1
|
Dai C, Cao J, Tang Y, Jiang Y, Luo C, Zheng J. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. Cancer Sci 2024; 115:2588-2601. [PMID: 38811341 PMCID: PMC11309927 DOI: 10.1111/cas.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Insufficient understanding about the immune evasion mechanism leads to the inability in predicting current immunotherapy effects in clear cell renal cell carcinoma (ccRCC) and sensitizing ccRCC to immunotherapy. RNA binding proteins (RBPs) can promote tumor progression and immune evasion. However, research on RBPs, particularly m6A reader YTHDF3, in ccRCC development and immune evasion is limited. In this study, we found that YTHDF3 level was downregulated in ccRCC and was an independent prognostic biomarker for ccRCC. Decreased YTHDF3 expression was correlated with the malignancy, immune evasion, and poor response to anti-programmed death ligand 1 (PD-L1)/CTLA-4 in ccRCC. YTHDF3 overexpression restrained ccRCC cell malignancy, PD-L1 expression, CD8+ T cell infiltration and activities in vivo, indicating its inhibitory role in ccRCC development and immune evasion. Mechanistically, YTHDF3 WT was found to have phase separation characteristics and suppress ccRCC malignancy and immune evasion. Whereas YTHDF3 mutant, which disrupted phase separation, abolished its function. YTHDF3 enhanced the degradation of its target mRNA HSPA13 by phase separation and recruiting DDX6, resulting in the downregulation of the downstream immune checkpoint PD-L1. HSPA13 overexpression restored ccRCC malignancy and immune evasion suppressed by YTHDF3 overexpression. In all, our results identify a new model of YTHDF3 in regulating ccRCC progression and immune evasion through phase separation.
Collapse
Affiliation(s)
- Chenyun Dai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jianfu Cao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yuangui Tang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yuxiao Jiang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Chenghua Luo
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
- Department of Pathology, The First Affiliated HospitalShihezi UniversityShiheziChina
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Shao Y, Zhang H, Guan H, Wu C, Qi W, Yang L, Yin J, Zhang H, Liu L, Lu Y, Zhao Y, Zhang S, Zeng C, Wang G, Bai X, Cai D. PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function. Bone Res 2024; 12:41. [PMID: 39019845 PMCID: PMC11255281 DOI: 10.1038/s41413-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 07/19/2024] Open
Abstract
Mechanical overloading and aging are two essential factors for osteoarthritis (OA) development. Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology, but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated. Herein, we found that PDZ domain containing 1 (PDZK1), one of the PDZ proteins, which belongs to the Na+/H+ Exchanger (NHE) regulatory factor family, is a key factor in biomechanically induced mitochondrial dysfunction and chondrocyte senescence during OA progression. PDZK1 is reduced by mechanical overload, and is diminished in the articular cartilage of OA patients, aged mice and OA mice. Pdzk1 knockout in chondrocytes exacerbates mechanical overload-induced cartilage degeneration, whereas intraarticular injection of adeno-associated virus-expressing PDZK1 had a therapeutic effect. Moreover, PDZK1 loss impaired chondrocyte mitochondrial function with accumulated damaged mitochondria, decreased mitochondrion DNA (mtDNA) content and increased reactive oxygen species (ROS) production. PDZK1 supplementation or mitoubiquinone (MitoQ) application alleviated chondrocyte senescence and cartilage degeneration and significantly protected chondrocyte mitochondrial functions. MRNA sequencing in articular cartilage from Pdzk1 knockout mice and controls showed that PDZK1 deficiency in chondrocytes interfered with mitochondrial function through inhibiting Hmgcs2 by increasing its ubiquitination. Our results suggested that PDZK1 deficiency plays a crucial role in mediating excessive mechanical load-induced chondrocyte senescence and is associated with mitochondrial dysfunction. PDZK1 overexpression or preservation of mitochondrial functions by MitoQ might present a new therapeutic approach for mechanical overload-induced OA.
Collapse
Affiliation(s)
- Yan Shao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Orthopedics Department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Chunyu Wu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingfeng Yang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianbin Yin
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liangliang Liu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuheng Lu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yitao Zhao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guiqing Wang
- Orthopedics Department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaochun Bai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang H, Zhang L, Liu H, Yang Y, Lu W, Cao X, Yang X, Qin Q, Song R, Feng D, Wang S, Bai T, He J. PDZK1 confers sensitivity to sunitinib in clear cell renal cell carcinoma by suppressing the PDGFR-β pathway. Br J Cancer 2024; 131:347-360. [PMID: 38822145 PMCID: PMC11263541 DOI: 10.1038/s41416-024-02725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Sunitinib has emerged as the primary treatment for advanced or metastatic clear cell renal cell carcinoma (ccRCC) due to its significant improvement in patients' average survival time. However, drug resistance and adverse effects of sunitinib pose challenges to its clinical benefits. METHODS The differentially expressed genes (DEGs) associated with sunitinib sensitivity and resistance in ccRCC were investigated. Cell counting kit-8, plate colony formation, flow cytometry and subcutaneous xenograft tumor model assays were employed to explore the effects of PDZK1 on ccRCC. Further research on the molecular mechanism was conducted through western blot, co-immunoprecipitation, immunofluorescence co-localization and immunohistochemical staining. RESULTS We elucidated that PDZK1 is significantly downregulated in sunitinib-resistant ccRCC specimens, and PDZK1 negatively regulates the phosphorylation of PDGFR-β and the activation of its downstream pathways through interaction with PDGFR-β. The dysregulated low levels of PDZK1 contribute to inadequate inhibition of cell proliferation, tumor growth, and insensitivity to sunitinib treatment. Notably, our preclinical investigations showed that miR-15b antagomirs enhance sunitinib cytotoxic effects against ccRCC cells by upregulating PDZK1 levels, suggesting their potential in overcoming sunitinib resistance. CONCLUSIONS Our findings establish the miR-15b/PDZK1/PDGFR-β axis as a promising therapeutic target and a novel predictor for ccRCC patients' response to sunitinib treatment.
Collapse
MESH Headings
- Sunitinib/pharmacology
- Sunitinib/therapeutic use
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Humans
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Xenograft Model Antitumor Assays
- MicroRNAs/genetics
- Signal Transduction/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Male
- Mice, Nude
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
Collapse
Affiliation(s)
- Haibo Wang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Lijie Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hua Liu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
| | - Yumeng Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
| | - Wenxiu Lu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
| | - Xuedi Cao
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaomei Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Qiong Qin
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Ran Song
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Duiping Feng
- Department of Interventional Radiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Songlin Wang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Tao Bai
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Junqi He
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Li H, Han X, Song L, Li X, Zhang L, Jin Z, Zhang Y, Wang T, Huang Z, Jia Z, Yang J. LINC00645 inhibits renal cell carcinoma progression by interacting with HNRNPA2B1 to regulate the ROCK1 mRNA stability. Gene 2024; 905:148232. [PMID: 38309317 DOI: 10.1016/j.gene.2024.148232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xu Han
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liang Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
5
|
Ma Y, Fang Z, Zhang H, Qi Y, Mao Y, Zheng J. PDZK1 suppresses TNBC development and sensitizes TNBC cells to erlotinib via the EGFR pathway. Cell Death Dis 2024; 15:199. [PMID: 38604999 PMCID: PMC11009252 DOI: 10.1038/s41419-024-06502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/13/2024]
Abstract
Epidermal growth factor receptor (EGFR)-targeted drugs (erlotinib, etc.) are used to treat multiple types of tumours. EGFR is highly expressed in most triple-negative breast cancer (TNBC) patients. However, only a small proportion of TNBC patients benefit from EGFR-targeted drugs in clinical trials, and the resistance mechanism is unclear. Here, we found that PDZ domain containing 1 (PDZK1) is downregulated in erlotinib-resistant TNBC cells, suggesting that PDZK1 downregulation is related to erlotinib resistance in TNBC. PDZK1 binds to EGFR. Through this interaction, PDZK1 promotes EGFR degradation by enhancing the binding of EGFR to c-Cbl and inhibits EGFR phosphorylation by hindering EGFR dimerisation. We also found that PDZK1 is specifically downregulated in TNBC tissues and correlated with a poor prognosis in TNBC patients. In vitro and in vivo functional assays showed that PDZK1 suppressed TNBC development. Restoration of EGFR expression or kinase inhibitor treatment reversed the degree of cell malignancy induced by PDZK1 overexpression or knockdown, respectively. PDZK1 overexpression sensitised TNBC cells to erlotinib both in vitro and in vivo. In conclusion, PDZK1 is a significant prognostic factor for TNBC and a potential molecular therapeutic target for reversing erlotinib resistance in TNBC cells.
Collapse
Affiliation(s)
- Yuanzhen Ma
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Zhiyu Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Hongning Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Yijun Qi
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Yuke Mao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
6
|
Zhu Z, Wang Q, Zeng X, Zhu S, Chen J. Validation and identification of anoikis-related lncRNA signatures for improving prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3915-3933. [PMID: 38385949 PMCID: PMC10929799 DOI: 10.18632/aging.205568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.
Collapse
Affiliation(s)
- Zhenjie Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qibo Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaowei Zeng
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shaoxing Zhu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinchao Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
7
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Yan C, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Meng B. Long Noncoding RNA MAGI2-AS3 Represses Cell Progression in Clear Cell Renal Cell Carcinoma by Modulating the miR-629-5p/PRDM16 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:43-56. [PMID: 37602452 DOI: 10.1615/critreveukaryotgeneexpr.2023048338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The objective of this study was to determine the regulatory mechanism of MAGI2-AS3 in clear cell renal cell carcinoma (ccRCC), thereby supplying a new insight for ccRCC treatment. Expression data in TCGA-KIRC were obtained. Target gene lncRNA for research was determined using expression analysis and clinical analysis. lncRNA's downstream regulatory miRNA and mRNA were predicted by bioinformatics databases. ccRCC cell malignant phenotypes were detected via CCK-8, colony formation, Transwell migration, and invasion assays. The targeting relationship between genes was assessed through dual-luciferase reporter gene analysis. Kaplan-Meier (K-M) analysis was carried out to verify the effect of MAGI2-AS3, miR-629-5p, and PRDM16 on the survival rate of ccRCC patients. MAGI2-AS3 expression in ccRCC tissue and cells was shown to be markedly decreased and its expression to continuously decline with tumor progression. MAGI2-AS3 suppresses ccRCC proliferation and migration. Dual-luciferase assay showed that MAGI2-AS3 binds miR-629-5p and that miR-629-5p binds PRDM16. In addition, functional experiments showed that MAGI2-AS3 facilitates PRDM16 expression by repressing miR-629-5p expression, thereby suppressing ccRCC cell aggression. K-M analysis showed that upregulation of either MAGI2-AS3 or PRDM16 significantly improves ccRCC patient survival, while upregulation of miR-629-5p has no significant impact. MAGI2-AS3 sponges miR-629-5p to modulate PRDM16 to mediate ccRCC development. Meanwhile, the MAGI2-AS3/miR-629-5p/PRDM16 axis, as a regulatory pathway of ccRCC progression, may be a possible therapeutic target and prognostic indicator of ccRCC.
Collapse
Affiliation(s)
- Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| |
Collapse
|
9
|
Wang L, Fang Z, Gao P, Zheng J. GLUD1 suppresses renal tumorigenesis and development via inhibiting PI3K/Akt/mTOR pathway. Front Oncol 2022; 12:975517. [PMID: 36203437 PMCID: PMC9530280 DOI: 10.3389/fonc.2022.975517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Growing cancer cells are addicted to glutamine. Glutamate dehydrogenase 1 (GLUD1) is one of key enzymes in glutamine metabolism and plays a critical role in the malignancy of diverse tumors. However, its role and molecular mechanism in clear cell renal cell carcinoma (ccRCC) development and progression remain unknown. In this study, analysis results of the GEO/TCGA/UALCAN database showed that GLUD1 level was downregulated in ccRCC tissues. Immunohistochemistry and western blotting results further validated the downregulation of GLUD1 level in ccRCC tissues. GLUD1 level was gradually decreased as ccRCC stage and grade progressed. Low GLUD1 level was associated with a shorter survival and higher IC50 value for tyrosine kinase inhibitors (TKIs) in ccRCC, reminding that GLUD1 level could predict the prognosis and TKIs sensitivity of ccRCC patients. High level of methylation in GLUD1 promoter was positively correlated with the downregulation of GLUD1 level and was negatively correlated with survival of ccRCC patients. GLUD1 overexpression suppressed RCC cell proliferation, colony formation and migration by inhibiting PI3K/Akt/mTOR pathway activation. Low GLUD1 level correlated with suppressive immune microenvironment (TIME) in ccRCC. Together, we found a novel tumor-suppressing role of GLUD1 in ccRCC which was different from that in other tumors and a new mechanism for inhibiting PI3K/Akt/mTOR activation and TIME in ccRCC. These results provide a theoretical basis for GLUD1 as a therapeutic target and prognostic marker in ccRCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peixiang Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Junfang Zheng,
| |
Collapse
|
10
|
Nian YL, You CG. Susceptibility genes of hyperuricemia and gout. Hereditas 2022; 159:30. [PMID: 35922835 PMCID: PMC9351246 DOI: 10.1186/s41065-022-00243-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Gout is a chronic metabolic disease that seriously affects human health. It is also a major challenge facing the world, which has brought a heavy burden to patients and society. Hyperuricemia (HUA) is the most important risk factor for gout. In recent years, with the improvement of living standards and the change of dietary habits, the incidence of gout in the world has increased dramatically, and gradually tends to be younger. An increasing number of studies have shown that gene mutations may play an important role in the development of HUA and gout. Therefore, we reviewed the existing literature and summarized the susceptibility genes and research status of HUA and gout, in order to provide reference for the early diagnosis, individualized treatment and the development of new targeted drugs of HUA and gout.
Collapse
Affiliation(s)
- Yue-Li Nian
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
11
|
Roles of circ_0000135/miR-140-3p/PDZK1 network in cervical cancer. Clin Transl Oncol 2022; 24:1086-1099. [PMID: 35066758 DOI: 10.1007/s12094-021-02751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To explore the effect of circ_0000135/miR-140-3p/PDZ domain containing 1 (PDZK1) on the occurrence and development of cervical cancer. METHODS Clinical data were collected to verify circ_0000135/miR-140-3p/PDZK1 expression in cervical cancer. mRNA expressions of circ_0000135 and miR-140-3p were detected by real-time quantitative PCR. Correlation between circ_0000135 and miR-140-3p/miR-140-3p and PDZK1 was analyzed in vitro. Protein expression detection in cells was conducted by Western blot; while cell proliferation, invasion and cycle distribution by CCK8 assay, Transwell chamber assay and flow cytometry, respectively. Rescue and animal experiment were performed to verify the effect of circ_0000135/miR-140-3p/PDZK1 on cervical cancer. RESULTS circ_0000135 and PDZK1 expressions were increased, while those of miR-140-3p were decreased in cervical cancer tissues and cells (both P < 0.05). sh-circ_0000135 group had decreased cell viability, arrested cells in G0/G1 phase, decreased CyclinD1 expression, inhibited cell migration and invasion; sh-circ_0000135 group showed reduced tumor volume, weight, and lower Ki67 expression (all P < 0.05). circ_0000135 had conserved target of miR-140-3p. There was a direct interaction between circ_0000135 and miR-140-3p. miR-140-3p might have direct interaction with PDZK1. sh-circ_0000135 and/or miR-140-3p treatment showed obviously decreased PDZK1 expression, decreased cell activity, arrested cells in G0/G1 phase, downregulated cell migration and invasion; sh-circ_0000135 and/or miR-140-3p mimic treatment showed obviously decreased tumor volume, tumor weight, and Ki67 expression (all P < 0.05). CONCLUSION circ_0000135 may play an anti-tumor role on the progression of cervical cancer by sponging miR-140-3p to suppress the expression of PDZK1, providing a promising therapeutic target.
Collapse
|
12
|
Huang L, Shi Y, Zhao YJ, Wang L, Hu WG, Zhu ZG, Zhang J. Long-Term Cardiac Disease- and Cancer-Associated Mortalities in Patients With Non-Metastatic Stomach Adenocarcinoma Receiving Resection and Chemotherapy: A Large Competing-Risk Population-Based Cohort Study. World J Oncol 2022; 13:69-83. [PMID: 35571338 PMCID: PMC9076150 DOI: 10.14740/wjon1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background The survival of patients with non-metastatic gastric adenocarcinoma (nmGaC), who are receiving more and more frequently chemotherapy, has improved throughout the last decades, while treatment-caused cardiotoxicity remains a major concern. This study aimed to investigate competing causes of mortality and prognostic factors within a large cohort of patients with resected nmGaC, and to describe the heart-specific mortalities of patients undergoing resection and chemotherapy and of all resected patients. Methods In this population-based cohort study, data on patients diagnosed with nmGaC from 2004 through 2016, managed with resection with or without chemotherapy, followed up until the end of 2016, and surviving ≥ 1 month were retrieved from the US Surveillance, Epidemiology, and End Results-18 Program. Cumulative mortality functions were calculated. Prognostic factors for heart- and cancer-specific mortalities were evaluated using both multivariable-adjusted Fine-Gray subdistribution and cause-specific hazard functions. Results Together 21,257 patients with resected nmGaC were eligible for analysis with an accumulated follow-up of 73,711 person-years, where 10,718 (50%) also underwent chemotherapy. Mortalities were overestimated when using the Kaplan-Meier method. Heart diseases were the most common non-cancer cause of mortality. Compared with all resected patients, heart-specific mortality of those also receiving chemotherapy was lower overall and especially at older ages. In the total group of patients, the 8-year cumulative mortalities from heart diseases were 4.4% and 2.0% in resected patients and those also receiving chemotherapy, respectively; in patients ≥ 80 years, the heart disease-specific mortalities were as high as 11.1% and 6.5%, respectively. In overall patients undergoing resection, older ages, black ethnicity, and location at gastric antrum/pylorus were associated with increased heart-specific mortality, while more recent period, female sex, Asian/Pacific Islanders, invasion of serosa, and more positive lymph nodes were associated with lower heart-specific mortality; among those further receiving chemotherapy, only the associations with period of diagnosis, age, and ethnicity were significant. Associations with older ages were stronger for heart-specific mortality than for cancer-associated mortality. Conclusions Among survivors with resected nmGaC receiving chemotherapy, heart-specific mortality, the most common one among non-cancer causes of mortality, is not higher compared to overall resected patients in this observational study, suggesting that chemotherapy may be relatively safely administered to selected patients under strict indications. Age and ethnicity were major factors associated with heart-specific mortality in both overall resected patients and those further receiving chemotherapy. Overall and stratified cause-specific cumulative incidences of mortality are provided, which can be more clinically useful than the Kaplan-Meier estimates. Our study provides clinically useful evidence for tailored patient management.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg 69120, Germany
- These authors contributed equally to this work
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- These authors contributed equally to this work
| | - Ya Jie Zhao
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wang
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Guo Hu
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Gang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
13
|
Kong H, Sun J, Zhang W, Zhang H, Li H. Long intergenic non-protein coding RNA 1273 confers sorafenib resistance in hepatocellular carcinoma via regulation of methyltransferase 3. Bioengineered 2022; 13:3108-3121. [PMID: 35037556 PMCID: PMC8973700 DOI: 10.1080/21655979.2022.2025701] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is often diagnosed in patients with advanced disease who are ineligible for curative surgical therapies. Sorafenib is a first-line agent approved for the treatment of advanced HCC. However, the frequent resistance of HCC cells to sorafenib greatly reduces its efficacy. Herein, we describe a novel long non-coding RNA (lncRNA) conferring sorafenib resistance. Long intergenic non-protein coding RNA 1273 (LINC01273) was significantly overexpressed in human HCC and sorafenib-resistant tissues, linking it to poor overall and relapse-free survival. We established sorafenib-resistant Huh7 (Huh7-SR) and SMMC-7721 (SMMC-7721-SR) cells, and found that the knockdown of LINC01273 repressed the viability, colony formation, and DNA synthesis rate of Huh7-SR and SMMC-7721-SR cells. The level of N6-methyladenosine (m6A) in sorafenib-resistant HCC cells was significantly decreased, which was rescued by LINC01273 silencing. Mechanistically, LINC01273 complementarity bound to miR-600, served as a ‘reservoir’ increasing miR-600 stability, and facilitating miR-600 targeting methyltransferase 3 (METTL3), a m6A ‘writer’, resulting in reducing METTL3 level. In addition, LINC01273 was modified with m6A, METTL3 increased LINC01273 m6A modification, followed by LINC01273 decay in the presence of YTHDF2, a m6A ‘reader’. Our findings reveal the key role of LINC01273 in sorafenib-resistant HCC cells, and targeting of the newly identified LINC01273/miR-600/METTL3 feedback regulatory axis may be a promising effective intervention for HCC patients with sorafenib resistance.
Collapse
Affiliation(s)
- Huifang Kong
- The First Ward of Hepatology Department, Fifth Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Jie Sun
- Internal Medicine- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- The First Ward of Hepatology Department, Fifth Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Huixin Zhang
- The First Ward of Hepatology Department, Fifth Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
14
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
15
|
Li Y, Tang B, Lyu K, Yue H, Wei F, Xu Y, Chen S, Lin Y, Cai Z, Guo X, Li C, Lei W. Low expression of lncRNA SBF2-AS1 regulates the miR-302b-3p/TGFBR2 axis, promoting metastasis in laryngeal cancer. Mol Carcinog 2021; 61:45-58. [PMID: 34644425 DOI: 10.1002/mc.23358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023]
Abstract
The 5-year survival rate of laryngeal cancer continues to decline, and the laryngeal particularity of the anatomy adversely affects the patient's quality of life. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are closely correlated to key steps in the malignant progression of cancer cells. In this study, we report the role of lncRNA SBF2-AS1/miR-302b-3p/TGFBR2 interactions in the metastasis of laryngeal squamous cell carcinoma (LSCC). We verified that SBF2-AS1 was significantly downregulated in LSCC tissues and cell lines using qRT-PCR analysis. Its low expression was correlated to lymph node metastasis and an advanced clinical stage. More importantly, LSCC patients with low expression of SBF2-AS1 tended to have a poor prognosis. Based on this, we performed gain-of-function and loss-of-function experiments in LSCC cell lines. The results confirmed that knocking down SBF2-AS1 can promote the metastasis of LSCC cells and enhance epithelial-mesenchymal transition phenotype, while the upregulation of SBF2-AS1 expression resulted in the opposite. Our in vivo model verified that SBF2-AS1 overexpression could inhibit LSCC cell metastasis. Subsequent mechanistic studies revealed that SBF2-AS1 acted as a competing endogenous RNA that upregulated the expression of TGFBR2 by endogenous sponging for miR-302b-3p in LSCC cell lines. Moreover, miR-302b-3p overexpression reversed the inhibitory effects on LSCC metastasis induced by upregulation of SBF2-AS1 expression, and inhibition of TGFBR2 expression reversed the effect of SBF2-AS1 on metastasis. Our study proposes SBF2-AS1 as a biomarker to predict the prognosis of LSCC patients and a novel potential therapeutic target.
Collapse
Affiliation(s)
- Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Tang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kexing Lyu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Wei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xu
- Department of Otolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Siyu Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhimou Cai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueqin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
17
|
Xu D, Wang L, Pang S, Cao M, Wang W, Yu X, Xu Z, Xu J, Wang H, Lu J, Li K. The Functional Characterization of Epigenetically Related lncRNAs Involved in Dysregulated CeRNA-CeRNA Networks Across Eight Cancer Types. Front Cell Dev Biol 2021; 9:649755. [PMID: 34222227 PMCID: PMC8247484 DOI: 10.3389/fcell.2021.649755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have demonstrated that lncRNAs could compete with other RNAs to bind miRNAs, as competing endogenous RNAs (ceRNAs), to regulate each other. On the other hand, ceRNAs were found to be recurrently dysregulated in cancer status. However, limited studies considered the upstream epigenetic regulatory factors that disrupted the normal competing mechanism. In the present study, we constructed the lncRNA-associated dysregulated ceRNA networks across eight cancer types. lncRNAs in the individual dysregulated network and pan-cancer core dysregulated ceRNA subnetwork were found to play more important roles than mRNAs. Integrating lncRNA methylation profiles, we identified 49 epigenetically related (ER) lncRNAs involved in the dysregulated ceRNA networks, including 18 epigenetically activated (EA) lncRNAs, 18 epigenetically silenced (ES) lncRNAs, and 13 rewired ER lncRNAs across eight cancer types. Furthermore, we evaluated the epigenetic regulating patterns of these lncRNAs and screened nine pan-cancer ER lncRNAs (six EA and three ES lncRNAs). The nine lncRNAs were found to regulate the cancer hallmarks by competing with mRNAs. Moreover, we found that integrating the expression and methylation profiles of the nine lncRNAs could predict cancer incidence in eight cancer types robustly and the cancer outcome of several cancer types. These results provide an improved understanding of methylation regulation to ceRNA and offer novel potential molecular therapeutic targets for the diagnosis and prognosis across different cancer types.
Collapse
Affiliation(s)
- Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sainan Pang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Yuan F, Miao Z, Chen W, Wu F, Wei C, Yong J, Xiao C. Long non-coding RNA PHACTR2-AS1 promotes tongue squamous cell carcinoma metastasis by regulating Snail. J Biochem 2021; 168:651-657. [PMID: 32702100 DOI: 10.1093/jb/mvaa082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA is an endogenous non-coding RNA that has currently been proved to be an important player in cancer cell biology. In the present study, we investigated the biological role of PHACTR2-AS1 in tongue squamous cell carcinoma (TSCC). PHACTR2-AS1 was preferentially localized in the cytoplasm, and was notably upregulated in TSCC tissues. High PHACTR2-AS1 was correlated with tumour differentiation, metastatic clinical features, relapse and shortened survival time. Depletion of PHACTR2-AS1 did not affect TSCC cell viability and colony formation ability, whereas substantially inhibited cell migration and invasion in vitro and lung metastasis in vivo. Mechanistically, PHACTR2-AS1 could sponge miR-137 to increase Snail expression, resulting in triggering epithelial-mesenchymal transition process, thereby promoting TSCC cell metastasis. Taken together, our data for the first time elucidate the metastasis-promoting role of PHACTR2-AS1 in TSCC, hinting a new therapeutic target for metastatic TSCC patients.
Collapse
Affiliation(s)
- Fenqian Yuan
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang 330029, Jiangxi, China
| | - Zhiguo Miao
- Department of Abdominal Surgery, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang 330029, Jiangxi, China
| | - Wen Chen
- Department of Plastic Surgery, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang 330029, Jiangxi, China
| | - Fanggeng Wu
- Department of Pathology, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang 330029, Jiangxi, China
| | - Chao Wei
- Department of Stomatology, The First Affiliated Hospital of Suzhou University, No.188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jingkang Yong
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang 330029, Jiangxi, China
| | - Can Xiao
- Department of Stomatology, The First Affiliated Hospital of Suzhou University, No.188 Shizi Street, Suzhou 215006, Jiangsu, China
| |
Collapse
|
19
|
TUC338 Promotes Diffuse Large B Cell Lymphoma Growth via Regulating EGFR/PI3K/AKT Signaling Pathway. JOURNAL OF ONCOLOGY 2021; 2021:5593720. [PMID: 33986803 PMCID: PMC8079195 DOI: 10.1155/2021/5593720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
TUC338 is emerging as a novel vital long noncoding RNA (lncRNA) in human cancer; however, its role in diffuse large B cell lymphoma (DLBCL) remains unknown. In this study, we found that TUC338 was remarkably upregulated in DLBCL tissues as compared to matched normal tissues. High TUC338 was closely related to advanced Ann Arbor stage, resistance to CHOP-like treatment, and high IPI (International Prognostic Index). Stable knockdown of TUC338 evidently inhibited cell proliferation and chemotherapy resistance to Adriamycin and induced apoptosis. Further, we found that TUC338 was able to directly bind to miR-28-5p and increased EGFR level, resulting in activating carcinogenic PI3K/AKT signaling, thereby facilitating DLBCL uncontrolled growth. Moreover, we also found that depletion of TUC338 led to the inactivation of EGFR/PI3K/AKT pathway in vivo by using the xenograft tumor model. Preclinically, DLBCL patients with high TUC338 had shorter survival time than those with low TUC338, and serum TUC338 level was identified as an excellent indicator for DLBCL diagnosis. In sum, our findings clearly indicate that TUC338 functions as an oncogenic lncRNA in DLBCL through activating EGFR/PI3K/AKT pathway via sponging and inhibiting miR-28-5p, which may be a promising target for DLBCL treatment.
Collapse
|
20
|
Li M, Yin B, Chen M, Peng J, Mu X, Deng Z, Xiao J, Li W, Fan J. Downregulation of the lncRNA ASB16-AS1 Decreases LARP1 Expression and Promotes Clear Cell Renal Cell Carcinoma Progression via miR-185-5p/miR-214-3p. Front Oncol 2021; 10:617105. [PMID: 33680937 PMCID: PMC7933513 DOI: 10.3389/fonc.2020.617105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) comprises approximately 75% of renal cell carcinomas, which is one of the most common and lethal urologic cancers, with poor quality of life for patients and is a huge economic burden to health care systems. It is imperative we find novel prognostic and therapeutic targets for ccRCC clinical intervention. In this study, we found that the expression of the long noncoding RNA (lncRNA) ASB16-AS1 was downregulated in ccRCC tissues compared with non-diseased tissues and was also associated with advanced tumor stage and larger tumors. By constructing cell and mouse models, it was found that downregulated lncRNA ASB16-AS1 enhanced cell proliferation, migration, invasion, and promoted tumor growth and metastasis. Furthermore, by performing bioinformatics analysis, biotinylated RNA pull-downs, AGO2-RIP, and luciferase reporter assays, our findings showed that downregulated ASB16-AS1 decreased La-related protein 1 (LARP1) expression by inhibiting miR-185-5p and miR-214-3p. Furthermore, it was found that overexpression of LARP1 reversed the promotive effects of downregulated ASB16-AS1 on ccRCC cellular progression. Our results revealed that downregulated ASB16-AS1 promotes ccRCC progression via a miR-185-5p-miR-214-3p-LARP1 pathway. We suggest that this pathway could be used to monitor prognosis and presents therapeutic targets for ccRCC clinical management.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mulin Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Deng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
21
|
Shen H, Luo G, Chen Q. Long noncoding RNAs as tumorigenic factors and therapeutic targets for renal cell carcinoma. Cancer Cell Int 2021; 21:110. [PMID: 33593347 PMCID: PMC7885505 DOI: 10.1186/s12935-021-01805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Nephrology, 3201 Hospital, Hanzhong, Shaanxi Province, China
| | - Guomin Luo
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Qingjuan Chen
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China.
| |
Collapse
|
22
|
Tan X, Shao Y, Teng Y, Liu S, Li W, Xue L, Cao Y, Sun C, Zhang J, Han J, Wu X, Xu H, Xie K. The Cancer-Testis Long Non-coding RNA PCAT6 Facilitates the Malignant Phenotype of Ovarian Cancer by Sponging miR-143-3p. Front Cell Dev Biol 2021; 9:593677. [PMID: 33634115 PMCID: PMC7902004 DOI: 10.3389/fcell.2021.593677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background: It has been reported that long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis. However, their roles in ovarian cancer (OC) remain to be elucidated. The aim of this study was to uncover the function and underlying mechanisms of PCAT6 in OC. Methods: The expression pattern of PCAT6 in OC was analyzed in the GSE137238, GSE143897 and Gene Expression Profile Interactive Analysis (GEPIA) datasets. Kaplan–Meier Plotter online software was used for survival analysis. Loss-of-function assays and gain-of-function assays were used to assess the function of PCAT6 in OC development. Moreover, small-RNA sequencing, bioinformatic analysis, luciferase assays and rescue experiments were carried out to clarify the potential mechanism of PCAT6 in OC. Results: PCAT6 expression was significantly increased in OC tissues and positively correlated with advanced stages and with poor overall survival, progression-free survival and post-progression survival. Knockdown of PCAT6 in A2780 and SKOV3 cells inhibited OC cell proliferation, migration and invasion. In contrast, Overexpression of PCAT6 exerted the opposite effects on OC cells. Notably, PCAT6 bound to miR-143-3p and affected the expression of transforming growth factor (TGF)-β-activated kinase 1 (TAK1). Subsequent rescue assays confirmed that upregulation of miR-143-3p decreased the PCAT6 overexpression-induced promotion of proliferation, migration and invasion. Moreover, downregulation of miR-143-3p reversed the PCAT6 knockdown-induced inhibition of proliferation, migration, and invasion. Conclusions: Our findings demonstrate that PCAT6 plays an oncogenic role in OC and may be useful as a therapeutic target for OC.
Collapse
Affiliation(s)
- Xiaofang Tan
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Shao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Teng
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Liu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Xue
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuepeng Cao
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chongqi Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhong Zhang
- Maternal and Child Care Service Center, Nanjing, China
| | - Jing Han
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzi Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Zhu F, Liu Z, Zhou Q, Fan J, Zhou D, Xing L, Bo H, Tang L, Fan L. Identification of mRNA Prognostic Markers for TGCT by Integration of Co-Expression and CeRNA Network. Front Endocrinol (Lausanne) 2021; 12:743155. [PMID: 34621245 PMCID: PMC8491582 DOI: 10.3389/fendo.2021.743155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Testicular germ cell tumor (TGCT) is the most common malignant tumor in young men and is associated with poor prognosis. We assessed the RNA expression profiles of 13 TGCT tissues and 4 adjacent normal tissues by transcriptome sequencing to identify novel prognostic biomarkers. We detected several differentially expressed mRNAs in TGCT that were functionally annotated by GO and KEGG enrichment analyses to tumorigenesis-related processes such as immunity and chemotherapeutic resistance. An mRNA-lncRNA-miRNA regulatory network was constructed using RNA-Seq data and public databases, and integrated with TCGA database to develop a prediction model for metastasis and recurrence. Finally, GRK4, PCYT2 and RGSL1 were identified as predictive markers of survival and therapeutic response. In conclusion, we found several potential predictors for TGCT prognosis and immunotherapeutic response by ceRNA network analysis.
Collapse
Affiliation(s)
- Fang Zhu
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Zhizhong Liu
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Hunan Cancer Hospital, Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, China
| | - Qianyin Zhou
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Dai Zhou
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC) Xiangya, Changsha, China
| | - Liu Xing
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC) Xiangya, Changsha, China
| | - Hao Bo
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC) Xiangya, Changsha, China
- *Correspondence: Hao Bo, ; Le Tang, ; Liqing Fan,
| | - Le Tang
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
- *Correspondence: Hao Bo, ; Le Tang, ; Liqing Fan,
| | - Liqing Fan
- National Health Commission Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC) Xiangya, Changsha, China
- *Correspondence: Hao Bo, ; Le Tang, ; Liqing Fan,
| |
Collapse
|
24
|
Xu G, Zhu Y, Liu H, Liu Y, Zhang X. Long Non-Coding RNA KCNQ1OT1 Promotes Progression of Hepatocellular Carcinoma by miR-148a-3p/IGF1R Axis. Technol Cancer Res Treat 2020; 19:1533033820980117. [PMID: 33349156 PMCID: PMC7758659 DOI: 10.1177/1533033820980117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence have suggested that long non-coding RNAs (lncRNAs) act as a critical regulator in tumorgenesis. LncRNA KCNQ1OT1 (KCNQ1OT1) has been recently shown to be dysregulated in many cancers. This study was aimed to explore the biological role of KCNQ1OT1 in hepatocellular carcinoma (HCC). In our study, we first observed the expression level of KCNQ1OT1 was distinctly up-regulated in HCC tissues and cell lines compared with adjacent non-cancer tissues and normal liver cell line. And clinical results indicated that higher expression of KCNQ1OT1 was correlated with poor prognosis of patients with HCC. Next, functional studies revealed that knockdown of KCNQ1OT1 induced apoptosis and repressed proliferation, migration and invasion of HCC cells. In addition, knockdown of KCNQ1OT1 suppressed xenograft tumor growth in vivo. Mechanically, we found that KCNQ1OT1 can promote the expression of IGF1R by functioning as a competing endogenous RNA of miR-148a-3p. In conclusion, our results shown the oncogenic role of KCNQ1OT1 in HCC by regulating the miR-148a-3p/IGF1R axis and may provide a new insight and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Guoping Xu
- Medical Imaging Department, the Tianjin Medical University Second Hospital, Tianjin, China
| | - Yungang Zhu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Huijia Liu
- Medical Imaging Department, the Tianjin Medical University Second Hospital, Tianjin, China
| | - Yingying Liu
- Medical Imaging Department, the Tianjin Medical University Second Hospital, Tianjin, China
| | - Xuening Zhang
- Medical Imaging Department, the Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
25
|
Liu Y, Yang Y, Ding L, Jia Y, Ji Y. LncRNA MIR4435-2HG inhibits the progression of osteoarthritis through miR-510-3p sponging. Exp Ther Med 2020; 20:1693-1701. [PMID: 32742398 PMCID: PMC7388355 DOI: 10.3892/etm.2020.8841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a disorder of diarthrodial joints that can have multiple causes. Long non-coding RNAs (lncRNAs) participate in multiple diseases, including OA. It has recently been reported that the lncRNA microRNA 4435-2HG (MIR4435-2HG) is downregulated in OA tissues; however, the biological role of MIR4435-2HG during OA progression remains unclear. In the present study, interleukin (IL)-1β was used to establish an in vitro model of OA. Protein expressions of matrix metallopeptidase (MMP) 1, MMP13, collagen II, interleukin (IL)-17A, p65, phosphorylated (p)-p65, IκB and p-IκB in CHON-001 cells were detected by western blotting. Gene expressions of IL-17A, MIR4435-2HG and miR-510-3p in tissues or CHON-001 cells were measured by reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assay and immunofluorescence staining were used to investigate cell proliferation, and cell apoptosis was detected by flow cytometry. The association between MIR4435-2HG, miR-510-3p and IL-17A was investigated using the dual luciferase report assay. MIR4435-2HG and miR-510-3p overexpression were transfected into CHON-001 cells. The results demonstrated that miR4435-2HG overexpression significantly increased proliferation and inhibited apoptosis of CHON-001 cells. In addition, miR-510-3p was identified as the downstream target of MIR4435-2HG, and miR-510-3p directly targeted IL-17A. The results from the present study suggested that MIR4435-2HG could mediate the progression of OA by inactivating the NF-κB signaling pathway. In addition, miR4435-2HG overexpression inhibited OA progression, suggesting that miR4435-2HG may be considered as a potential therapeutic target in OA.
Collapse
Affiliation(s)
- Yingli Liu
- Rehabilitation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yun Yang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Liangjia Ding
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuqin Jia
- Department of ICU (Intensive Care Unit), The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuntao Ji
- Department of Education office, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| |
Collapse
|