1
|
Wang Z, Xie M, Jia Z, Tao Z, Zhao P, Ying M. FOXF1 inhibits invasion and metastasis of lung adenocarcinoma cells and enhances anti-tumor immunity via MFAP4/FAK signal axis. Sci Rep 2024; 14:21451. [PMID: 39271782 PMCID: PMC11399389 DOI: 10.1038/s41598-024-72578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Based on the joint analysis of multi-omic data and the biological experiments, we demonstrate that FOXF1 inhibits invasion and metastasis of lung adenocarcinoma cells and enhances anti-tumor immunity via regulating MFAP4/FAK signal axis in this study. The levels of FOXF1 and MFAP4 are significantly down-regulated in LUAD, and the increased levels of two genes can improve the clinical prognosis of LUAD patients. Fluorescein reporter gene determination, chromatin immunoprecipitation and gene co-expression analysis indicate that MFAP4 level is positively regulated by transcription factor FOXF1. The function enrichment analysis shows that the levels of FOXF1 and MFAP4 are closely associated with an enrichment of tumor metastasis signatures. FOXF1 can inhibit the migration and invasion of LAUD cells by transcriptionally activating MFAP4 expression. And the overexpression of FOXF1/MFAP4 can reduce focal adhesion kinase (FAK) phosphorylation, while their knockdown result in the opposite effects. The increased levels of FOXF1/MFAP4 enhance the antitumor immunity by increasing the infiltration of dendritic cells and CD4+ T cells, and the interactions between LUAD cells and immune cells, and activating multiple anti-tumor immunity-related pathways. In conclusion, our study reveals the potential function of FOXF1/MFAP4/FAK signal axis in inhibiting metastasis of LUAD cells and modulating anti-tumor immunity of LUAD patients.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - MengXia Xie
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhongyue Jia
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ziwei Tao
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ping Zhao
- The First Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, 310000, China
| | - Muying Ying
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Kucinski J, Tallan A, Taslim C, Wang M, Cannon MV, Silvius KM, Stanton BZ, Kendall GC. Rhabdomyosarcoma fusion oncoprotein initially pioneers a neural signature in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603270. [PMID: 39071299 PMCID: PMC11275748 DOI: 10.1101/2024.07.12.603270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fusion-positive rhabdomyosarcoma is an aggressive pediatric cancer molecularly characterized by arrested myogenesis. The defining genetic driver, PAX3::FOXO1, functions as a chimeric gain-of-function transcription factor. An incomplete understanding of PAX3::FOXO1's in vivo epigenetic mechanisms has hindered therapeutic development. Here, we establish a PAX3::FOXO1 zebrafish injection model and semi-automated ChIP-seq normalization strategy to evaluate how PAX3::FOXO1 initially interfaces with chromatin in a developmental context. We investigated PAX3::FOXO1's recognition of chromatin and subsequent transcriptional consequences. We find that PAX3::FOXO1 interacts with inaccessible chromatin through partial/homeobox motif recognition consistent with pioneering activity. However, PAX3::FOXO1-genome binding through a composite paired-box/homeobox motif alters chromatin accessibility and redistributes H3K27ac to activate neural transcriptional programs. We uncover neural signatures that are highly representative of clinical rhabdomyosarcoma gene expression programs that are enriched following chemotherapy. Overall, we identify partial/homeobox motif recognition as a new mode for PAX3::FOXO1 pioneer function and identify neural signatures as a potentially critical PAX3::FOXO1 tumor initiation event.
Collapse
|
3
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Teixeira da Rosa N, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction in tafazzin-deficient cells. Sci Rep 2024; 14:11497. [PMID: 38769106 PMCID: PMC11106297 DOI: 10.1038/s41598-024-62262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | | | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Sanaa Hazime
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
4
|
Bian F, Goda C, Wang G, Lan YW, Deng Z, Gao W, Acharya A, Reza AA, Gomez-Arroyo J, Merjaneh N, Ren X, Goveia J, Carmeliet P, Kalinichenko VV, Kalin TV. FOXF1 promotes tumor vessel normalization and prevents lung cancer progression through FZD4. EMBO Mol Med 2024; 16:1063-1090. [PMID: 38589650 PMCID: PMC11099127 DOI: 10.1038/s44321-024-00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/β-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/β-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/β-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Guolun Wang
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Wen Gao
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Abid A Reza
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Xiaomeng Ren
- Division of Asthma Research of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction and leads to increased glucose uptake in tafazzin-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578755. [PMID: 38352304 PMCID: PMC10862887 DOI: 10.1101/2024.02.03.578755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
|
6
|
Asante Y, Benischke K, Osman I, Ngo QA, Wurth J, Laubscher D, Kim H, Udhayakumar B, Khan MIH, Chin DH, Porch J, Chakraborty M, Sallari R, Delattre O, Zaidi S, Morice S, Surdez D, Danielli SG, Schäfer BW, Gryder BE, Wachtel M. PAX3-FOXO1 uses its activation domain to recruit CBP/P300 and shape RNA Pol2 cluster distribution. Nat Commun 2023; 14:8361. [PMID: 38102136 PMCID: PMC10724205 DOI: 10.1038/s41467-023-43780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.
Collapse
Affiliation(s)
- Yaw Asante
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Katharina Benischke
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Quy A Ngo
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Jakob Wurth
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Dominik Laubscher
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Md Imdadul H Khan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Diana H Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sakina Zaidi
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Sara G Danielli
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Beat W Schäfer
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Marco Wachtel
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
| |
Collapse
|
7
|
Mou CY, Zhang L, Zhao H, Huang ZP, Duan YL, Zhao ZM, Ke HY, Du J, Li Q, Zhou J. Single-nuclei RNA-seq reveals skin cell responses to Aeromonas hydrophila infection in Chinese longsnout catfish Leiocassis longirostris. Front Immunol 2023; 14:1271466. [PMID: 37908355 PMCID: PMC10613986 DOI: 10.3389/fimmu.2023.1271466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
As the primary natural barrier that protects against adverse environmental conditions, the skin plays a crucial role in the innate immune response of fish, particularly in relation to bacterial infections. However, due to the diverse functionality and intricate anatomical and cellular composition of the skin, deciphering the immune response of the host is a challenging task. In this study, single nuclei RNA-sequencing (snRNA-seq) was performed on skin biopsies obtained from Chinese longsnout catfish (Leiocassis longirostris), comparing Aeromonas hydrophila-infected subjects to healthy control subjects. A total of 19,581 single nuclei cells were sequenced using 10x Genomics (10,400 in the control group and 9,181 in the treated group). Based on expressed unique transcriptional profiles, 33 cell clusters were identified and classified into 12 cell types including keratinocyte (KC), fibroblast (FB), endothelial cells (EC), secretory cells (SC), immune cells, smooth muscle cells (SMC), and other cells such as pericyte (PC), brush cell (BC), red blood cell (RBC), neuroendocrine cell (NDC), neuron cells (NC), and melanocyte (MC). Among these, three clusters of KCs, namely, KC1, KC2, and KC5 exhibited significant expansion after A. hydrophila infection. Analysis of pathway enrichment revealed that KC1 was primarily involved in environmental signal transduction, KC2 was primarily involved in endocrine function, and KC5 was primarily involved in metabolism. Finally, our findings suggest that neutrophils may play a crucial role in combating A. hydrophila infections. In summary, this study not only provides the first detailed comprehensive map of all cell types present in the skin of teleost fish but also sheds light on the immune response mechanism of the skin following A. hydrophila infection in Chinese longsnout catfish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, Donovan J, Tan LA, Vatner R, Kalinichenko V, Mascia A, Perentesis JP, Kalin TV. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol 2023; 186:109741. [PMID: 37315577 PMCID: PMC10527231 DOI: 10.1016/j.radonc.2023.109741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Taniya Saha
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Nihar Rama
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lin Abigail Tan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Division of Experimental Hematology, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
9
|
Ma Q, Sun J, Wang H, Zhou C, Li C, Wu Y, Wen Y, Zhang X, Ren X, Guo Z, Gong L, Zhang W. Far upstream element-binding protein 1 confers lobaplatin resistance by transcriptionally activating PTGES and facilitating the arachidonic acid metabolic pathway in osteosarcoma. MedComm (Beijing) 2023; 4:e257. [PMID: 37180822 PMCID: PMC10170244 DOI: 10.1002/mco2.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Drug resistance is a major obstacle in cancer treatment and recurrence prevention and leads to poor outcomes in patients suffering from osteosarcoma. Clarification of the mechanism of drug resistance and exploration of effective strategies to overcome this obstacle could lead to clinical benefits for these patients. The expression of far upstream element-binding protein 1 (FUBP1) was found to be markedly elevated in osteosarcoma cell lines and clinical specimens compared with osteoblast cells and normal bone specimens. High expression of FUBP1 was correlated with a more aggressive phenotype and a poor prognosis in osteosarcoma patients. We found that overexpression of FUBP1 confers lobaplatin resistance, whereas the inhibition of FUBP1 sensitizes osteosarcoma cells to lobaplatin-induced cytotoxicity both in vivo and in vitro. Chromatin immunoprecipitation-seq and RNA-seq were performed to explore the potential mechanism. It was revealed that FUBP1 could regulate the transcription of prostaglandin E synthase (PTGES) and subsequently activate the arachidonic acid (AA) metabolic pathway, which leads to resistance to lobaplatin. Our investigation provides evidence that FUBP1 is a potential therapeutic target for osteosarcoma patients. Targeting FUBP1, its downstream target PTGES and the AA metabolic pathway may be promising strategies for sensitizing chemoresistant osteosarcoma cells to lobaplatin.
Collapse
Affiliation(s)
- Qiong Ma
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Jin Sun
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Huan Wang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chengpei Zhou
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chenyu Li
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yonghong Wu
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yanhua Wen
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xiaoyu Zhang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xingguang Ren
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Zheng Guo
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Li Gong
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
10
|
Bian F, Lan YW, Zhao S, Deng Z, Shukla S, Acharya A, Donovan J, Le T, Milewski D, Bacchetta M, Hozain AE, Tipograf Y, Chen YW, Xu Y, Shi D, Kalinichenko VV, Kalin TV. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat Commun 2023; 14:2560. [PMID: 37137915 PMCID: PMC10156846 DOI: 10.1038/s41467-023-38177-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Shuyang Zhao
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Matthew Bacchetta
- Departments of Thoracic and Cardiac Surgery, Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ahmed Emad Hozain
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Yuliya Tipograf
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental, and Regenerative Biology, Department of Otolaryngology, Institute for Airway Sciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Xu
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Pradhan A, Che L, Ustiyan V, Reza AA, Pek NM, Zhang Y, Alber AB, Kalin TR, Wambach JA, Gu M, Kotton DN, Siefert ME, Ziady AG, Kalin TV, Kalinichenko VV. Novel FOXF1-Stabilizing Compound TanFe Stimulates Lung Angiogenesis in Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2023; 207:1042-1054. [PMID: 36480964 PMCID: PMC10112450 DOI: 10.1164/rccm.202207-1332oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the FOXF1 (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Objectives: Identify-small molecule compounds that stimulate FOXF1 signaling. Methods: We used mass spectrometry, immunoprecipitation, and the in vitro ubiquitination assay to identify TanFe (transcellular activator of nuclear FOXF1 expression), a small-molecule compound from the nitrile group, which stabilizes the FOXF1 protein in the cell. The efficacy of TanFe was tested in mouse models of ACDMPV and acute lung injury and in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV. Measurements and Main Results: We identified HECTD1 as an E3 ubiquitin ligase involved in ubiquitination and degradation of the FOXF1 protein. The TanFe compound disrupted FOXF1-HECTD1 protein-protein interactions and decreased ubiquitination of the FOXF1 protein in pulmonary endothelial cells in vitro. TanFe increased protein concentrations of FOXF1 and its target genes Flk1, Flt1, and Cdh5 in LPS-injured mouse lungs, decreasing endothelial permeability and inhibiting lung inflammation. Treatment of pregnant mice with TanFe increased FOXF1 protein concentrations in lungs of Foxf1+/- embryos, stimulated neonatal lung angiogenesis, and completely prevented the mortality of Foxf1+/- mice after birth. TanFe increased angiogenesis in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV with FOXF1 deletion. Conclusions: TanFe is a novel activator of FOXF1, providing a new therapeutic candidate for treatment of ACDMPV and other neonatal pulmonary vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Nicole M. Pek
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
| | | | - Andrea B. Alber
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Jennifer A. Wambach
- Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri
| | - Mingxia Gu
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | | | - Assem G. Ziady
- Division of Bone Marrow Transplantation and Immune Deficiency, and
| | | | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Neonatology and Pulmonary Biology
- Center for Stem Cells and Organoid Medicine
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Donovan J, Deng Z, Bian F, Shukla S, Gomez-Arroyo J, Shi D, Kalinichenko VV, Kalin TV. Improving anti-tumor efficacy of low-dose Vincristine in rhabdomyosarcoma via the combination therapy with FOXM1 inhibitor RCM1. Front Oncol 2023; 13:1112859. [PMID: 36816948 PMCID: PMC9933126 DOI: 10.3389/fonc.2023.1112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.
Collapse
Affiliation(s)
- Johnny Donovan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Samriddhi Shukla
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,*Correspondence: Tanya V. Kalin,
| |
Collapse
|
13
|
Chin DH, Osman I, Porch J, Kim H, Buck KK, Rodriguez J, Carapia B, Yan D, Moura SB, Sperry J, Nakashima J, Altman K, Altman D, Gryder BE. BET Bromodomain Degradation Disrupts Function but Not 3D Formation of RNA Pol2 Clusters. Pharmaceuticals (Basel) 2023; 16:199. [PMID: 37259348 PMCID: PMC9966215 DOI: 10.3390/ph16020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 12/20/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.
Collapse
Affiliation(s)
- Diana H. Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | - Deborah Yan
- Certis Oncology Solutions, San Diego, CA 92121, USA
| | | | | | | | - Kasey Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Delsee Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Chen Q, Liao X, Lin L, Wu L, Tang Q. FOXF1 attenuates TGF‑β1‑induced bronchial epithelial cell injury by inhibiting CDH11‑mediated Wnt/β‑catenin signaling. Exp Ther Med 2023; 25:103. [PMID: 36798677 PMCID: PMC9926140 DOI: 10.3892/etm.2023.11802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/11/2022] [Indexed: 01/22/2023] Open
Abstract
Forkhead box F1 (FOXF1) has been reported to be associated with lung development. However, the role of FOXF1 in asthma is still not fully understood. In the present study, the biological role and the potential mechanism of FOXF1 was explored in transforming growth factor β1 (TGF-β1)-induced bronchial epithelial cell injury. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of FOXF1 and cadherin (CDH) 11 in TGF-β1-induced bronchial epithelial cells. Proliferation, apoptosis and inflammation were assessed using Cell Counting Kit-8 assay, flow cytometry, western blotting and ELISA. Fibrosis and epithelial-mesenchymal transition (EMT) were evaluated using immunofluorescence and western blotting. The expression levels of the proteins involved in the Wnt/β-catenin pathway were detected by western blotting. The results indicated that FOXF1 expression was downregulated, while CDH11 expression was upregulated in TGF-β1-treated BEAS-2B cells. FOXF1 overexpression promoted proliferation, inhibited induction of apoptosis and suppressed the inflammatory response of BEAS-2B cells exposed to TGF-β1. In addition, FOXF1 overexpression restrained TGF-β1-induced bronchial epithelial fibrosis and EMT and inhibited the activation of the Wnt/β-catenin pathway. CDH11 overexpression reversed the effects of FOXF1 overexpression on proliferation, apoptosis, fibrosis, EMT and inflammation by regulating the Wnt/β-catenin pathway. Collectively, the results of the present study suggested that FOXF1 regulated TGF-β1-induced BEAS-2B cell injury by inhibiting CDH11-mediated Wnt/β-catenin signaling. This may provide a novel therapeutic strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Xing Liao
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ling Lin
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ling Wu
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Qiuyu Tang
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China,Correspondence to: Dr Qiuyu Tang, Department of Pediatrics, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 966 Hengyu Road, Jin’an, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
15
|
刘 斯, 叶 芳, 范 宸, 彭 敏, 董 佳, 邓 文, 张 辉, 俞 燕, 杨 良. [Clinical features and prognosis in 20 children with rhabdomyosarcoma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1036-1041. [PMID: 36111723 PMCID: PMC9495239 DOI: 10.7499/j.issn.1008-8830.2204033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the clinical features of children with rhabdomyosarcoma (RMS) and the influencing factors for prognosis. METHODS A retrospective analysis was performed on the clinical and follow-up data of 20 children with RMS who were admitted to the Department of Pediatric Hematology, Xiangya Hospital of Central South University, from June 2014 to September 2020. RESULTS The most common clinical symptoms of the 20 children with RMS at the first visit were painless mass (13/20, 65%), exophthalmos (4/20, 20%), and abdominal pain (3/20, 15%). According to the staging criteria of Intergroup Rhabdomyosarcoma Study Group (IRSG), there was 1 child (5%) with stage I RMS, 4 (20%) with stage II RMS, 9 (45%) with stage III RMS, and 6 (30%) with stage IV RMS. The median follow-up time was 19 months for the 20 children (range: 3-93 months), with a 2-year overall survival (OS) rate of 79.5% (95%CI: 20.1-24.3) and a 2-year event-free survival (EFS) rate of 72.0% (95%CI: 19.5-23.9). Pleomorphic RMS was associated with the reduced 2-year OS rate (P<0.05), and distant metastasis, IRSG stage IV RMS, and high-risk RMS were associated with the reduced 2-year EFS rate (P<0.05). CONCLUSIONS RMS has no specific clinical symptoms at the first visit, with painless mass as the most common symptom. Distant metastasis, IRSG stage, and risk degree may be associated with the prognosis of children with RMS.
Collapse
|
16
|
FOXF1 Was Identified as a Novel Biomarker of Infantile Hemangioma by Weighted Coexpression Network Analysis and Differential Gene Expression Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8981078. [PMID: 35992538 PMCID: PMC9356842 DOI: 10.1155/2022/8981078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Background The most frequent benign tumor in newborns is infantile hemangioma. The majority of infantile hemangiomas has a favorable prognosis and generally fades away on their own. Some people, however, do experience major consequences. Transcriptome alterations in infantile hemangiomas are yet unclear. The use of transcriptome analysis to uncover diagnostic markers for infantile hemangioma has clinical implications. Methods The dataset GSE127487 for infantile hemangioma was obtained from the GEO database. The gene set most related with infantile hemangioma was investigated using weighted coexpression network analysis. Differential expression analysis was performed to see whether genes were up or downregulated in infantile hemangiomas. The enrichment of gene sets in pathways or functions is determined via enrichment analysis. Hub genes were discovered via protein-protein interaction network analysis. The relationship between hub genes and immune cells was investigated using immunomicroenvironment analysis. Results Turquoise and Pink modules were revealed to be the most linked with infantile hemangioma in a weighted coexpression network analysis (p < 0.001). The genes in the two modules were mostly concentrated in actin filament organization, embryonic organ development, reproductive structure development, cell substrate adhesion, extracellular matrix organization, and so on, according to GO enrichment analysis (p < 0.05). These gene enrichment pathways comprised the PI3K-Akt signaling pathway, human papillomavirus infection, focal adhesion, and hepatitis C pathways, according to KEGG enrichment analyzes (p < 0.05). Differential expressed gene analysis showed 43 upregulated and 21 downregulated genes in infantile hemangiomas. We found the gene set most associated to infantile hemangioma by intersecting the elevated genes with the genes acquired by WGCNA, with FOXF1 serving as the hub gene. FOXF1 was linked to the degree of monocyte infiltration, according to immunocorrelation analysis (p < 0.05). B cell memory, dendritic cells resting, macrophage M0, neutrophils, and T cells helper are all negatively connected (p < 0.05). In the FOXF1 hyperexpression group, GSEA analysis revealed that cholesterol homeostasis and cell cycle-associated pathways G2M checkpoint were primarily activated (p < 0.05). Conclusion FOXF1 was found to be a reliable biomarker of infantile hemangiomas in our research of transcriptome changes in infantile hemangiomas.
Collapse
|
17
|
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 2022; 13:2080. [PMID: 35440116 PMCID: PMC9019054 DOI: 10.1038/s41467-022-29746-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.
Collapse
Affiliation(s)
- Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Yin Z, Li X, Zhang Y, Tao J, Yang Y, Fang S, Zhang Z, Yuan Y, Liu Y, Wang S. Correlations between DWI, IVIM, and HIF-1α expression based on MRI and pathology in a murine model of rhabdomyosarcoma. Magn Reson Med 2022; 88:871-879. [PMID: 35377480 DOI: 10.1002/mrm.29250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the correlation between DWI, intravoxel incoherent motion (IVIM), and hypoxia-inducible factor 1-alpha (HIF-1α) expression in a nude mouse model of rhabdomyosarcoma based on imaging and pathological comparisons. METHODS Human rhabdomyosarcoma-derived (RD) cells were inoculated into the right thigh muscle of 20 BALB/c female nude mice. Mice were imaged using 3.0 Tesla MRI system. T1 -weighted imaging, T2 -weighted imaging, DWI, and IVIM images were obtained. ADW4.7 (GE Healthcare, ChicagoAQ34, IL, USA) was used for image processing of ADC, Dslow , Dfast , and f values. All parameter values were independently analyzed by 2 observers. Immunohistochemistry of HIF-1α was performed. We used a specific image-pathology comparison method to ensure correct overlap between the image plane and the pathological section. Mann-Whitney U test or independent sample t test, Pearson or Spearman correlation test, the intragroup correlation coefficient, Kolmogorov-Smirnov test, and receiver operating characteristic curve were used. The correlation between DWI and intravoxel incoherent motion parameter values and HIF-1α expression was determined. RESULTS There were 10 mice in the low-expression group and 7 in the high-expression group. The ADC and Dslow values were negatively correlated with HIF-1α with correlation coefficients of -0.491 and - 0.702 (P = 0.045 and 0.002). The f value positively correlated with HIF-1α expression (r = 0.485, P = 0.048). ADC, Dslow , and f were significantly different between the high-HIF-1α expression tumors and the low-HIF-1α expression tumors. ADC showed the best predictive performance among all parameters (area under the curve = 0.652, sensitivity = 83.3%, specificity = 63.6%). CONCLUSION The parameter values of DWI and intravoxel incoherent motion can be used to evaluate the expression of HIF-1α in rhabdomyosarcoma. ADC, Dslow , and f value showed correlation with the expression of HIF-1α.
Collapse
Affiliation(s)
- Zhenzhen Yin
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of Radiology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, People's Republic of China
| | - Xiangwen Li
- Department of Radiology, Huashan Hospital affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Juan Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yanyu Yang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shaobo Fang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhengyang Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yuan Yuan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yajie Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Abstract
Gene transcription does not only require writers of active histone modifications; on-site opposition by erasers is essential for many genes. Here, we propose the concept of dynamic opposition of histone modifications to explain this conundrum. We highlight the requirement of HDACs for acetylation balance at superenhancers, and the requirement of KDM5A for H4K3me3 recycling at highly active gene promoters. We propose that histone post-translational modifications regulate charge balance for biomolecular condensate formation and nucleosome turnover and form a short-term memory that informs lock-and-step checkpoints for chromatin engagement by RNA polymerase II.
Collapse
Affiliation(s)
- Ana María Garzón-Porras
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Emma Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|