAs was performed by means of Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS RNA sequencing analysis revealed 85 upregulated miRNAs and 71 downregulated lncRNAs in low-grade glioma (LGG) and 50 upregulated lncRNAs and 70 downregulated lncRNAs in glioblastoma (GBM). Among them, AL355974.3 was the most upregulated lncRNA. LINC00632 was the most downregulated lncRNA. Second, LGG patients with higher AL355974.3 expression had worse overall survival according to Kaplan-Meier analysis of the TCGA database. Finally, bioinformatics analysis revealed that the target genes of these DElncRNAs were enriched in various biological processes and signaling pathways, such as cell metabolic and developmental processes. CONCLUSION Our findings provide evidence that AL355974.3 may be a new biomarker for glioma.
Collapse
Affiliation(s)
- Hao-Tian Lu
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Yu-Yang Chen
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Yong-Jia Yu
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xing-Sheng Liao
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Hui Liang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Lun Liang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Pan-Lin Mo
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xin-Kai Huang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shuai Ding
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| | - Da-Qin Feng
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Zhang S, Liu N, Cao P, Qin Q, Li J, Yang L, Xin Y, Jiang M, Zhang S, Yang J, Lu J. LncRNA BC200 promotes the development of EBV-associated nasopharyngeal carcinoma by competitively binding to miR-6834-5p to upregulate TYMS expression. Int J Biol Macromol 2024; 278:134837. [PMID: 39179085 DOI: 10.1016/j.ijbiomac.2024.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection. Long noncoding RNAs (lncRNAs) play important roles in cancers. However, the molecular mechanism underlying the roles of lncRNAs in EBV-associated NPC remains largely unclear. In this study, we confirmed that the expression of the lncRNA brain cytoplasmic 200 (BC200) was significantly increased in EBV-infected NPC cells and tissues. BC200 facilitated the growth and migration of NPC cells, suggesting that it participated in NPC progression by functioning as an oncogene. Mechanistically, BC200 was found to act as a ceRNA by sponging and inhibiting miR-6834-5p. Thymidylate synthetase (TYMS), whose high expression was reported to be an independent indicator of poor prognosis in NPC via an unknown mechanism, was identified as a target gene of miR-6834-5p in the present study. BC200 upregulated TYMS expression in a manner that depends on miR-6834-5p. TYMS was abnormally upregulated in EBV-positive NPC cells and tissues, and its ectopic expression contributed to the proliferation and migration of NPC cells. This study highlights the role of lncRNA BC200, which is upregulated by EBV, in promoting the development of NPC, suggesting that BC200-mediated ceRNA network may be valuable biomarkers for the diagnosis and treatment of EBV-associated NPC.
Collapse
Affiliation(s)
- Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Na Liu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Qingshuang Qin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Siwei Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Yang
- Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Wang Y, Ma Q, Li H, Huang W, You J, Liu D. UBE2D1 promotes glioblastoma proliferation by modulating p21 ubiquitination. Mol Carcinog 2024; 63:1967-1979. [PMID: 39016669 DOI: 10.1002/mc.23786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Glioblastoma (GBM) cells exhibit aberrant proliferative abilities and resistance to conventional therapies. However, the mechanisms underlying these malignant phenotypes are poorly understood. In this study, we identified ubiquitin-conjugating enzyme E2D1 (UBE2D1) as a crucial stimulator of GBM development. It is highly expressed in GBM and closely associated with poor prognosis in patients with GBM. UBE2D1 knockdown inhibits GBM cell growth and leads to G1 cell cycle arrest. Mechanistically, UBCH5A binds to p21 at the protein level and induces the ubiquitination and degradation of p21. This negative regulation is mediated by STUB1. Our findings are the first to identify UBE2D1 as a key driver of GBM growth and provide a potential target for improving prognosis and therapy.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jia You
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dian Liu
- Department of Lymphoma and Abdominal Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang N, Wu P, Mu M, Niu C, Hu S. Exosomal circZNF800 Derived from Glioma Stem-like Cells Regulates Glioblastoma Tumorigenicity via the PIEZO1/Akt Axis. Mol Neurobiol 2024; 61:6556-6571. [PMID: 38324181 PMCID: PMC11338982 DOI: 10.1007/s12035-024-04002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising target for further therapeutic exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
7
|
Lashkarboloki M, Jahanbakhshi A, Mowla SJ, Bjeije H, M Soltani B. Oncogenic roles of long non-coding RNAs in essential glioblastoma signaling pathways. J Neurogenet 2024:1-17. [PMID: 39169886 DOI: 10.1080/01677063.2024.2390403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and diffuse type of glioma with the lowest survival rate in patients. The recent failure of multiple treatments suggests that targeting several targets at once may be a different strategy to overcome GBM carcinogenesis. Normal function of oncogenes and tumor suppressor genes need for the preservation of regular cellular processes, so any defects in these genes' activity, operate the corresponding signaling pathways, which initiate carcinogenic processes. Long non-coding RNAs (lncRNAs) that can be found in the cytoplasm or nucleus of the cells, control the transcription and translation of genes. LncRNAs perform a variety of functions, including epigenetic alteration, protein modification and stability, transcriptional regulation, and competition for miRNA that regulate mRNA translation through sponging miRNAs. Identification of various oncogenic lncRNAs and their multiple roles in brain cancers making them potential candidates for use as glioma diagnostic, prognostic, and therapeutic targets in the future. This study highlighted multiple oncogenic lncRNAs and classified them into different signaling pathways based on the regulated target genes in glioblastoma.
Collapse
Affiliation(s)
- Mina Lashkarboloki
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Jahanbakhshi
- Skull Base Research Center, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Bjeije
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Jiang M, Liu Y, Zhang T, Ye G, Hong S, Qi Z. Identification of a ferroptosis-related prognostic signature and validation of ITGA6-AS1 in enhancing cell proliferation, migration and invasion in glioma. Int Immunopharmacol 2024; 137:112438. [PMID: 38875999 DOI: 10.1016/j.intimp.2024.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Glioma is the most common malignant tumor of the adult central nervous system. In this study, we aimed to identify a novel model for predicting glioma prognosis and a potential therapeutic target. Here, lncRNAs related to prognosis and ferroptosis were analyzed and screened through R software and online websites. A nomogram model was established and evaluated with calibration curve, receiver operating characteristic curve and decision curve analysis. Further, an enrichment analysis and immune infiltration analysis were performed. In addition, the expression level and biological function of ITGA6-AS1 were verified in vitro. We obtained a ferroptosis-related 7-lncRNA signature, and constructed a nomogram prognostic model with good predictability for 1-, 3- and 5-year overall survival of glioma patients. The enrichment analysis indicated potential involvement of certain pathways and suggested a correlation between the high-risk group and infiltration of M2 macrophages and MDSCs. Furthermore, the expression level of ITGA6-AS1 in the U118, U87, and LN229 cells was upregulated compared to the H1800 cell. Interestingly, knockdown of ITGA6-AS1 may inhibit U118 cells' proliferation, migration and invasion in vitro. while overexpression of ITGA6-AS1 in LN229 cells plays a promoting role. This study implies that the 7-lncRNA signature may contribute to the stratification of glioma prognosis, and the immune suppressive microenvironment may be associated with macrophage-ferroptosis crosstalk. Furthermore, ITGA6-AS1 may be a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Minli Jiang
- Medical College of Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, PR China; Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise 533000, PR China
| | - Yu Liu
- Medical College of Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, PR China
| | - Tingting Zhang
- Xinyang Agricultural and Forestry University, No. 1 of Beihuan Road, Xinyang 464000, PR China
| | - Guangbin Ye
- Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise 533000, PR China
| | - Shifu Hong
- Department of Colorectal Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, PR China.
| | - Zhongquan Qi
- Medical College of Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, PR China.
| |
Collapse
|
9
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
10
|
Liu Y, Yuan H, Fan J, Wang H, Xie H, Wan J, Hu X, Zhou J, Liu L. The pathogenesis mechanism and potential clinical value of lncRNA in gliomas. Discov Oncol 2024; 15:266. [PMID: 38967893 PMCID: PMC11226588 DOI: 10.1007/s12672-024-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hui Yuan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JingJia Fan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Han Wang
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - HuiYu Xie
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JunFeng Wan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - XueYing Hu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Zhou
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| | - Liang Liu
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
11
|
Tian Y, Gao X, Yang X, Chen S, Ren Y. Glioma-derived exosome Lncrna Agap2-As1 promotes glioma proliferation and metastasis by mediating Tgf-β1 secretion of myeloid-derived suppressor cells. Heliyon 2024; 10:e29949. [PMID: 38699039 PMCID: PMC11064146 DOI: 10.1016/j.heliyon.2024.e29949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Background Glioma (GBM) is the most prevalent malignancy worldwide with high morbidity and mortality. Exosome-mediated transfer of long noncoding RNA (lncRNA) has been reported to be associated with human cancers, containing GBM. Meanwhile, myeloid-derived suppressor cells (MDSCs) play a vital role in mediating the immunosuppressive environments in GBM. Objectives This study is designed to explore the role and mechanism of exosomal (Exo) lncRNA AGAP2-AS1 on the MDSC pathway in GBM. Methods AGAP2-AS1, microRNA-486-3p (miR-486-3p), and Transforming growth factor beta-1 (TGF-β1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, and invasion were detected by 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays. E-cadherin, Vimentin, CD9, CD81, and TGF-β1 protein levels were examined using Western blot. Exosomes were detected by a transmission electron microscope (TEM). Binding between miR-486-3p and AGAP2-AS1 or TGF-β1 was predicted by LncBase or TargetScan and then verified using a dual-luciferase reporter assay. Results AGAP2-AS1 was highly expressed in GBM tissues and cells. Functionally, AGAP2-AS1 absence or TGF-β1 knockdown repressed tumor cell growth and metastasis. Furthermore, Exo-AGAP2-AS1 from GBM cells regulated TGF-β1 expression via sponging miR-486-3p in MDSCs. Exo-AGAP2-AS1 upregulation facilitated GBM cell growth and metastasis via the MDSC pathway. Conclusion Exo-AGAP2-AS1 boosted GBM cell development partly by regulating the MDSC pathway, hinting at a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yanlong Tian
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Xiao Gao
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Xuechao Yang
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Shangjun Chen
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Yufeng Ren
- Department of Orthopaedics, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| |
Collapse
|
12
|
Zeng Y, Yang Z, Yang Y, Wang P. LncRNA NUTM2A-AS1 silencing inhibits glioma via miR-376a-3p/YAP1 axis. Cell Div 2024; 19:17. [PMID: 38730506 PMCID: PMC11088135 DOI: 10.1186/s13008-024-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The lncRNA NUTM2A-AS1 has been shown to be dysregulated in gastric cancer, while the roles in glioma is unclear. The aim of this study was to investigate the roles and potential mechanisms of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of glioma cells. The StarBase software and dual luciferase reporter assay were used to identify the relationship between lncRNA NUTM2A-AS1 and miR-376a-3p, and miR-376a-3p and YAP1. The expression of lncRNA NUTM2A-AS1, miR-376a-3p, and YAP1 in human glioma cell lines was detected by qRT-PCR. MTT and flow cytometry were used to detect the effects of lncRNA NUTM2A-AS1 or miR-376a-3p on the proliferation and apoptosis of U251 and A172 cells, respectively. In addition, changes of Bax and Bcl-2 expression in glioma cells were further verified by western blotting and qRT-PCR. The results showed that the expression of lncRNA NUTM2A-AS1 was elevated in glioma cell lines, while miR-376a-3p was decreased. LncRNA NUTM2A-AS1 was negatively correlated with miR-376a-3p. Silencing of lncRNA NUTM2A-AS1 enhanced the levels of miR-376a-3p, leading to reduced cell proliferation and increased apoptosis in glioma cells. YAP1 was a direct target of miR-376a-3p, and it was negatively regulated by miR-376a-3p in U251 and A172 cells. Further mechanistic studies suggested that miR-376a-3p reduced glioma cell proliferation and increased apoptosis by inhibiting YAP1 expression. In addition, lncRNA NUTM2A-AS1 positively regulated of YAP1 expression in glioma cells. In conclusion, silencing of lncRNA NUTM2A-AS1 inhibited proliferation and induced apoptosis in human glioma cells via the miR-376a-3p/YAP1 axis.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Zhenyu Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yang Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
13
|
Zhang Y, Zhu Y, Zhang Y, Liu Z, Zhao X. YTHDF1 promotes the viability and self‑renewal of glioma stem cells by enhancing LINC00900 stability. Int J Oncol 2024; 64:53. [PMID: 38551160 PMCID: PMC11015915 DOI: 10.3892/ijo.2024.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
YTHDF1, an N6‑methyladenosine (m6A)‑binding protein, is significantly upregulated in glioma tissues. The present study investigated the molecular mechanism underlying the regulatory effects of YTHDF1 on the viability, invasion and self‑renewal of glioma stem cells (GSCs). Glioma and normal brain tissues were collected, and reverse transcription‑quantitative PCR and western blotting were used to measure the gene and protein expression levels, respectively. Methylated RNA immunoprecipitation‑PCR was used to assess the m6A modification level of the target gene. Subsequently GSCs were induced, and YTHDF1 and LINC00900 gene regulation was carried out using lentiviral infection. The viability, invasion and self‑renewal of GSCs were assessed by Cell Counting Kit‑8, Transwell and sphere formation assays, respectively. Binding between YTHDF1 and LINC00900 was verified by RNA immunoprecipitation and RNA pull‑down assays. The targeted binding of microRNA (miR)‑1205 to the LINC00900/STAT3 3'‑UTR was verified using a luciferase reporter assay. The results revealed that YTHDF1 and LINC00900 expression levels were significantly upregulated in glioma tissues, and a high m6A modification level in LINC00900 transcripts was detected in glioma tissues. Overexpression of YTHDF1 promoted GSC viability, invasion and self‑renewal, whereas knockdown of YTHDF1 had the opposite effects. In addition, YTHDF1 maintained the stability of LINC00900 and upregulated its expression through binding to it, thereby promoting GSC viability, invasion and self‑renewal. Furthermore, LINC00900 promoted GSC viability, invasion, self‑renewal and tumor growth by regulating the miR‑1205/STAT3 axis. In conclusion, YTHDF1 promotes GSC viability and self‑renewal by regulating the LINC00900/miR‑1205/STAT3 axis.
Collapse
Affiliation(s)
- Yuanhai Zhang
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Yi Zhu
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Zixiang Liu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
| | - Xudong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
14
|
Srinivas T, Siqueira E, Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol Psychiatry 2024; 29:874-890. [PMID: 38145986 PMCID: PMC11176085 DOI: 10.1038/s41380-023-02377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are sequences of 200 nucleotides or more that are transcribed from a large portion of the mammalian genome. While hypothesized to have a variety of biological roles, many lncRNAs remain largely functionally uncharacterized due to unique challenges associated with their investigation. For example, some lncRNAs overlap with other genomic loci, are expressed in a cell-type-specific manner, and/or are differentially processed at the post-transcriptional level. The mammalian CNS contains a vast diversity of lncRNAs, and lncRNAs are highly abundant in the mammalian brain. However, interrogating lncRNA function in models of the CNS, particularly in vivo, can be complex and challenging. Here we review the breadth of methods used to investigate lncRNAs in the CNS, their merits, and the understanding they can provide with respect to neurodevelopment and pathophysiology. We discuss remaining challenges in the field and provide recommendations to assay lncRNAs based on current methods.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain.
- Germans Trias i Pujol Health Science Research Institute, 08916, Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Zhang G, Tao X, Ji BW, Gong J. Long Non-coding RNA COX10-AS1 Promotes Glioma Progression by Competitively Binding miR-1-3p to Regulate ORC6 Expression. Neuroscience 2024; 540:68-76. [PMID: 38244670 DOI: 10.1016/j.neuroscience.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 01/22/2024]
Abstract
Glioma is one of the most common and difficult to cure malignant primary tumors of the central nervous system. Long non-coding RNA (lncRNA) has been reported to play important functions in biological processes of many tumors, including glioma. In our study, we aimed to reveal the role and molecular mechanisms of lncRNA COX10-AS1 in regulating the progression of glioma. First of all, we showed that lncRNA COX10-AS1 was significantly increased in glioma tissues and cell lines, and high-expressed COX10-AS1 was associated with a poor prognosis in glioma patients. Moreover, through performing the functional experiments, including CCK-8, colony formation and Transwell assays, we confirmed that COX10-AS1 ablation curbed cell proliferation, migration and invasion in glioblastoma (GBM) cells. In addition, we uncovered that there existed a regulatory relationship that COX10-AS1 upregulated OCR6 by sponging miR-1-3p in GBM cells, and the following rescue assays demonstrated that both miR-1-3p downregulation and origin recognition complex subunit 6 (ORC6) overexpression rescued cell viability, migration and invasion in the COX10-AS1-deficient GBM cells. Consistently, we also verified that COX10-AS1 promoted tumorigenesis of the GBM cells in vivo through modulating the miR-1-3p/ORC6 axis. On the whole, our findings indicated a novel ceRNA pattern in which COX10-AS1 elevated OCR6 expression via sponging miR-1-3p, therefore boosting tumorigenesis in glioma, and we firstly discussed the underlying mechanisms by which the COX10-AS1/miR-1-3p/ORC6 axis affected the progression of glioma.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bao-Wei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Jie Gong
- Department of Neurosurgery, General Hospital, Central Theater Command, PLA, Wuhan 430070, China.
| |
Collapse
|
16
|
Liu S, Li X, Xie Q, Zhang S, Liang X, Li S, Zhang P. Identification of a lncRNA/circRNA-miRNA-mRNA network in Nasopharyngeal Carcinoma by deep sequencing and bioinformatics analysis. J Cancer 2024; 15:1916-1928. [PMID: 38434987 PMCID: PMC10905391 DOI: 10.7150/jca.91546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Accumulating evidence indicates that non-coding RNAs (ncRNA), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can function as competitive endogenous RNAs (ceRNAs) by binding to microRNAs (miRNAs) and regulating host gene expression at the transcriptional or post-transcriptional level. Dysregulation in ceRNA network regulation has been implicated in the occurrence and development of cancer. However, the lncRNA/circRNA-miRNA-mRNA regulatory network is still lacking in nasopharyngeal carcinoma (NPC). Methods: Differentially expressed genes (DEGs) were obtained from our previous sequencing data and Gene Expression Omnibus (GEO). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were used to explore the biological functions of these common DEGs. Through a series of bioinformatic analyses, the lncRNA/circRNA-miRNA-mRNA network was established. In additional, the external data GSE102349 was used to test the prognostic value of the hub mRNAs through the Kaplan-Meier method. Results: We successfully constructed a lncRNA/circRNA-miRNA-mRNA network in NPC, consisting of 16 lncRNAs, 6 miRNAs, 3 circRNAs and 10 mRNAs and found that three genes (TOP2A, ZWINT, TTK) were significantly associated with overall survival time (OS) in patients. Conclusion: The regulatory network revealed in this study may help comprehensively elucidate the ceRNA mechanisms driving NPC, and provide novel candidate biomarkers for evaluating the prognosis of NPC.
Collapse
Affiliation(s)
- Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Xiaoxiao Li
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- Department of Pathology, Changsha Medical College, Changsha, Hunan, P.R. China, 410219
| | - Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410011
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| |
Collapse
|
17
|
Yang X, Man D, Zhao P, Li X. Quantitative study of bioinformatics analysis on glioma: a bibliometric analysis. Front Oncol 2023; 13:1222797. [PMID: 38045000 PMCID: PMC10690598 DOI: 10.3389/fonc.2023.1222797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background The bioinformatics analysis on glioma has been a hot point recently. The purpose of this study was to provide an overview of the research in this field using a bibliometric method. Methods The Web of Science Core Collection (WOSCC) database was used to search for literature related to the bioinformatics analysis of gliomas. Countries, institutions, authors, references, and keywords were analyzed using VOSviewer, CiteSpace, and Microsoft Excel software. Result China was the most productive country, while the USA was the most cited. Capital Medical University had the largest number of publications and citations. Institutions tend to collaborate more with other institutions in their countries rather than foreign ones. The most productive and most cited author was Jiang Tao. Two citation paths were identified, with literature in basic research journals often cited in clinical journals. Immune-related vocabularies appeared frequently in recent studies. Conclusion Glioma bioinformatics analyses spanned a wide range of fields. The international communication in this field urgently needs to be strengthened. Glioma bioinformatics approaches are developing from basic research to clinical applications. Recently, immune-related research has become a focus.
Collapse
Affiliation(s)
- Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Dulegeqi Man
- Department of Neurosurgery, International Mongolia Hospital of Inner Mongolia, Hohhot, China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
18
|
Chen Y, Hu D, Wang F, Huang C, Xie H, Jin L. A systematic framework for identifying prognostic necroptosis-related lncRNAs and verification of lncRNA CRNDE/miR-23b-3p/IDH1 regulatory axis in glioma. Aging (Albany NY) 2023; 15:12296-12313. [PMID: 37934582 PMCID: PMC10683586 DOI: 10.18632/aging.205180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.
Collapse
Affiliation(s)
- Yangxia Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. LncBIRC3-OT promotes the malignant progression of glioma by interacting with RELA to upregulate stanniocalcin-1 expression. Heliyon 2023; 9:e21777. [PMID: 38034675 PMCID: PMC10681922 DOI: 10.1016/j.heliyon.2023.e21777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Glioma is the most common malignant intracranial tumor, accounting for 80 % of all malignant brain tumors. Growing evidence suggests that lncRNAs are involved in the growth, angiogenesis, metastasis, and therapeutic resistance in a variety of tumors, including glioma. In this study, lncBIRC3-OT (NONHSAT159592.1), which is highly expressed in glioma, was screened by RNA-seq method and verified by quantitative reverse transcription polymerase chain reaction. Subsequently, we knocked down the endogenous expression of lncBIRC3-OT in U87 and U251 cells and found that down-regulated lncBIRC3-OT inhibited cell proliferation, colony formation, migration, and invasion. Mechanically, lncBIRC3-OT could guide RELA protein to the stanniocalcin-1 (STC1) promoter, initiate STC1 transcription, and ultimately promote the progression of glioma. Together, these findings suggest that lncBIRC3-OT is an important regulator promoting glioma progression, and may be a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaolei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Li
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
20
|
Wang G, Ren Z, Zhao Y, Li Y. A nine-gene signature as prognostic biomarker in gastric cancer by bioinformatics analysis. Clin Transl Oncol 2023; 25:3296-3306. [PMID: 37041435 DOI: 10.1007/s12094-023-03180-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE The prognosis of advanced gastric cancer (GC) remains poor. It is urgent and necessary to find suitable prognostic markers. miR-619-5p is highly expressed in GC. However, the value of miR-619-5p and its target genes as prognostic biomarkers of GC is unclear. METHODS RT-PCR was performed to verify the expression of miR-619-5p in GC cell lines and their exosomes. Western blotting and transmission electron microscope were used to identify exosomes. The target genes of miR-619-5p were predicted by RNA22 and TargetScan. The differentially expressed genes (DEGs) and prognosis-related genes (PRGs) were obtained using The Cancer Genome Atlas (TCGA) database. The DAVID database was used to analyse pathway enrichment and functional annotation of common target genes. The STRING database and Cytoscape software were used to screen key genes and visualize their functional modules. The survival analysis was conducted using TCGA and Kaplan-Meier Plotter (KMP) databases. Finally, a prognostic model was constructed on the foundation of the key genes to assess the reliability of the screening process. RESULTS The expression of miR-619-5p in GC cells and their exosomes was proved to be significantly higher than that in normal cell lines. There are 129 common target genes involved in 3 pathways and 28 functional annotations. Finally, nine key target genes of GC (BRCA1, RAD51, KIF11, ERCC6L, BRIP1, TIMELESS, CDC25A, CLSPN and NCAPG2) were identified, and a prognostic model was successfully constructed with a good predictive ability. CONCLUSIONS The model of 9-gene signature could effectively predict the prognosis of GC, and have great potential to be novel prognostic factors and therapeutic targets for patients with GC.
Collapse
Affiliation(s)
- Guan Wang
- Key Laboratory of Digestive System Tumours of Gansu Province, The Second Clinical Medical College of Lanzhou University, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730030, Gansu, China
| | - Zhijian Ren
- Key Laboratory of Digestive System Tumours of Gansu Province, The Second Clinical Medical College of Lanzhou University, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730030, Gansu, China
| | - Yang Zhao
- Key Laboratory of Digestive System Tumours of Gansu Province, The Second Clinical Medical College of Lanzhou University, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730030, Gansu, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumours of Gansu Province, The Second Clinical Medical College of Lanzhou University, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
21
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
22
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Ryu Y, Hwang JS, Bo Noh K, Park SH, Seo JH, Shin YJ. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote the Regeneration of Corneal Endothelium Through Ameliorating Senescence. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37850944 PMCID: PMC10593138 DOI: 10.1167/iovs.64.13.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose Human corneal endothelial cells (hCECs) have been considered unable to regenerate in vivo, resulting in corneal decompensation after significant loss of hCECs. adipose-derived mesenchymal stem cell (ASC)-derived exosomes can regenerate tissues and organs. In this study, we investigated whether ASC-derived exosomes could protect and regenerate CECs. Methods We performed cell viability and cell-cycle analyses to evaluate the effect of ASC-derived exosomes on the regeneration capacity of cultured hCECs. Transforming growth factor-β (TGF-β) and hydrogen peroxide (H2O2) were used to induce biological stress in CECs. The effect of ASC-derived exosomes on CECs was investigated in vivo. ASC-derived exosomes were introduced into rat CECs using electroporation, and rat corneas were injured using cryoinjury. Next-generation sequencing analysis was performed to compare the differentially expressed microRNAs (miRNAs) between ASC-derived and hCEC-derived exosomes. Results ASC-derived exosomes induced CEC proliferation and suppressed TGF-β- or H2O2-induced oxidative stress and senescence. ASC-derived exosomes protect hCECs against TGF-β- or H2O2-induced endothelial-mesenchymal transition and mitophagy. In an in vivo study, ASC-derived exosomes promoted wound healing of rat CECs and protected the corneal endothelium against cryoinjury-induced corneal endothelium damage. Next-generation sequencing analysis revealed differentially expressed miRNAs for ASC-derived and hCEC-derived exosomes. They are involved in lysine degradation, adherens junction, the TGF-β signaling pathway, the p53 signaling pathway, the Hippo signaling pathway, the forkhead box O (FoxO) signaling pathway, regulation of actin cytoskeleton, and RNA degradation based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Conclusions ASC-derived exosomes promoted wound healing and regeneration of endothelial cells by inducing a shift in the cell cycle and suppressing senescence and autophagy.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Se Hie Park
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
26
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Feng L, Feng Z, Hu J, Gao J, Li A, He X, Liu L, Shen Z. Identification of hsa-miR-619-5p and hsa-miR-4454 in plasma-derived exosomes as a potential biomarker for lung adenocarcinoma. Front Genet 2023; 14:1138230. [PMID: 37252659 PMCID: PMC10213947 DOI: 10.3389/fgene.2023.1138230] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Lung cancer has long been at the forefront of all cancers in terms of incidence and mortality. Lung adenocarcinoma is the most common type of lung cancer, accounting for 40% of all lung cancer types. Exosomes can act as biomarkers of tumors and thus play an important role. Methods: In this article, high-throughput sequencing of miRNAs in plasma exosomes from lung adenocarcinoma patients and healthy individuals was performed to obtain 87 upregulated miRNAs, which were then combined with data from the GSE137140 database uploaded by others for screening. The database included 1566 preoperative lung cancer patients, 180 postoperative patients, and 1774 non-cancerous controls. We overlapped the miRNAs upregulated in the serum of lung cancer patients in the database relative to those of non-cancer controls and post-operative patients with the upregulated miRNAs obtained from our next-generation sequencing to obtain nine miRNAs. Two miRNAs that were not reported as tumor markers in lung cancer, hsa-miR-4454 and hsa-miR-619-5p, were selected from them and then validated by qRT-PCR, and further analysis of miRNAs was performed using bioinformatics. Results: Real-time quantitative PCR showed that the expression levels of hsa-miR-4454 and hsa-miR-619-5p in plasma exosomes of patients with lung adenocarcinoma were significantly up-regulated. The AUC values of hsa-miR-619-5p and hsa-miR-4454 were 0.906 and 0.975, respectively, both greater than 0.5, showing good performance. The target genes of miRNAs were screened by bioinformatics methods, and the regulatory network between miRNAs and lncRNAs and mRNAs was studied. Discussion: Our work demonstrated that hsa-miR-4454 and hsa-miR-619-5p have the potential to be used as biomarkers for the early diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Linxiang Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jie Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jiahui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Ang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Xiaodong He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Liu Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zuojun Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| |
Collapse
|
28
|
Xie J, Lin Y, Li Y, Fang A, Li X, Wang S, Li W. lncRNA TRHDE-AS1 Correlated with Genomic Landscape and Clinical Outcome in Glioma. Genes (Basel) 2023; 14:genes14051052. [PMID: 37239411 DOI: 10.3390/genes14051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The role of lncRNA in cancer development has received more and more attention in research. A variety of lncRNAs are associated with the occurrence and development of glioma. However, the role of TRHDE-AS1 in glioma is still unknown. In this study, we explored the role of TRHDE-AS1 in glioma through bioinformatic methods. We first identified an association between TRHDE-AS1 and tumor prognosis in pan-cancer analysis. Subsequently, the expression levels of TRHDE-AS1 in various clinical types of glioma were compared, and significant differences were found in pathological classification, WHO classification, molecular classification, IDH mutation, and age stratification. We analyzed the genes co-expressed with TRHDE-AS1 in glioma. In the functional analysis of TRHDE-AS1, we found that TRHDE-AS1 may be involved in the regulation of synapse-related functions. In glioma cancer driver gene correlation analysis, it was also found that TRHDE-AS1 was significantly correlated with the expression levels of multiple driver genes such as TP53, BRAF, and IDH1. By comparing the mutant profiles of the high and low TRHDE-AS1 groups, we also found that there may be differences in TP53 and CIC gene mutations in low-grade gliomas. Subsequent correlation analysis between TRHDE-AS1 and glioma immune microenvironment showed that the expression level of TRHDE-AS1 was correlated with a variety of immune cells. Therefore, we believe that TRHDE-AS1 is involved in the occurrence and development of glioma and has the ability to predict the prognosis of glioma as a biomarker of glioma.
Collapse
Affiliation(s)
- Jinxuan Xie
- School of Public Health, Capital Medical University, Beijing 100069, China
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
| | - Yi Lin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yajie Li
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Aizhong Fang
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
29
|
Gandhi S, Bhushan A, Shukla U, Pundir A, Singh S, Srivastava T. Downregulation of lncRNA SNHG1 in hypoxia and stem cells is associated with poor disease prognosis in gliomas. Cell Cycle 2023; 22:1135-1153. [PMID: 36945177 PMCID: PMC10081076 DOI: 10.1080/15384101.2023.2191411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
Gliomas are brain tumors associated with high morbidity, relapse and lethality despite improvement in therapeutic regimes. The hypoxic tumor microenvironment is a key feature associated with such poor outcomes in gliomas. The Hypoxia Inducible Factor (HIF) family of transcription factors are master regulators of cellular proliferation, high metabolic rates and angiogenesis via aberrant expression of downstream genes. Recent studies have implicated long non-coding RNAs (lncRNAs) as potential prognostic and diagnostic biomarkers. In this study, identification of hypoxia regulated lncRNA with a bioinformatic pipeline consisting of a newly developed tool "GenOx" was utilized for the identification of Hypoxia Response Element (HRE) and Hypoxia Ancillary Sequence (HAS) motifs in the promoter regions of lncRNAs. This was coupled with molecular, functional and interactome-based analyses of these hypoxia-relevant lncRNAs in primary tumors and cell-line models. We report on the identification of novel hypoxia regulated lncRNAs SNHG12, CASC7 and MF12-AS1. A strong association of RNA splicing mechanisms was observed with enriched lncRNAs. Several lncRNAs have emerged as prognostic biomarkers, of which TP53TG1 and SNHG1 were identified as highly relevant lncRNAs in glioma progression and validated in hypoxia cultured cells. Significantly, we determined that SNHG1 expression in tumor (vs. normal) is different from glioma stem cells, GSC (vs. tumors) and in hypoxia (vs. normoxia), positioning downregulation of SNHG1 to be associated with worsened prognosis.
Collapse
Affiliation(s)
- Sanchit Gandhi
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Ashish Bhushan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Unmesh Shukla
- Institute of Informatics and Communication, University of Delhi South Campus, New Delhi, India
| | - Amit Pundir
- Department of Electronics, Maharaja Agrasen College, University of Delhi, Delhi, India
| | - Sanjeev Singh
- Institute of Informatics and Communication, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
30
|
Wang R, Wang J, Wang Y, Yang L. lncRNA TUSC7 sponges miR-10a-5p and inhibits BDNF/ERK pathway to suppress glioma cell proliferation and migration. Aging (Albany NY) 2023; 15:3021-3034. [PMID: 37100464 DOI: 10.18632/aging.204655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE Gliomas as primary cerebral malignancies frequently occurring in adults have relatively high morbidity and mortality. The underlying role of long non-coding ribonucleic acids (lncRNAs) in malignancies has attracted much attention, among which tumor suppressor candidate 7 (TUSC7) is a novel tumor suppressor gene whose regulatory mechanism in human cerebral gliomas remains inconclusive. METHODS AND RESULTS In this study, bioinformatics analysis indicated that TUSC7 could specifically bind to microRNA (miR)-10a-5p, and according to quantitative polymerase chain reaction (q-PCR), miR-10a-5p was up-regulated in human glioma cells and negatively correlated with TUSC7 expression. Dual-luciferase reporter gene assay showed the ability of TUSC7 to bind to miR-10a-5p, and overexpression of TUSC7 notably inhibited miR-10a-5p expression, restrained human glioma cell proliferation and migration, and regulated cell cycle and cyclin expression via the brain-derived neurotrophic factor/extracellular signal-regulated kinase (BDNF/ERK) pathway. The inhibitory effect of TUSC7 on miR-10a-5p was also verified by designing miR-10a-5p overexpression and knockdown panels for wound healing, Transwell and Western blotting assays. CONCLUSIONS TUSC7 suppresses human glioma cell proliferation and migration by negatively modulating miR-10a-5p and inhibiting the BDNF/ERK pathway, thus acting as a tumor suppressor gene in human gliomas.
Collapse
Affiliation(s)
- Runhui Wang
- Department of Neurosurgery, Huabei Petroleum Administration Bureau General Hospital, Shijiazhuang, Hebei, China
| | - Jia Wang
- Department of Neurosurgery, Huabei Petroleum Administration Bureau General Hospital, Shijiazhuang, Hebei, China
| | - Yuanyu Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Renqiu, Hebei, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Renqiu, Hebei, China
| |
Collapse
|
31
|
Tan LM, Chen P, Nie ZY, Liu XF, Wang B. Circular RNA XRCC5 aggravates glioma progression by activating CLC3/SGK1 axis via recruiting IGF2BP2. Neurochem Int 2023; 166:105534. [PMID: 37061192 DOI: 10.1016/j.neuint.2023.105534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Increasing evidences have reported the critical roles of circular RNA (circRNA) in gliomas. Whereas, the role of circXRCC5 in glioma and its underlying molecular mechanism has not been reported. METHODS The RNA transcripts and protein levels were detected using qRT-PCR, immunohistochemistry (IHC) and in situ hybridization (ISH) assays. Cell proliferation was characterized by CCK-8 and clone formation assays. The formation of NLRP3-inflammasomes was identified using immunofluorescence (IF) and Western blot assays. The cytokines were determined using immunosorbent assay (ELISA) and Western blot assays. The molecular interactions were validated using RIP and pull-down assays. RESULTS circXRCC5 was over-expressed in glioma and positively related to the shorter survival rate, advanced TNM stage and larger tumor volume. circXRCC5 knockdown inhibited cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. Subsequently, we found that circXRCC5 maintained mRNA stability of CLC3 by binding to IGF2BP2. Furthermore, CLC3 accelerated SGK1 expression via PI3K/PDK1/AKT pathway. The rescue experiments showed that both overexpression of CLC3 or SGK1 dramatically alleviated circXRCC5 knockdown-induced inhibition of cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. In vivo, our study proved that circXRCC5 accelerated glioma growth by regulating CLC3/SGK1 axis. CONCLUSION Our data concluded that circXRCC5 formed a complex with IGF2BP2 to regulate inflammasome activation and tumor growth via CLC3/SGK1 axis.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Ping Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Zhen-Yu Nie
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Xiao-Fei Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Bing Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China.
| |
Collapse
|
32
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
33
|
Huang G, Wu Y, Du Y, Gan H, Hao S. Methyl-CpG Binding Protein 2 as a Potential Diagnostic and Prognostic Marker Facilitates Glioma Progression Through Activation of Wnt/β-Catenin Pathway. World Neurosurg 2023; 171:e560-e571. [PMID: 36529430 DOI: 10.1016/j.wneu.2022.12.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioma is the primary malignant tumor in the central nervous system and has high malignancy, mortality, and recurrence rates. Because of its heterogeneity and drug resistance, the blood-brain barrier, and other factors, the treatment of glioma has mainly been surgical resection combined with traditional radiotherapy and chemotherapy. However, the therapeutic effect has not been satisfactory. Methyl-CpG binding protein 2 (MeCP2) is an epigenetic regulator that has been reported to regulate the initiation and progression of glioma. However, the underlying mechanism in glioma has remained unclear. METHODS The gene expression of MeCp2, miR-138-5p, the epithelial-mesenchymal transition, the apoptosis-related gene, and the Wnt/β-Catenin pathway-related gene and proliferation were detected by reverse transcription-quantitative polymerase chain reaction or Western blot. The cell proliferation and apoptosis of the glioma cell was assessed using the CCK-8 assay and flow cytometry assay. The relationship between miR-138-5p and MeCp2 was measured using the dual luciferase reporter assay. The effect of MeCp2 in U87 cells was examined in a xenograft tumorigenesis model in vivo. RESULTS In our study, we found that MeCP2 was upregulated in glioma tissues and cell lines and that MeCP2 knockdown repressed cell proliferation and epithelial-mesenchymal transition but boosted cell apoptosis in glioma. Furthermore, MeCP2 knockdown attenuated in vivo glioma growth in a mice model. Mechanistically, miR-138-5p hindered the expression of MeCP2 by target MeCP2 and then inactivated the Wnt/β-catenin signaling pathway. In addition, subsequent rescue assays disclosed that miR-138-5p repressed the glioma malignant phenotype and MeCP2 overexpression reversed the inhibitory effect of miR-138-5p upregulation. Consistently, overexpression of MeCP2 elevated glioma development. However, inhibition of the Wnt/β-catenin signaling pathway with XAV-939 rescued the facilitation effect by overexpressing miR-138-5p. CONCLUSIONS Our results have revealed that miR-138-5p/MeCP2/Wnt/β-catenin signaling might be a new target axis for glioma treatment strategies.
Collapse
Affiliation(s)
- Guanyou Huang
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jingyang Hospital), Guiyang, China.
| | - Yujuan Wu
- Department of Neurology, The Second People's Hospital of Guiyang (Jingyang Hospital), Guiyang, China
| | - Yonggui Du
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jingyang Hospital), Guiyang, China
| | - Hongchuan Gan
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jingyang Hospital), Guiyang, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Zhu H, Tan J, Pan X, Ouyang H, Zhang Z, Li M, Zhao Y. HELLPAR/RRM2 axis related to HMMR as novel prognostic biomarker in gliomas. BMC Cancer 2023; 23:125. [PMID: 36750807 PMCID: PMC9903609 DOI: 10.1186/s12885-023-10596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Gliomas are the most frequent type of central nervous system tumor, accounting for more than 70% of all malignant CNS tumors. Recent research suggests that the hyaluronan-mediated motility receptor (HMMR) could be a novel potential tumor prognostic marker. Furthermore, mounting data has highlighted the important role of ceRNA regulatory networks in a variety of human malignancies. The complexity and behavioural characteristics of HMMR and the ceRNA network in gliomas, on the other hand, remained unknown. METHODS Transcriptomic expression data were collected from TCGA, GTEx, GEO, and CGGA database.The relationship between clinical variables and HMMR was analyzed with the univariate and multivariate Cox regression. Kaplan-Meier method was used to assess OS. TCGA data are analyzed and processed, and the correlation results obtained were used to perform GO, GSEA, and ssGSEA. Potentially interacting miRNAs and lncRNAs were predicted by miRWalk and StarBase. RESULTS HMMR was substantially expressed in gliomas tissues compared to normal tissues. Multivariate analysis revealed that high HMMR expression was an independent predictive predictor of OS in TCGA and CGGA. Functional enrichment analysis found that HMMR expression was associated with nuclear division and cell cycle. Base on ssGSEA analysis, The levels of HMMR expression in various types of immune cells differed significantly. Bioinformatics investigation revealed the HEELPAR-hsa-let-7i-5p-RRM2 ceRNA network, which was linked to gliomas prognosis. And through multiple analysis, the good predictive performance of HELLPAR/RRM2 axis for gliomas patients was confirmed. CONCLUSION This study provides multi-layered and multifaceted evidence for the importance of HMMR and establishes a HMMR-related ceRNA (HEELPAR-hsa-let-7i-5p-RRM2) overexpressed network related to the prognosis of gliomas.
Collapse
Affiliation(s)
- Huaxin Zhu
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Jiacong Tan
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Xinyi Pan
- grid.260463.50000 0001 2182 8825Huankui Academy, Nanchang University, Honggutan New District, Jiangxi 330006 Nanchang, China
| | - Hengyang Ouyang
- grid.260463.50000 0001 2182 8825Huankui Academy, Nanchang University, Honggutan New District, Jiangxi 330006 Nanchang, China
| | - Zhixiong Zhang
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
35
|
Xu X, Liang Y, Gareev I, Liang Y, Liu R, Wang N, Yang G. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep 2023; 50:841-851. [PMID: 36331751 DOI: 10.1007/s11033-022-08056-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Glioma is the most frequent type of malignant tumor in the central nervous system, accounting for about 80% of primary malignant brain tumors, usually with a poor prognosis. A number of studies have been conducted on the molecular abnormalities in glioma to further understand its pathogenesis, and it has been found that lncRNAs (long non-coding RNA) play a key role in angiogenesis, tumor growth, infiltration and metastasis of glioma. Since specific lncRNAs have an aberrant expression in brain tissue, cerebrospinal fluid as well as peripheral circulation of glioma patients, they are considered to be potential biomarkers. This review focuses on the biological characteristics of lncRNA and its value as a biomarker for glioma diagnosis and prognosis. Moreover, in view of the role of lncRNAs in glioma proliferation and chemoradiotherapy resistance, we discussed the feasibility for lncRNAs as therapeutic targets. Finally, the persisting deficiencies and future prospects of using lncRNAs as clinical biomarkers and therapeutic targets were concluded.
Collapse
Affiliation(s)
- Xun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Yuan Liang
- Department of Neurosurgery, Xuzhou Third People's Hospital, Xuzhou, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Russia, 450008
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Rui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
lncRNAs: Key Regulators of Signaling Pathways in Tumor Glycolysis. DISEASE MARKERS 2022; 2022:2267963. [PMID: 36124026 PMCID: PMC9482549 DOI: 10.1155/2022/2267963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
In response to overstimulation of growth factor signaling, tumor cells can reprogram their metabolism to preferentially utilize and metabolize glucose to lactate even in the presence of abundant oxygen, which is termed the “Warburg effect” or aerobic glycolysis. Long noncoding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides and do not encode proteins. Accumulating evidence suggests that lncRNAs can affect aerobic glycolysis through multiple mechanisms, including the regulation of glycolytic transporters and key rate-limiting enzymes. In addition, maladjusted signaling pathways are critical for glycolysis. Therefore, this article mainly reviews the lncRNAs involved in the regulation of tumor glycolysis key signal pathways in recent years and provides an in-depth understanding of the role of differentially expressed lncRNAs in the key signal pathways of glucose metabolism, which may help to provide new therapeutic targets and new diagnostic and prognostic markers for human cancer.
Collapse
|
37
|
Wang M, Liu K, Bu H, Cong H, Dong G, Xu N, Li C, Zhao Y, Jiang F, Zhang Y, Yuan B, Li R, Jiang J. Purple sweet potato delphinidin-3-rutin represses glioma proliferation by inducing miR-20b-5p/Atg7-dependent cytostatic autophagy. Mol Ther Oncolytics 2022; 26:314-329. [PMID: 36090477 PMCID: PMC9420429 DOI: 10.1016/j.omto.2022.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/22/2022] [Indexed: 10/26/2022] Open
|
38
|
Construction and Validation of a Necroptosis-Related lncRNA Signature in Prognosis and Immune Microenvironment for Glioma. JOURNAL OF ONCOLOGY 2022; 2022:5681206. [PMID: 36065303 PMCID: PMC9440826 DOI: 10.1155/2022/5681206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Background Glioma is the most common primary brain tumor, representing approximately 80.8% of malignant tumors. Necroptosis triggers and enhances antitumor immunity and is expected to be a new target for tumor immunotherapy. The effectiveness of necroptosis-related lncRNAs as potential therapeutic targets for glioma has not been elucidated. Methods We acquired RNA-seq data sets from LGG and GBM samples, and the corresponding clinical characteristic information is from TCGA. Normal brain tissue data is from GTEX. Based on TCGA and GTEx, we used univariate Cox regression to sort out survival-related lncRNAs. Lasso regression models were then built. Then, we performed a separate Kaplan-Meier analysis of the lncRNAs used for modeling. We validated different risk groups via OS, DFS, enrichment analysis, comprehensive immune analysis, and drug sensitivity. Results We constructed a 12 prognostic lncRNAs model after bioinformatic analysis. Subsequently, the risk score of every glioma patient was calculated based on correlation coefficients and expression levels, and the patients were split into low- and high-risk groups according to the median value of the risk score. A nomogram was established for every glioma patient to predict prognosis. Besides, we found significant differences in OS, DFS, immune infiltration and checkpoints, and immune therapy between different risk subgroups. Conclusion Predictive models of 12 necroptosis-related lncRNAs can facilitate the assessment of the prognosis and molecular characteristics of glioma patients and improve treatment modalities.
Collapse
|
39
|
Liang R, Zhang G, Xu W, Liu W, Tang Y. Tetramethylpyrazine Inhibits the Proliferation and Invasion of Glioma Cells by Regulating the UBL7-AS1/miR-144-3p Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5261285. [PMID: 36045665 PMCID: PMC9423964 DOI: 10.1155/2022/5261285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
This work aims to investigate the effects of tetramethylpyrazine (TMP) on the proliferation, migration, and invasion of glioma cells and to analyze the regulation mechanism of TMP on the long noncoding RNA UBL7-AS1/miR-144-3p pathway. Glioma cell line and normal astrocytes were collected. The expression of UBL7-AS1 was detected by real-time PCR. The glioma cells were overexpressed with UBL7-AS1. CCK-8 and Transwell assays were used to detect cell proliferation and cell invasion ability, respectively. Bioinformatics was adopted to predict the possible regulatory mechanisms of UBL7-AS1. The dual luciferase reporter gene was applied to verify the regulatory effect of RNA UBL7-AS1 with miR-144-3p. TMP inhibited the proliferation and invasion of glioma cells. UBL7-AS1 was highly expressed in glioma tissues and cells. The overexpression of UBL7-AS1 promotes the cell proliferation and invasion of glioma. UBL7-AS1 can act as a sponge for miR-144-3p in glioma cells. The overexpression of UBL7-AS1 can reverse the inhibition of TMP on proliferation, migration, and invasion of glioma cells. TMP inhibits the proliferation, migration, and invasion of glioma cells by regulating the UBL7-AS1/miR-144-3p pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Guofeng Zhang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Wenhua Xu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Weibing Liu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Youjia Tang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
40
|
Bai J, Li H, Chen X, Chen L, Hu Y, Liu L, Zhao Y, Zuo W, Zhang B, Yin C. LncRNA-AC009948.5 promotes invasion and metastasis of lung adenocarcinoma by binding to miR-186-5p. Front Oncol 2022; 12:949951. [PMID: 36059662 PMCID: PMC9437580 DOI: 10.3389/fonc.2022.949951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Long non-coding RNAs (LncRNAs) has been confirmed to play a crucial role in the development and progression of various cancer types. Here we evaluated the expression profiles of LncRNAs in Lung adenocarcinoma (LUAD) tissues and identified a novel LncRNA, termed LncRNA-AC009948.5. However, the role and potential molecular mechanisms of this novel LncRNA in LUAD carcinogenesis is unknown. Methods Regarding the public databases and based on integrating bioinformatics analyses, we determined whether LncRNA-AC009948.5 exerts its oncogenic functions via sponging miR-186-5p in LUAD. Furthermore, we determined whether NCAPG2 was a downstream target of miR-186-5p. Moreover, the expression level and biological function of LncRNA-AC009948.5 in LUAD were determined by qRT-PCR, cell apoptosis, Edu, transwell, wound healing and western blot assays. Besides, xenograft mice were established for validation. We explored the expression of LncRNA-AC009948.5 and its roles in the prognosis of LUAD. Results LncRNA expression microarray data indicate that LncRNA-AC009948.5 is upregulated in LUAD samples. The present study confirmed the upregulation of LncRNA-AC009948.5 in LUAD tissues and cells. Encreased expression of LncRNA-AC009948.5 was correlated with tumor size, lymph nodes, distant metastasis and histological grade, and poor prognosis.LncRNA-AC009948.5 knockdown significantly inhibited cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, LncRNA-AC009948.5 upregulated had opposite effects. Mechanistically, we elucidated that LncRNA-AC009948.5 could directly bind to miR-186-5p and subsequently suppress expression of the target gene of NCAPG2. Conclusions LncRNA-AC009948.5 promotes lung adenocarcinoma cells metastasis via the miR-186-5p/NCAPG2 axis and activation of the EMT process. Which may serve as potential targets for the treatment of LUAD in the future.
Collapse
Affiliation(s)
- Jun Bai
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Hongli Li
- Experimental Center for Medicine Research, Weifang Medical University, Weifang, China
| | - Xinlu Chen
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Lin Chen
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yaqiong Hu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Lu Liu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yanqiao Zhao
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wei Zuo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, China
- *Correspondence: Chonggao Yin, ; Baogang Zhang,
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, China
- *Correspondence: Chonggao Yin, ; Baogang Zhang,
| |
Collapse
|
41
|
Zhou X, Rong R, Xiong S, Song W, Ji D, Xia X. Integrated analysis to reveal potential therapeutic targets and prognostic biomarkers of skin cutaneous melanoma. Front Immunol 2022; 13:914108. [PMID: 36032150 PMCID: PMC9402985 DOI: 10.3389/fimmu.2022.914108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a malignant tumor with high mortality rate in human, and its occurrence and development are jointly regulated by genes and the environment. However, the specific pathogenesis of SKCM is not completely understood. In recent years, an increasing number of studies have reported the important role of competing endogenous RNA (ceRNA) regulatory networks in various tumors; however, the complexity and specific biological effects of the ceRNA regulatory network of SKCM remain unclear. In the present study, we obtained a ceRNA regulatory network of long non-coding RNAs, microRNAs, and mRNAs related to the phosphatase and tensin homolog (PTEN) in SKCM and identified the potential diagnostic and prognostic markers related to SKCM. We extracted the above three types of RNA involved in SKCM from The Cancer Genome Atlas database. Through bioinformatics analysis, the OIP5-AS1-hsa-miR-186-5p/hsa-miR-616-3p/hsa-miR-135a-5p/hsa-miR-23b-3p/hsa-miR-374b-5p-PTPRC/IL7R/CD69 and MALAT1-hsa-miR-135a-5p/hsa-miR-23b-3p/hsa-miR-374b-5p-IL7R/CD69 ceRNA networks were found to be related to the prognosis of SKCM. Finally, we determined the OIP5-AS1-PTPRC/IL7R/CD69 and MALAT1-IL7R/CD69 axes in ceRNA as a clinical prognostic model using correlation and Cox regression analyses. Additionally, we explored the possible role of these two axes in affecting gene expression and immune microenvironment changes and the occurrence and development of SKCM through methylation and immune infiltration analyses. In summary, the ceRNA-based OIP5-AS1-PTPRC/IL7R/CD69 and MALAT1-IL7R/CD69 axes may be a novel and important approach for the diagnosis and prognosis of SKCM.
Collapse
Affiliation(s)
- Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Weitao Song
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- *Correspondence: Xiaobo Xia,
| |
Collapse
|
42
|
Xia P, Huang Y, Chen G. A novel signature based on necroptosis-related long non-coding RNAs for predicting prognosis of patients with glioma. Front Oncol 2022; 12:940220. [PMID: 36033510 PMCID: PMC9399791 DOI: 10.3389/fonc.2022.940220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Necroptosis is closely related to the occurrence and development of tumors, including glioma. A growing number of studies indicate that targeting necroptosis could be an effective treatment strategy against cancer. Long non-coding RNA (lncRNA) is also believed to play a pivotal role in tumor epigenetics. Therefore, it is necessary to identify the functions of necroptosis-related lncRNAs in glioma. In this study, the transcriptome and clinical characteristic data of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were collected, and the differentially expressed necroptosis-related lncRNAs in TCGA that have an impact on overall survival (OS) were screened out to construct risk score (RS) formula, which was verified in CGGA. A nomogram was constructed to predict the prognosis of glioma patients based on clinical characteristics and RS. In addition, Gene Set Enrichment Analysis (GSEA) was used to analyze the main enrichment functions of these necroptosis-related lncRNAs and the immune microenvironment. A total of nine necroptosis-related lncRNAs have been identified to construct the RS formula, and the Kaplan–Meier (K-M) survival analysis showed significantly poorer outcomes in the high RS group in both TCGA and CGGA databases. Moreover, the receiver operating characteristic (ROC) curve shows that our prediction RS model has good predictability. Regarding the analysis of the immune microenvironment, significant differences were observed in immune function and immune checkpoint between the high RS group and the low RS group. In conclusion, we constructed a necroptosis-related lncRNA RS model that can effectively predict the prognosis of glioma patients and provided the theoretical basis and the potential therapeutic targets for immunotherapy against gliomas.
Collapse
Affiliation(s)
- Pengfei Xia
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Gang Chen,
| |
Collapse
|
43
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
44
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
- *Correspondence: Hengzhu Zhang,
| |
Collapse
|
45
|
Wang Y, Wang Z, Li K, Xiang W, Chen B, Jin L, Hao K. lncRNAs Functioned as ceRNA to Sponge miR-15a-5p Affects the Prognosis of Pancreatic Adenocarcinoma and Correlates With Tumor Immune Infiltration. Front Genet 2022; 13:874667. [PMID: 35899199 PMCID: PMC9312832 DOI: 10.3389/fgene.2022.874667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors with poor prognosis worldwide. Mounting evidence suggests that the expression of lncRNAs and the infiltration of immune cells have prognostic value for patients with PAAD. We used Gene Expression Omnibus (GEO) database and identified six genes (COL1A2, ITGA2, ITGB6, LAMA3, LAMB3, and LAMC2) that could affect the survival rate of pancreatic adenocarcinoma patients. Based on a series of in silico analyses for reverse prediction of target genes associated with the prognosis of PAAD, a ceRNA network of mRNA (COL1A2, ITGA2, LAMA3, LAMB3, and LAMC2)–microRNA (miR-15a-5p)–long non-coding RNA (LINC00511, LINC01578, PVT1, and TNFRSF14-AS1) was constructed. We used the algorithm “CIBERSORT” to assess the proportion of immune cells and found three overall survival (OS)–associated immune cells (monocytes, M1 macrophages, and resting mast cell). Moreover, the OS-associated gene level was significantly positively associated with immune checkpoint expression and biomarkers of immune cells. In summary, our results clarified that ncRNA-mediated upregulation of OS-associated genes and tumor-infiltration immune cells (monocytes, M1 macrophages M1, and resting mast cell resting) correlated with poor prognosis in PAAD.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - KaiQiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - WeiLing Xiang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - BinYu Chen
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - LiQin Jin
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Scientific Research, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: LiQin Jin, ; Ke Hao,
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- *Correspondence: LiQin Jin, ; Ke Hao,
| |
Collapse
|
46
|
Zheng Y, Yue X, Fang C, Jia Z, Chen Y, Xie H, Zhao J, Yang Z, Li L, Chen Z, Bian E, Zhao B. A Novel Defined Endoplasmic Reticulum Stress-Related lncRNA Signature for Prognosis Prediction and Immune Therapy in Glioma. Front Oncol 2022; 12:930923. [PMID: 35847925 PMCID: PMC9282894 DOI: 10.3389/fonc.2022.930923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are a group of the most aggressive primary central nervous system tumors with limited treatment options. The abnormal expression of long non-coding RNA (lncRNA) is related to the prognosis of glioma. However, the role of endoplasmic reticulum (ER) stress-associated lncRNAs in glioma prognosis has not been reported. In this paper, we obtained ER stress-related lncRNAs by co-expression analysis, and then a risk signature composed of 6 ER stress-related lncRNAs was constructed using Cox regression analysis. Glioma samples in The Cancer Genome Atlas (TCGA) were separated into high- and low-risk groups based on the median risk score. Compared with the low-risk group, patients in the high-risk group had shorter survival times. Additionally, we verified the predictive ability of these candidate lncRNAs in the testing set. Three glioma patient subgroups (cluster 1/2/3) were identified by consensus clustering. We further analysed the abundance of immune-infiltrating cells and the expression levels of immune checkpoint molecules in both three subgroups and two risk groups, respectively. Immunotherapy and anticancer drug response prediction showed that ER stress-related lncRNA risk signature positively correlates with responding to immune checkpoints and chemosensitivity. Functional analysis showed that these gene sets are enriched in the malignant process of tumors. Finally, LINC00519 was chosen for functional experiments. The silence of LINC00519 restrained the migration and invasion of glioma cells. Hence, those results indicated that ER stress-related lncRNA risk signature could be a potential treatment target and a prognosis biomarker for glioma patients.
Collapse
Affiliation(s)
- Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Cheng Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhuang Jia
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yuxiang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Erbao Bian, ; Bing Zhao,
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Erbao Bian, ; Bing Zhao,
| |
Collapse
|
47
|
Long Noncoding RNA BCYRN1 Recruits BATF to Promote TM4SF1 Upregulation and Enhance HCC Cell Proliferation and Invasion. DISEASE MARKERS 2022; 2022:1561607. [PMID: 35730016 PMCID: PMC9206761 DOI: 10.1155/2022/1561607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common form of cancer for which a subset of reliable clinical biomarkers has been defined. However, other factors including long noncoding RNAs (lncRNAs) can also regulate HCC development. This study was thus designed to understand how the lncRNA Brain cytoplasmic RNA 1 (BCYRN1) modulates HCC progression. Bioinformatics approaches were used to identify genes, lncRNAs, and transcription factors that were differentially expressed in the context of HCC, after which the relative expression of BCYRN1 in HCC and control tissues was assessed via qPCR. The ability of BCYRN1 to bind the transcription factor BATF was further evaluated in an RNA immunoprecipitation (RIP) assay, while chromatin immunoprecipitation (ChIP) was used to gauge the binding of the TM4SF1 promoter by BATF. Luciferase reporter assays were also used to assess the association between BCYRN1 and the TM4SF1 promoter. Subsequent loss- and gain-of-function assays were then conducted to explore the effects of altering BCYRN1 expression levels on the proliferative, invasive, and migratory activity of HCC cells. BCYRN1 upregulation was associated with poorer clinical outcomes in HCC patients, and knocking down this lncRNA impaired HCC cell migration and invasion. From a mechanistic perspective, BATF was recruited to the TM4SF1 promoter by BCYRN1, and reducing the expression of this lncRNA was sufficient to constrain xenograft tumor growth in mice. These results highlight BCYRN1 as a putative therapeutic target in HCC tumors.
Collapse
|
48
|
Kang CM, Zhao JJ, Yuan YS, Liao JM, Yu KW, Li WK, Jin X, Cao SW, Chen WY, Jin X, Chen L, Ke PF, Li XH, Huang RY, Hu YW, Huang XZ. Long Noncoding RNA RP11-732M18.3 Promotes Glioma Angiogenesis by Upregulating VEGFA. Front Oncol 2022; 12:873037. [PMID: 35785190 PMCID: PMC9247460 DOI: 10.3389/fonc.2022.873037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most aggressive and common type of malignant brain tumor, with limited treatment options and a dismal prognosis. Angiogenesis, a hallmarks of cancer, is one of two critical events in the progression of gliomas. Accumulating evidence has demonstrated that in glioma dysregulated molecules like long noncoding RNAs (lncRNAs), are closely linked to tumorigenesis and prognosis. However, the effects of and mechanisms of action of lncRNAs during tumor angiogenesis are poorly understood. The effect of lncRNA RP11-732M18.3 on angiogenesis was elucidated through an intracranial orthotopic glioma model, immunohistochemistry, and an in vitro angiogenesis assay. Co-culture experiments and cell migration assays were performed to investigate the function of lncRNA RP11-732M18.3 in vitro. lncRNA RP11-732M18.3 increased CD31+ microvessel density, and overexpression of lncRNA RP11-732M18.3 resulted in poor mouse survival. lncRNA RP11-732M18.3 promoted endothelial cell migration and tube formation. Nomogram and Kaplan-Meier survival analyses indicated that higher VEGFA is correlated with a poor prognosis. Mechanistically, lncRNA RP11-732M18.3 promotes angiogenesis by increasing the nuclear level of EP300 and facilitating the transcription and secretion of VEGFA. Our study contributes to the latest understanding of glioma angiogenesis and prognosis. lncRNA RP11-732M18.3 may be a potential treatment target in glioma.
Collapse
Affiliation(s)
- Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jing-Jing Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Shi Yuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Min Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-Wei Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Kang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Jin
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Shun-Wang Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Heng Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-Ying Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Guangzhou Woman and Children Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xian-Zhang Huang, ; Yan-Wei Hu,
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Xian-Zhang Huang, ; Yan-Wei Hu,
| |
Collapse
|
49
|
Wu X, Yang L, Wang J, Hao Y, Wang C, Lu Z. The Involvement of Long Non-Coding RNAs in Glioma: From Early Detection to Immunotherapy. Front Immunol 2022; 13:897754. [PMID: 35619711 PMCID: PMC9127066 DOI: 10.3389/fimmu.2022.897754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Glioma is a brain tumor that arises in the central nervous system and is categorized according to histology and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length. They have been reported to influence significant events such as carcinogenesis, progression, and increased treatment resistance on glioma cells. Long non-coding RNAs promote cell proliferation, migration, epithelial-to-mesenchymal transition and invasion in glioma cells. Various significant advancements in transcriptomic profiling studies have enabled the identification of immune-related long non-coding RNAs as immune cell-specific gene expression regulators that mediates both stimulatory and suppressive immune responses, implying lncRNAs as potential candidates for improving immunotherapy efficacy against tumors and due to the lack of different diagnostic and treatments for glioma, lncRNAs are potential candidates to be used as future diagnostic, prognostic biomarker and treatment tools for glioma. This review’s primary purpose is to concentrate on the role of long non-coding RNAs in early glioma identification, treatment, and immunotherapy.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Changyin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
50
|
Zhou J, Xu N, Liu B, Wang C, He Z, Lenahan C, Tang W, Zeng H, Guo H. LncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting PIK3R2-mediated PI3K/AKT pathway in glioma. Cancer Sci 2022; 113:2681-2692. [PMID: 35637600 PMCID: PMC9357648 DOI: 10.1111/cas.15387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has improved the understanding of development and progression in various cancer sub-types. However, the role of lncRNAs in temozolomide (TMZ) resistance in glioblastoma (GBM) remains largely undefined. In this present study, the differential expression of lncRNAs were identified between U87 and U87TR (TMZ-resistant) cells. LncRNA XLOC013218 (XLOC) was drastically upregulated in TMZ-resistant cells and was associated with poor prognosis in glioma. Overexpression of XLOC markedly increased TMZ resistance, promoted proliferation, and inhibited apoptosis in vitro and in vivo. In addition, RNA-seq analysis and gain-of-function or loss-of-function studies revealed that PIK3R2 was the potential target of XLOC. Mechanistically, XLOC recruited Specificity Protein 1 (Sp1) transcription factor and promoted the binding of Sp1 to the promoters of PIK3R2, which elevated the expression of PIK3R2 in both mRNA and protein levels. Finally, PIK3R2-mediated activation of the PI3K/AKT signaling pathway promoted TMZ resistance and cell proliferation, but inhibited cell apoptosis. In conclusion, these data highlight the vital role of XLOC/Sp1/PIK3R2/PI3K/AKT axis in GBM TMZ resistance.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ningbo Xu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Boyang Liu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chenyang Wang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, 88003, NM, USA
| | - Wenhui Tang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huijun Zeng
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hongbo Guo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|