1
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
2
|
Yao K, Yang M, Shu M, Wang T, Gao D, Zhou L, Wang G, Zhang Z, Tang J. SOX4 promotes vascular abnormality in glioblastoma and is a novel target to improve drug delivery. Transl Oncol 2024; 50:102120. [PMID: 39288695 PMCID: PMC11421337 DOI: 10.1016/j.tranon.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with dismal prognosis. Vascular abnormality is a hallmark of GBM, and aggravates diseases progression by increasing hypoxia, inducing life-threaten edema and hindering drug delivery. Nonetheless, the intricate mechanism underlying vascular abnormality remains inadequately understood. Here, we revealed a key role of SOX4 on vascular abnormality in GBM. SOX4 expression was increased in endothelial cells (ECs) from human brain tumors compared with ECs from paired normal brain tissue. Knockdown of SOX4 in mouse brain ECs restrained cell migration and proliferation. Furthermore, in vitro suppression of SOX4 in brain ECs and in vivo conditional knockout of SOX4 in tumor ECs led to the downregulation of genes linked with vascular abnormality. Notably, specific depletion of SOX4 in ECs enhanced drug delivery and sensitive tumor to chemotherapeutic drugs in GBM. Taken together, these results demonstrated that SOX4 is a novel regulator for tumor angiogenesis and vascular abnormality in GBM. Our findings identify SOX4 as a potential vascular therapeutic target to improve drug delivery for GBM treatment.
Collapse
Affiliation(s)
- Kunhua Yao
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Mingbiao Yang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Mi Shu
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Tian Wang
- Department of Oncology, Xintai Hospital of Traditional Chinese Medicine, Tai'an, Shandong 271299,PR China
| | - Dan Gao
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Liqi Zhou
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, PR China.
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
3
|
Li Y, Kong M, Qiu T, Ji Y. Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway. PRECISION CLINICAL MEDICINE 2024; 7:pbae026. [PMID: 39507292 PMCID: PMC11540160 DOI: 10.1093/pcmedi/pbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Infantile hemangioma (IH) is the most prevalent benign vascular tumor in children, yet its pathogenesis remains incompletely understood. Research has established a strong association between SOX4 and tumor blood vessel formation. The objective of this study was to investigate the function and underlying mechanism of SOX4 in IH development with the aim of identifying novel therapeutic targets. Methods We identified the transcription factor SOX4 associated with IH through RNA-seq screening of IH microtumors and validated it in IH tissues. The effect of SOX4 on the biological behavior of CD31+ hemangioma-derived endothelial cells (HemECs) was investigated via in vitro cell experiments. In addition, RNA-seq analysis was performed on CD31+ HemECs with low expression levels of SOX4, and the target genes of SOX4 were identified. Finally, the effect of SOX4 on tumor angiogenesis was further elucidated through 3D microtumor and animal experiments. Results SOX4 is highly expressed in IH tissues and promotes the proliferation, migration, and angiogenesis of CD31+ HemECs. In addition, SOX4 binds to the endothelial cell-specific molecule 1 (ESM1) promoter to promote the progression of the PI3K/AKT signaling pathway. Finally, through IH 3D microtumor and animal experiments, SOX4 and ESM1 are shown to be tumorigenic genes that independently promote tumor progression. Conclusions SOX4 plays a crucial role in the progression of IH, and the SOX4/ESM1 axis may serve as a novel biomarker and potential therapeutic target for IH.
Collapse
Affiliation(s)
- Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan 25002, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Xiao L, Li Q, Chen S, Huang Y, Ma L, Wang Y, Chen J, Zhang J, Liu A, Yuan X, Liu Y, Liu B. ADAMTS16 drives epithelial-mesenchymal transition and metastasis through a feedback loop upon TGF-β1 activation in lung adenocarcinoma. Cell Death Dis 2024; 15:837. [PMID: 39551781 PMCID: PMC11570625 DOI: 10.1038/s41419-024-07226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype of lung cancer. The poor prognosis of LUAD patients is attributed primarily to metastasis. ADAMTS16 is a crucial member of the ADAMTS family and is involved in tumor progression. However, its role and regulatory mechanism in LUAD remain unexplored. In this study, ADAMTS16 was identified as a crucial oncogene and survival predictor in LUAD via analyses of public datasets. Clinical specimens and tissue microarrays confirmed the differential expression and prognostic value of ADAMTS16 in LUAD patients. Transcriptome data and in vitro experiments demonstrated that ADAMTS16 was positively associated with epithelial-mesenchymal transition (EMT) and the migration abilities of LUAD cells. Knockdown of ADAMTS16 attenuated lung and pleural metastasis in an animal model. Mechanistically, the results of the enzyme-linked immunosorbent assay (ELISA) and western blot (WB) suggested that ADAMTS16 activated the TGF-β signaling pathway by facilitating the conversion of LAP-TGF-β1 to active TGF-β1. Co-Immunoprecipitation (co-IP) indicated an interaction between ADAMTS16 and LAP-TGF-β1. Inhibition of ADAMTS16 impaired EMT and aggressiveness of LUAD cells, while treatment with recombinant TGF-β1 reversed this inhibition. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays indicated that SOX4 acted as a transcriptional activator of ADAMTS16 and that TGF-β1 regulated the expression of ADAMTS16 by increasing the binding of SOX4 to the promoter of ADAMTS16. Suppressing the TGF-β signaling pathway inhibited ADAMTS16 expression, EMT, and lung metastasis, whereas overexpressing SOX4 reversed this inhibition. Therefore, ADAMTS16 forms a positive feedback loop with the TGF-β1/SOX4 axis to regulate EMT and metastasis, and disruption of this feedback loop inhibits tumor progression. These findings underscore the potential of ADAMTS16 as a prognostic biomarker and therapeutic target in LUAD and offer novel insight into the mechanism of EMT and metastasis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaijun Chen
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhu H, Xu S. SOX4 inhibits ferroptosis and promotes proliferation of endometrial cancer cells via the p53/SLC7A11 signaling. J Obstet Gynaecol Res 2024; 50:2093-2106. [PMID: 39318043 DOI: 10.1111/jog.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
AIM Sex-determining region Y-related high-mobility group box 4 (SOX4) has been reported to play a carcinogenic role in endometrial cancer (EC). However, the biological function and regulatory mechanisms of SOX4 in ferroptosis during the progression of EC are still unknown. METHODS The mRNA and protein levels were scrutinized by quantitative reverse-transcription polymerase chain reaction and western blot, respectively. The cell viability and proliferative capability were determined by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Transcriptional regulation of gene expression was investigated by dual-luciferase reporter assay and chromatin immunoprecipitation. Ferroptosis was evaluated by detection of reactive oxygen species, malondialdehyde, Fe2+, and ferroptosis-related proteins. The mice test was implemented to confirm the influence of SOX4 on EC tumor growth and ferroptosis in vivo. RESULTS We here discovered the elevation of SOX4 in EC tissues and cells. Functionally, SOX4 knockdown hampered proliferation and promoted ferroptosis of EC cells. Mechanistically, SOX4 bound to p53 promoter and inhibited its transcriptional activity in EC cells. In addition, p53 transcriptionally suppressed SLC7A11 expression in EC cells. Downregulation of p53 reverses the effect of SOX4 knockdown on proliferation and ferroptosis of EC cells. Finally, in vivo experiments demonstrated that SOX4 depletion hindered tumor growth and triggered ferroptosis in EC. CONCLUSIONS These findings collectively suggested that SOX4 inhibited ferroptosis and promoted proliferation of EC cells via the p53/SLC7A11 signaling. Our research unveiled a novel regulatory mechanism of ferroptosis in EC, offering promising perspectives for the development of EC therapies.
Collapse
Affiliation(s)
- Hongli Zhu
- Department of Obstetrics and Gynecology, Affliated Hangzhou First People's Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Xu
- Department of Obstetrics and Gynecology, Affliated Hangzhou First People's Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang Y, Chen D, Ang B, Deng X, Li B, Bai Y, Zhang Y. A necroptosis-regulated model from single-cell analysis that predicts survival and identifies the Pivotal role of MAGEA6 in hepatocellular carcinoma. Heliyon 2024; 10:e37711. [PMID: 39315163 PMCID: PMC11417173 DOI: 10.1016/j.heliyon.2024.e37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Youcheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Ang
- Department of Oncology, Tianjin First Central Hospital Clinic Institute, Tianjin 300192, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Li
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Yi Bai
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
7
|
Wen T, Zhang X, Gao Y, Tian H, Fan L, Yang P. SOX4-BMI1 axis promotes non-small cell lung cancer progression and facilitates angiogenesis by suppressing ZNF24. Cell Death Dis 2024; 15:698. [PMID: 39349443 PMCID: PMC11442842 DOI: 10.1038/s41419-024-07075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The incidence of lung cancer has become the highest among all cancer types globally, also standing as a leading cause of cancer-related deaths. Lung cancer is broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with the latter accounting for 85% of total cases. SRY-box transcription factor 4 (SOX4), a crucial transcription factor, has been found to play a key role in the development of various cancers. However, the association between SOX4 and NSCLC is still unclear. This study investigated the clinical relevance of SOX4 and its potential mechanisms in the progression of NSCLC. Analysis of our NSCLC patient cohort revealed a significant increase in SOX4 levels in cancerous tissues, indicating its role as an independent prognostic indicator for NSCLC. In vitro experiments demonstrated that elevated SOX4 expression facilitated NSCLC cell migration, invasion, and EMT. Functionally, SOX4 drives NSCLC progression by enhancing the transcription and expression of B-cell-specific moloney leukemia virus insertion site 1 (BMI1). The oncogenic impact of SOX4-induced BMI1 expression on NSCLC advancement was validated through both in vivo and in vitro studies. In addition, our findings showed that BMI1 promoted the ubiquitination of histone H2A (H2Aub), leading to decreased zinc finger protein 24 (ZNF24) expression, which subsequently triggered vascular endothelial growth factor A (VEGF-A) secretion in NSCLC cells, thereby promoting NSCLC angiogenesis. Moreover, we evaluated the therapeutic potential of a BMI1 inhibitor in combination with Bevacizumab for NSCLC treatment using orthotopic models. The data presented in our study reveal a previously unrecognized role of the SOX4-BMI1 axis in promoting NSCLC progression and angiogenesis. This research significantly contributes to our knowledge of the interplay between SOX4 and BMI1 in NSCLC, potentially paving the way for the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Ting Wen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Xiao Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yun Gao
- Department of Internal Medicine, Shandong Provincial Taishan Hospital, Taian, Shandong, 271000, China
| | - Hong Tian
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Lufeng Fan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| | - Ping Yang
- Department of Oncology, Qingdao Endocrine and Diabetes Hospital & Institute, Qingdao, Shandong, 266000, China.
| |
Collapse
|
8
|
Zhao Y, Liang W, Liu Z, Chen X, Lin C. Impact of SDF-1 and AMD3100 on Hair Follicle Dynamics in a Chronic Stress Model. Biomolecules 2024; 14:1206. [PMID: 39456139 PMCID: PMC11505668 DOI: 10.3390/biom14101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress is a common cause of hair loss, involving inflammatory responses and changes in cellular signaling pathways. This study explores the mechanism of action of the SDF-1/CXCR4 signaling axis in chronic stress-induced hair loss. The research indicates that SDF-1 promotes hair follicle growth through the PI3K/Akt and JAK/STAT signaling pathways. Transcriptome sequencing analysis was conducted to identify differentially expressed genes in the skin of normal and stressed mice, with key genes SDF-1/CXCR4 selected through machine learning and a protein-protein interaction network established. A chronic stress mouse model was created, with injections of SDF-1 and AMD3100 administered to observe hair growth, weight changes, and behavioral alterations and validate hair follicle activity. Skin SDF-1 concentrations were measured, differentially expressed genes were screened, and pathways were enriched. Activation of the PI3K/Akt and JAK/STAT signaling pathways was assessed, and siRNA technology was used in vitro to inhibit the expression of SDF-1 or CXCR4. SDF-1 promoted hair follicle activity, with the combined injection of SDF-1 and AMD3100 weakening this effect. The activation of the PI3K/Akt and JAK/STAT signaling pathways was observed in the SDF-1 injection group, confirmed by Western blot and immunofluorescence. Silencing SDF-1 through siRNA-mediated inhibition reduced cell proliferation and migration abilities. SDF-1 promotes hair growth in chronic stress mice by activating the PI3K/Akt and JAK/STAT pathways, an effect reversible by AMD3100. The SDF-1/CXCR4 axis may serve as a potential therapeutic target for stress-induced hair loss.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Wanji Industrial Zone, Taishan North Road, Shantou 515041, China;
| | - Wenzi Liang
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Zhehui Liu
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Xiuwen Chen
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| |
Collapse
|
9
|
Wang Y, Zang F, Shao B, Gao Y, Yang H, Guo Y, Ding T, Sun B. From bioinformatics to clinical applications: a novel prognostic model of cuproptosis-related genes based on single-cell RNA sequencing data in hepatocellular carcinoma. BMC Immunol 2024; 25:59. [PMID: 39251909 PMCID: PMC11382408 DOI: 10.1186/s12865-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE AND METHODS To ascertain the connection between cuproptosis-related genes (CRGs) and the prognosis of hepatocellular carcinoma (HCC) via single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data, relevant data were downloaded from the GEO and TCGA databases. The differentially expressed CRGs (DE-CRGs) were filtered by the overlaps in differentially expressed genes (DEGs) between HCC patients and normal controls (NCs) in the scRNA-seq database, DE-CRGs between high- and low-CRG-activity cells, and DEGs between HCC patients and NCs in the TCGA database. RESULTS Thirty-three DE-CRGs in HCC were identified. A prognostic model (PM) was created employing six survival-related genes (SRGs) (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) via univariate Cox regression analysis and LASSO. The predictive ability of the model was validated via a nomogram and receiver operating characteristic curves. Research has employed tumor immune dysfunction and exclusion as a means to examine the influence of PM on immunological heterogeneity. Macrophage M0 levels were significantly different between the high-risk group (HRG) and the low-risk group (LRG), and a greater macrophage level was linked to a more unfavorable prognosis. The drug sensitivity data indicated a substantial difference in the half-maximal drug-suppressive concentrations of idarubicin and rapamycin between the HRG and the LRG. The model was verified by employing public datasets and our cohort at both the protein and mRNA levels. CONCLUSION A PM using 6 SRGs (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) was developed via bioinformatics research. This model might provide a fresh perspective for assessing and managing HCC.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China.
| | - Fenglin Zang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Yanan Gao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Haicui Yang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| |
Collapse
|
10
|
Gong W, Zhang S, Tian X, Chen W, He Y, Chen L, Ding T, Ren P, Shi L, Wu Q, Sun Y, Chen L, Guo H. Tertiary lymphoid structures as a potential prognostic biomarker for combined hepatocellular-cholangiocarcinoma. Hepatol Int 2024; 18:1310-1325. [PMID: 38767772 PMCID: PMC11297834 DOI: 10.1007/s12072-024-10694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-CCA), as a rare primary hepatic tumor, is challenging to accurately assess in terms of the clinical outcomes and prognostic risk factors in patients. This study aimed to clarify the function of tertiary lymphoid structure (TLS) status in predicting the outcome of cHCC-CCA and to preliminarily explore the possible mechanism of TLS formation. METHODS The TLSs, with different spatial distributions and densities, of 137 cHCC-CCA were quantified, and their association with prognosis was assessed by Cox regression and Kaplan-Meier analyses. We further validated TLS possible efficacy in predicting immunotherapy responsiveness in two cHCC-CCA case reports. TLS composition and its relationship to CXCL12 expression were analysed by fluorescent multiplex immunohistochemistry. RESULTS A high intratumoural TLS score was correlated with prolonged survival, whereas a high TLS density in adjacent tissue indicated a worse prognosis in cHCC-CCA. Mature TLSs were related to favorable outcomes and showed more CD8 + T cells infiltrating tumor tissues. We further divided the cHCC-CCA patients into four immune grades by combining the peri-TLS and intra-TLS, and these grades were an independent prognostic factor. In addition, our reported cases suggested a potential value of TLS in predicting immunotherapy response in cHCC-CCA patients. Our findings suggested that CXCL12 expression in cHCC-CCA tissue was significantly correlated with TLS presence. CONCLUSION The spatial distribution and density of TLSs revealing the characteristics of the cHCC-CCA immune microenvironment, significantly correlated with prognosis and provided a potential immunotherapy response biomarker for cHCC-CCA.
Collapse
Affiliation(s)
- Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Su Zhang
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiangdong Tian
- Department of Endoscopic Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenshuai Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peiqi Ren
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Liver Cancer Research Center, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Lu Chen
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Liver Cancer Research Center, Tianjin, 300060, China.
- National Center for Global Health and Medicine, Department of Hepato-Biliary-Pancreatic Surgery, Tokyo, Japan.
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
11
|
S A, Parida N, Patnaik S. SOX4 induces cytoskeleton remodeling and promotes cell motility via N-wasp/ARP2/3 pathway in colorectal cancer cells. Exp Cell Res 2024; 439:114059. [PMID: 38705228 DOI: 10.1016/j.yexcr.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.
Collapse
Affiliation(s)
- Anupriya S
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India.
| | - Nandita Parida
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India.
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India.
| |
Collapse
|
12
|
Sun G, Liu F, Lesany M, Nemati S. Comprehensive analysis of recently discovered lncRNA-associated competing endogenous RNA network in nasopharyngeal carcinoma. Pathol Res Pract 2024; 258:155314. [PMID: 38696855 DOI: 10.1016/j.prp.2024.155314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelium of the nasopharynx and is characterized by geography-dependent incidence. Despite the high mortality rate, specifically in some ethnic groups, the mechanisms underlying NPC pathogenesis are not thoroughly understood and there is an urgent need to detect the potential and clinically applicable biomarkers to ameliorate the overall survival rate and improve the prognosis of patients. In recent years, research has increasingly focused on the importance of long non-coding RNAs (LncRNAs) in cancer progression. LncRNAs play critical roles in regulating gene expression through mechanisms such as competitively binding to microRNAs (CeRNA). While numerous LncRNAs have been studied in nasopharyngeal carcinoma (NPC), their potential as diagnostic and prognostic biomarkers have not been systematically examined. In the present study, we delve into elucidating the biological functions, molecular mechanisms, and clinical significance of newly identified LncRNAs that serve as sponges for different microRNAs in NPC. We highlight their regulatory mechanisms in promoting cell proliferation, invasion, and metastasis, and discuss their implications in diverse cancer-related signaling pathways. Our overall goal is to emboss the fundamental roles of LncRNA-mediated CeRNA networks in NPC progression, which may open up new avenues for determining the pathogenesis of NPC and developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Guochen Sun
- Otolaryngology Department, Zhejiang Tongde Hospital, Hangzhou, Zhejiang 310000, China.
| | - Feng Liu
- Department of Stomatology, Zhejiang Province, Tongde Hospital, Hangzhou, Zhejiang 310000, China
| | - Maryam Lesany
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Sara Nemati
- Department of Medical sciences, Ardabil branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
13
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Khader N, Shchuka VM, Dorogin A, Shynlova O, Mitchell JA. SOX4 exerts contrasting regulatory effects on labor-associated gene promoters in myometrial cells. PLoS One 2024; 19:e0297847. [PMID: 38635533 PMCID: PMC11025800 DOI: 10.1371/journal.pone.0297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/13/2024] [Indexed: 04/20/2024] Open
Abstract
The uterine muscular layer, or myometrium, undergoes profound changes in global gene expression during its progression from a quiescent state during pregnancy to a contractile state at the onset of labor. In this study, we investigate the role of SOX family transcription factors in myometrial cells and provide evidence for the role of SOX4 in regulating labor-associated genes. We show that Sox4 has elevated expression in the murine myometrium during a term laboring process and in two mouse models of preterm labor. Additionally, SOX4 differentially affects labor-associated gene promoter activity in cooperation with activator protein 1 (AP-1) dimers. SOX4 exerted no effect on the Gja1 promoter; a JUND-specific activation effect at the Fos promoter; a positive activation effect on the Mmp11 promoter with the AP-1 dimers; and surprisingly, we noted that the reporter expression of the Ptgs2 promoter in the presence of JUND and FOSL2 was repressed by the addition of SOX4. Our data indicate SOX4 may play a diverse role in regulating gene expression in the laboring myometrium in cooperation with AP-1 factors. This study enhances our current understanding of the regulatory network that governs the transcriptional changes associated with the onset of labor and highlights a new molecular player that may contribute to the labor transcriptional program.
Collapse
Affiliation(s)
- Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virlana M. Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
16
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
17
|
Yin X, Xia K, Peng S, Tan B, Huang Y, Wang M, He M. ABCF1/CXCL12/CXCR4 Enhances Glioblastoma Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT Signal Pathway. Dev Neurosci 2023; 46:210-220. [PMID: 37757768 DOI: 10.1159/000533130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent and fatal form of brain tumor, which is associated with a poor prognosis. ATP-binding cassette subfamily F member 1 (ABCF1) is an E2 ubiquitin-conjugating enzyme, which is implicated in regulating immune responses and tumorigenesis. Aberrant E3 ubiquitylation has been evidenced in GBM. However, the role of ABCF1 in GBM needs to be further explored. The expression of ABCF1, CXC chemokine ligand 12 (CXCL12), and CXC chemokine receptor 4 (CXCR4) in GBM tissues was examined by the GEPIA tool, real-time PCR and Western blotting. HMC3, U251MG, and LN-229 cells were cultured and transfected with shRNA targeting ABCF1 and ABCF1 plasmids. The proliferative, migrative, and invasive ability of cells was detected. Western blotting was used to detect the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT). We observed that GBM tissues had higher ABCF1, CXCL12, and CXCR4 expression levels. The expression levels of CXCL12 and CXCR4 were enhanced by ABCF1 overexpression, which were significantly reversed by silence of ABCF1 in GBM cells. Silencing ABCF1 or CXCR4 inhibition weakened the capacity of GBM cell growth, migration, and invasion, while ectopic ABCF1 expression or CXCL12 treatment enhanced the cellular function of GBM cells. Furthermore, p-PI3K and p-AKT protein levels were downregulated by ABCF1 knockdown or CXCR4 blockade, which were prompted by ABCF1 overexpression or CXCL12 supplement. The ABCF1-CXCL12-CXCR4 axis was identified as a key player in GBM cell survival and metastasis by activating the PI3K/AKT signaling pathway in GBM cells.
Collapse
Affiliation(s)
- Xiaohong Yin
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Keshun Xia
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Song Peng
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Bo Tan
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Yaohui Huang
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Mao Wang
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Mingfang He
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
18
|
Tan S, Chen X, Liu W. Tumor-suppressive role of miR-139-5p in angiogenesis and tumorigenesis of ovarian cancer: Based on GEO microarray analysis and experimental validation. Cell Signal 2023; 109:110730. [PMID: 37244634 DOI: 10.1016/j.cellsig.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
This study clarified the possible molecular mechanisms by which the miR-139-5p/SOX4/TMEM2 axis affected angiogenesis and tumorigenesis of ovarian cancer (OC) based on GEO microarray datasets and experimental support. The expression of miR-139-5p and SOX4 was examined in clinical OC samples. Human umbilical vein endothelial cells (HUVECs) and human OC cell lines were included in vitro experiments. Tube formation assay was conducted in HUVECs. The expression of SOX4, SOX4, and VEGF in OC cells was identified using Western blot and immunohistochemistry. Luciferase assays were conducted to validate the targeting relationship between miR-139-5p and SOX4 and between SOX4 and TMEM2. A RIP assay assessed the binding of SOX4 and miR-139-5p. The impact of miR-139-5p and SOX4 on OC tumorigenesis in vivo was evaluated in nude mice. SOX4 was up-regulated, while miR-139-5p was down-regulated in OC tissues and cells. Ectopic miR-139-5p expression or SOX4 knockdown inhibited angiogenesis and tumorigenicity of OC. By targeting SOX4 in OC, miR-139-5p lowered VEGF expression, angiogenesis, and TMEM2 expression. The miR-139-5p/SOX4/TMEM2 axis also reduced VEGF expression and angiogenesis, which might curtail OC growth in vivo. Collectively, miR-139-5p represses VEGF expression and angiogenesis by targeting the transcription factor SOX4 and down-regulating TMEM2 expression, thereby impeding OC tumorigenesis.
Collapse
Affiliation(s)
- Shu Tan
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Xiuwei Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Wei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China.
| |
Collapse
|
19
|
Ge W, Gong Y, Li Y, Wu N, Ruan Y, Xu T, Shu Y, Qiu W, Wang Y, Zhao C. IL-17 induces non-small cell lung cancer metastasis via GCN5-dependent SOX4 acetylation enhancing MMP9 gene transcription and expression. Mol Carcinog 2023; 62:1399-1416. [PMID: 37294072 DOI: 10.1002/mc.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.
Collapse
Affiliation(s)
- Wen Ge
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Gong
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningxia Wu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Ruan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Zhou X, Hu Y, Sun H, Chen R, Huang G, Liu J. Relationship between SUVmax on 18F-FDG PET and PD-L1 expression in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3107-3115. [PMID: 37147479 DOI: 10.1007/s00259-023-06251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Our study was to investigate the correlation between 18F-FDG uptake in HCC and tumor PD-L1 expression in HCC, and assess the value of 18F-FDG PET/CT imaging for predicting PD-L1 expression in HCC. METHODS A total of 102 patients with confirmed HCC were included in this retrospective study. The PD-L1 expression and immune cell infiltrating of tumors were determined through immunohistochemistry staining. The SUVmax of HCC lesions were assessed using 18F-FDG PET/CT. The correlation between PD-L1 expression and the clinicopathological were evaluated by the Cox proportional hazards model and the Kaplan-Meier survival analysis. RESULTS The SUVmax of HCC primary tumors was higher in patients with poorly differentiated HCC, large tumor size, portal vein tumor thrombus, lymph node and distant metastases, and death. The SUVmax of HCC are correlated with the PD-L1 expression and the number of cytotoxic T cells and M2 macrophage infiltration. PD-L1 expression was significantly correlated with tumor SUVmax, tumor differentiation, tumor size, portal vein tumor thrombosis, and patient survival status and infiltrating M2 macrophages. Further, our results confirmed that SUVmax, portal vein tumor thrombosis, and the number of infiltrating M2 macrophages were closely related to PD-L1 expression and were independent risk factors by multivariate analysis. The combined assessment of SUVmax values and the presence of portal vein tumor thrombosis by 18F-FDG PET/CT imaging can help determine PD-L1 expression in HCC. CONCLUSIONS FDG uptake in HCC was positively correlated with the PD-L1 expression and the number of cytotoxic T cells and M2 macrophage infiltration. The combined use of SUVmax and portal vein tumor thrombosis by PET/CT imaging assess the PD-L1 expression better in HCC. These findings also provide a basis for clinical studies to assess the immune status of tumors by PET/CT.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongquan Hu
- Department of Nuclear Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Hong Sun
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
21
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
22
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
23
|
Huang CW, Lin SE, Huang SF, Yu MC, Tang JH, Tsai CN, Hsu HY. The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers (Basel) 2022; 14:cancers14215428. [PMID: 36358846 PMCID: PMC9658947 DOI: 10.3390/cancers14215428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The outcomes of patients with hepatocellular carcinoma (HCC) are unsatisfactory because of its high recurrence rate. The Vessels that encapsulate tumor clusters (VETC) pattern is a unique vascular structure. In this study, we investigated the clinical−pathological features of HCC patients with the VETC pattern. We retrospectively reviewed patients with HCC who underwent curative hepatectomy at Chang Gung Memorial Hospital between 2007 and 2013. The form of the VETC pattern was established using an anti-CD31 stain. The results were classified into positive (VETC+) and negative (VETC−) patterns. We investigated and compared demographic data between these two groups. Overall, 174 patients were classified into either the VETC+ or VETC− groups. The median followed-up period was 80.5 months. There were significant differences in the number of hepatitis B carriers, the occurrence of vascular invasion, tumor size, TNM staging, microvessel density, and recurrence (all p < 0.05). Regarding the prediction of disease-free survival, after COX regression multivariate analysis, VETC+ remained independently associated with recurrent episodes (p = 0.003). The intra-tumoral microvessel density, demonstrated by CD-31, was the only clinical−pathological feature independently associated with VETC+. Our study demonstrated that the VETC pattern is an independent factor of poor prognosis for DFS. Higher intra-tumoral microvessel density was significantly associated with the VETC pattern. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chun-Wei Huang
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Sey-En Lin
- Department of Pathology, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Song-Fong Huang
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Ming-Chin Yu
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan
| | - Jui-Hsiang Tang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Chi-Neu Tsai
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Guishan District, Taoyuan City 33302, Taiwan
| | - Heng-Yuan Hsu
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Liu J, Peng Y, Inuzuka H, Wei W. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Semin Cancer Biol 2022; 86:269-279. [PMID: 35798235 PMCID: PMC11000491 DOI: 10.1016/j.semcancer.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
Abstract
Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
25
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
26
|
Wei H, Gu Q. SOX4 promotes high-glucose-induced inflammation and angiogenesis of retinal endothelial cells by activating NF-κB signaling pathway. Open Life Sci 2022; 17:393-400. [PMID: 35573654 PMCID: PMC9041534 DOI: 10.1515/biol-2022-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a type of main microvascular complication of diabetes mellitus (DM) and an important factor that causes blindness in adults. SOX4 is a transcription factor expressed in the pancreas and is essential for normal endocrine pancreatic development. However, the effect and the regulatory mechanism of SOX4 on DR have not been reported. In the present study, upregulation of SOX4 was found in DM patients, particularly in DR patients and mice models. The in vitro experiments showed that SOX4 depletion increased the viability and inhibited the inflammation level of human retinal endothelial cells (HRCECs) induced by high glucose. Besides, SOX4 knockdown inhibited the migration and angiogenesis of HRCECs upon high glucose treatment. Mechanically, depletion of SOX4 inhibited the NF-κB pathway. Therefore, SOX4 could serve as a promising target for DR treatment.
Collapse
Affiliation(s)
- Haifeng Wei
- Department of Ophthalmology, Tongxiang First People’s Hospital , No. 1918 Jiaochang East Road , Jiaxing , Zhejiang Province, 314500 , China
| | - Quan Gu
- Department of Ophthalmology, Tongxiang First People’s Hospital , No. 1918 Jiaochang East Road , Jiaxing , Zhejiang Province, 314500 , China
| |
Collapse
|
27
|
Lei HW, Huang BR, Cai J, Li CM, Shang CB, Liao ZY, Wan ZD. CXCR4 antagonist AMD3100 enhances therapeutic efficacy of transcatheter arterial chemoembolization in rats with hepatocellular carcinoma. Kaohsiung J Med Sci 2022; 38:781-789. [PMID: 35467082 DOI: 10.1002/kjm2.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
This study aims to discover the therapeutic effect of chemokine (CXC motif) receptor 4 (CXCR4) antagonist AMD3100 combined with transcatheter arterial chemoembolization (TACE) in a rat model with hepatocellular carcinoma (HCC). An orthotopic model of HCC was established and treated with TACE (doxorubicin-lipiodol emulsion) with or without AMD3100. The tumor volume was measured by magnetic resonance imaging (MRI). Histopathological changes were detected by hematoxylin-eosin (HE) staining. HCC cell apoptosis was assessed by terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) staining. Immunohistochemistry was used to detect the expression of CD34, hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and Ki67. Gene and protein expressions were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. Both TACE and AMD3100 reduced the tumor volume in orthotopic rat model of HCC with the decreased CXCR4 expression in tumor tissues, and the combination had better effect. However, TACE increased the microvessel density (MVD) in HCC tissues of rats, while AMD3100 treatment reduced MVD in HCC tissues. AMD3100 reduced the TACE induced MVD in HCC tissues with the reduction of HIF-1α and VEGF expression. Either AMD3100 or TACE could promote HCC cell apoptosis accompanying by decreased cell proliferation, and their combined use had better therapeutic effects. CXCR4 antagonist AMD3100 enhance therapeutic efficacy of TACE in rats with HCC via promoting the HCC cell apoptosis, reducing cell proliferation, and inhibiting MVD, thus reducing tumor volume.
Collapse
Affiliation(s)
- Hong-Wei Lei
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Bi-Run Huang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Cheng-Ming Li
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Chun-Bo Shang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhi-Yang Liao
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zheng-Dong Wan
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
28
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|
29
|
Guan Y, Jiang SR, Liu JG, Shi JR, Liu ZB. USP20 regulates the stability of EMT transcription factor SOX4 and influences colorectal cancer metastasis. Pathol Res Pract 2022; 233:153879. [PMID: 35405623 DOI: 10.1016/j.prp.2022.153879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/28/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a familiar malignancy accompanied by higher morbidity and mortality. The deubiquitination enzyme USP20 has been discovered to be one key factor in several cancers progression. SOX4 is a critical transcription factor to regulate the expression of various genes, and participates into the occurrence and progression of cancers. In this study, it was aimed to illustrate the role of USP20 and the regulatory relationship between USP20 and SOX4 in CRC. METHODS The protein expressions of USP20, SOX4, E-cadherin, N-cadherin, Snail and slug were tested through western blot. The cell proliferation ability was verified through CCK-8 assay. The migration and invasion abilities were detected through Transwell assay. The mRNA expression of SOX4 was confirmed through RT-qPCR. The interaction between USP20 and SOX4 was notarized through Co-IP assay. RESULT Our study demonstrated that USP20 displayed higher expression, and facilitated CRC progression through regulating cell proliferation, migration, invasion and EMT process markers. USP20 was found to modulate SOX4 protein expression. Next, it was verified that USP20 regulated SOX4 degradation through deubiquitination. Finally, through rescue assays, we revealed that USP20 mediated SOX4 expression to accelerate CRC progression. CONCLUSIONS In this study, USP20 regulated the stability of EMT transcription factor SOX4 and aggravated colorectal cancer metastasis. This finding might highlight the function of USP20 in the treatment of CRC.
Collapse
Affiliation(s)
- Yu Guan
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Shi-Ru Jiang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Jun-Guang Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Ji-Rong Shi
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Zhan-Bing Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
30
|
Li D, Wang D, Liu H, Jiang X. LEM domain containing 1 (LEMD1) transcriptionally activated by SRY-related high-mobility-group box 4 (SOX4) accelerates the progression of colon cancer by upregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Bioengineered 2022; 13:8087-8100. [PMID: 35294319 PMCID: PMC9161920 DOI: 10.1080/21655979.2022.2047556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Colon cancer is a highly malignant tumor in the digestive system. LEM domain containing 1 (LEMD1) is supposed to be a survival marker of poor prognosis in colon cancer. We aimed to explore the role and mechanism of LEMD1 in colon cancer progression. GEPIA database analyzed LEMD1 expression in colon cancer tissues and prognosis of colon cancer patients. LEMD1 expression in tumor cells was tested by RT-qPCR and western blotting. Proliferation of colon cancer cells was estimated by CCK-8 and colony formation assays. Transwell and wound healing assays were used to appraise the cell invasion and migration. Meanwhile, tube formation assays were used to evaluate angiogenesis. The possible binding sites between SRY-related high-mobility-group box 4 (SOX4) and LEMD1 were predicted by JASPAR database. Besides, SOX4 expression in colon cancer tissues and the correlation between SOX4 and LEMD1 were examined using the GEPIA database. Luciferase reporter and ChIP assays were used to verify the interaction between SOX4 and LEMD1. The expression of proteins in PI3K/Akt signaling was evaluated by western blotting. LEMD1 was overexpressed in colon cancer tissues and cells and associated with poor prognosis. Functionally, LEMD1 deficiency impeded the proliferation, migration, invasion and angiogenesis of colon cancer cells. Additionally, SOX4 had a positive correlation with LEMD1 and could bind to LEMD1 promoter. Rescue assays validated that SOX4 elevation reversed the suppressive role of LEMD1 deletion in the development of colon cancer and the expression of p-PI3K and p-AKT. Collectively, LEMD1 induced by SOX4 drove the progression of colon cancer by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ding Li
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Haofeng Liu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| |
Collapse
|
31
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
32
|
Tang J, Li Y, Liu B, Liang W, Hu S, Shi M, Zeng J, Li M, Huang M. Uncovering a Key Role of ETS1 on Vascular Abnormality in Glioblastoma. Pathol Oncol Res 2021; 27:1609997. [PMID: 34867089 PMCID: PMC8641556 DOI: 10.3389/pore.2021.1609997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Microvascular proliferation and abnormal vasculature are the hallmarks of the GBM, aggravating disease progression and increasing patient morbidity. Here, we uncovered a key role of ETS1 on vascular abnormality in glioblastoma. ETS1 was upregulated in endothelial cells from human tumors compared to endothelial cells from paired control brain tissue. Knockdown of Ets1 in mouse brain endothelial cells inhibited cell migration and proliferation, and suppressed expression of genes associated with vascular abnormality in GBM. ETS1 upregulation in tumor ECs was dependent on TGFβ signaling, and targeting TGFβ signaling by inhibitor decreased tumor angiogenesis and vascular abnormality in CT-2A glioma model. Our results identified ETS1 as a key factor regulating tumor angiogenesis, and suggested that TGFβ inhibition may suppress the vascular abnormality driven by ETS1.
Collapse
Affiliation(s)
- Jiefu Tang
- Trauma Center, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Boxuan Liu
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Wei Liang
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Sanbao Hu
- Department of Orthopaedics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meilian Shi
- Department of Infectious Diseases, The Second People's Hospital of Huaihua, Huaihua, China
| | - Jie Zeng
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Mingzhen Li
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | | |
Collapse
|
33
|
Fu C, Xin J, Zhang W, Lai J, Huang Z. LINC00992 exerts oncogenic activities in prostate cancer via regulation of SOX4. Exp Cell Res 2021; 408:112855. [PMID: 34599930 DOI: 10.1016/j.yexcr.2021.112855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The critical role of long non-coding RNAs (lncRNAs) has been implicated in prostate cancer (PCa). As one of them, LINC00992 (LNC992) has been revealed by bioinformatics prediction to be significantly overexpressed in PCa. However, the underlying mechanism of LNC992 in PCa has not been well investigated. METHODS First, gene expression microarrays of prostate adenocarcinoma (PRAD) were downloaded from the GEO database, and differentially expressed genes were analyzed. Subsequently, we assessed the LNC992 expression in PCa patients. PCa cells with overexpression or low expression of LNC992 were generated, followed by the examination of proliferation, invasion and migration in vitro and in vivo. The differentially expressed genes were analyzed by microarrays after altering LNC992 expression in PCa cells, and the downstream regulatory mechanisms of LNC992 were analyzed by bioinformatics analysis and validated by RIP and RNA pull-down assays. RESULTS LNC992 was highly expressed in the PRAD database and in cancer tissues from PCa patients, serving as a poor prognostic factor for PCa patients. Knockdown of LNC992 significantly inhibited PCa cell growth, metastasis, and angiogenesis in vitro and in vivo. Moreover, we found that knockdown of LNC992 significantly suppressed SOX4 expression in cells and that LNC992 could bind to EIF4A3 and promote the translation of SOX4. Inhibition of either EIF4A3 or SOX4 significantly suppressed the growth and metastasis of PCa cells. CONCLUSIONS LNC992 elevates SOX4 expression by binding to SOX4 mRNA and recruiting translation initiation factor EIF4A3, thereby promoting the growth and metastasis of PCa cells in vitro and in vivo.
Collapse
Affiliation(s)
- Changde Fu
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Jun Xin
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Wei Zhang
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Jinjin Lai
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Zhiyang Huang
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China.
| |
Collapse
|
34
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Yang D, Guo P, He T, Powell CA. Role of endothelial cells in tumor microenvironment. Clin Transl Med 2021; 11:e450. [PMID: 34185401 PMCID: PMC8214858 DOI: 10.1002/ctm2.450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dawei Yang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital Institute for Clinical Science, Shanghai Medical CollegeShanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghai Engineer & Technology Research Center of Internet of Things for Respiratory MedicineZhongshan Hospital Fudan UniversityShanghai200032China
- Division of Pulmonary, Critical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Tianrui He
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital Institute for Clinical Science, Shanghai Medical CollegeShanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghai Engineer & Technology Research Center of Internet of Things for Respiratory MedicineZhongshan Hospital Fudan UniversityShanghai200032China
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
36
|
Deng H, Wang M, Xu Q, Yao H. ZFAS1 Promotes Colorectal Cancer Metastasis Through Modulating miR-34b/SOX4 Targeting. Cell Biochem Biophys 2021; 79:387-396. [PMID: 33725330 DOI: 10.1007/s12013-021-00976-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) belongs to one of gastric cancers that half of cases will develop metastasis, causing higher mortality or chemotherapy resistance. In the present study, the long noncoding RNA zinc finger antisense 1 (ZFAS1) was proved to have high expression level in CRC samples and in advanced stages. Additionally, it also indicated that p53 status is associated with ZFAS1 expression. Silencing ZFAS1 reduced both migration and invasion ability of DLD-1 and HCT-116 cells, which is relevant to the EMT process. In addition, it was confirmed that miR-34b, a tumor suppressor miRNA directly targeted ZFAS1 3' untranslated region (3'UTR) and inhibited ZFAS1 expression. Furthermore, miR-34b partially reversed the effect of ZFAS1 on migration and invasion ability in DLD-1 cells. Meanwhile, p53 status changes by overexpression vectors or siRNA turbulent ZFAS1 expression. Besides, it was found that in most cases, the oncogene SOX4 was directly targeted by miR-34b and positive correlated to ZFAS1 expression. Silencing ZFAS1 induced SOX4 expression in DLD-1 cells. Our data demonstrated the functions and mechanisms of ZFAS1 in CRC metastasis, illustrating miR-34b directly targets ZFAS1 and inhibits metastasis ability of CRC cells. SOX4 is also the direct downstream target of miR-34b, and silencing ZFAS1 can inhibit SOX4 though modulating miR-34b.
Collapse
Affiliation(s)
- Hong Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646099, PR China
| | - Mingming Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646099, PR China
| | - Qin Xu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646099, PR China
| | - Hui Yao
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646099, PR China.
| |
Collapse
|
37
|
Wang J, Zhang C, Chen X, Li Y, Li A, Liu D, Li F, Luo T. Functions of CXC chemokines as biomarkers and potential therapeutic targets in the hepatocellular carcinoma microenvironment. Transl Cancer Res 2021; 10:2169-2187. [PMID: 35116536 PMCID: PMC8797652 DOI: 10.21037/tcr-21-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Background Several studies have indicated that CXC chemokines influence the prognosis and therapy in patients with hepatocellular carcinoma (HCC). However, there are limited studies on the roles of CXC chemokines in HCC based on data acquired from various databases. This study aimed to conduct an in-depth and comprehensive bioinformatic analysis of the expression and functions of CXC chemokines in HCC. Methods Data was obtained from various databases including ONCOMINE, UALCAN, STRING, GeneMinia, DAVID, Kaplan-Meier plotter, TIMER, GSCALite and NetworkAnalyst for the analysis of the expression and functions of the CXC chemokines in HCC. Results Analysis of the differential expression levels of CXC chemokines between HCC and adjacent normal tissues revealed that the mRNA expression levels of CXCL1/2/5/6/7/12/14 were significantly lower in HCC tissues than those in adjacent normal tissues, whereas the mRNA expression levels of CXCL9/16/17 were significantly higher in HCC tissues. Analysis of the relationship between CXC chemokines and overall survival revealed that high mRNA expression levels of CXCL1/3/5/6/8 were associated with poor overall survival, whereas high mRNA expression levels of CXCL2/4/7/9/10/12 were associated with better overall survival. The functions of CXC chemokines and related genes were associated with cytokine-cytokine receptor interactions and chemokine signaling pathway. Analysis of the association between CXC chemokines and activity of cancer pathways indicated that the DNA damage response and hormone androgen receptor (AR) signaling pathways were inhibited, whereas apoptosis, epithelial-mesenchymal transition (EMT) and Ras/mitogen-activated protein kinase (MAPK) signaling pathways were activated. The expression of CXC chemokines was positively correlated with the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells). Conclusions This study has demonstrated that CXC chemokines can influence survival of patients with HCC by recruiting different types of immune cells into the tumor microenvironment.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongbin Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Chen C, Zong Y, Tang J, Ke R, Lv L, Wu M, Lu J. miR-369-3p serves as prognostic factor and regulates cancer progression of hepatocellular carcinoma. Per Med 2021; 18:375-388. [PMID: 33792408 DOI: 10.2217/pme-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.
Collapse
Affiliation(s)
- Can Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Yi Zong
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Jiaojiao Tang
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Ruisheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, 350025, PR China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Junhua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
39
|
Zhang J, Xiao C, Feng Z, Gong Y, Sun B, Li Z, Lu Y, Fei X, Wu W, Sun X, Teng L. SOX4 promotes the growth and metastasis of breast cancer. Cancer Cell Int 2020; 20:468. [PMID: 33005101 PMCID: PMC7523060 DOI: 10.1186/s12935-020-01568-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo. Methods We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay and dual-luciferase reporter activity assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. Results SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo. It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. Conclusions SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China.,Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Chunhua Xiao
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA.,First Department of Breast Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, 1 Huan-Hu Xi Road, Ti-Yuan Bei, He Xi, Tianjin, 300060 People's Republic of China
| | - Zhenbo Feng
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA.,Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Yun Gong
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Baohua Sun
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Xiaojie Fei
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Weizhu Wu
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315000 People's Republic of China
| | - Xiaoping Sun
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| |
Collapse
|