1
|
Cai M, Guo H, Wang D, Zhao T, Liang X, Li J, Cui X, Fu S, Yu J. Expression, DNA methylation pattern and transcription factor EPB41L3 in gastric cancer: a study of 262 cases. Cell Commun Signal 2024; 22:470. [PMID: 39354571 PMCID: PMC11446029 DOI: 10.1186/s12964-024-01849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC). METHODS Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker. RESULTS High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells. CONCLUSION In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Mengdi Cai
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Haonan Guo
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - XiaoBo Cui
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
2
|
Li M, Cai Y, Zhang M, Deng S, Wang L. NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108291. [PMID: 38909399 DOI: 10.1016/j.cmpb.2024.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer is a multifaceted condition characterized by diverse features and a substantial mortality rate, underscoring the imperative for timely detection and intervention. The utilization of multi-omics data has gained significant traction in recent years to identify biomarkers and classify subtypes in breast cancer. This kind of research idea from part to whole will also be an inevitable trend in future life science research. Deep learning can integrate and analyze multi-omics data to predict cancer subtypes, which can further drive targeted therapies. However, there are few articles leveraging the nature of deep learning for feature selection. Therefore, this paper proposes a Neural Network and Binary grey Wolf Optimization based BReast CAncer bioMarker (NNBGWO-BRCAMarker) discovery framework using multi-omics data to obtain a series of biomarkers for precise classification of breast cancer subtypes. METHODS NNBGWO-BRCAMarker consists of two phases: in the first phase, relevant genes are selected using the weights obtained from a trained feedforward neural network; in the second phase, the binary grey wolf optimization algorithm is leveraged to further screen the selected genes, resulting in a set of potential breast cancer biomarkers. RESULTS The SVM classifier with RBF kernel achieved a classification accuracy of 0.9242 ± 0.03 when trained using the 80 biomarkers identified by NNBGWO-BRCAMarker, as evidenced by the experimental results. We conducted a comprehensive gene set analysis, prognostic analysis, and druggability analysis, unveiling 25 druggable genes, 16 enriched pathways strongly linked to specific subtypes of breast cancer, and 8 genes linked to prognostic outcomes. CONCLUSIONS The proposed framework successfully identified 80 biomarkers from the multi-omics data, enabling accurate classification of breast cancer subtypes. This discovery may offer novel insights for clinicians to pursue in further studies.
Collapse
Affiliation(s)
- Min Li
- School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang Jiangxi, PR China.
| | - Yuheng Cai
- School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang Jiangxi, PR China
| | - Mingzhuang Zhang
- School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang Jiangxi, PR China
| | - Shaobo Deng
- School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang Jiangxi, PR China
| | - Lei Wang
- School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang Jiangxi, PR China
| |
Collapse
|
3
|
Shen Y, Tian Y, Ding J, Chen Z, Zhao R, Lu Y, Li L, Zhang H, Wu H, Li X, Zhang Y. Unravelling the molecular landscape of endometrial cancer subtypes: insights from multiomics analysis. Int J Surg 2024; 110:5385-5395. [PMID: 38775562 PMCID: PMC11392172 DOI: 10.1097/js9.0000000000001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Endometrial cancer (EC) as one of the most common gynecologic malignancies is increasing in incidence during the past 10 years. Genome-Wide Association Studies (GWAS) extended to metabolic and protein phenotypes inspired us to employ multiomics methods to analyze the causal relationships of plasma metabolites and proteins with EC to advance our understanding of EC biology and pave the way for more targeted approaches to its diagnosis and treatment by comparing the molecular profiles of different EC subtypes. METHODS Two-sample mendelian randomization (MR) was performed to investigate the effects of plasma metabolites and proteins on risks of different subtypes of EC (endometrioid and nonendometrioid). Pathway analysis, transcriptomic analysis, and network analysis were further employed to illustrate gene-protein-metabolites interactions underlying the pathogenesis of distinct EC histological types. RESULTS The authors identified 66 causal relationships between plasma metabolites and endometrioid EC, and 132 causal relationships between plasma proteins and endometrioid EC. Additionally, 40 causal relationships between plasma metabolites and nonendometrioid EC, and 125 causal relationships between plasma proteins and nonendometrioid EC were observed. Substantial differences were observed between endometrioid and nonendometrioid histological types of EC at both the metabolite and protein levels. The authors identified seven overlapping proteins (RGMA, NRXN2, EVA1C, SLC14A1, SLC6A14, SCUBE1, FGF8) in endometrioid subtype and six overlapping proteins (IL32, GRB7, L1CAM, CCL25, GGT2, PSG5) in nonendometrioid subtype and conducted network analysis of above proteins and metabolites to identify coregulated nodes. CONCLUSIONS Our findings observed substantial differences between endometrioid and nonendometrioid EC at the metabolite and protein levels, providing novel insights into gene-protein-metabolites interactions that could influence future EC treatments.
Collapse
Affiliation(s)
- Yufei Shen
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Yan Tian
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Jiashan Ding
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Zhuo Chen
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Rong Zhao
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Yingnan Lu
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Lucia Li
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Hui Zhang
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Haiyue Wu
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha Hunan, People's Republic of China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| |
Collapse
|
4
|
Yang J, Sun L, Liu X, Huang C, Peng J, Zeng X, Zheng H, Cen W, Xu Y, Zhu W, Wu X, Ling D, Zhang L, Wei M, Liu Y, Wang D, Wang F, Li Y, Li Q, Du Z. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin Transl Med 2023; 13:e1423. [PMID: 37740473 PMCID: PMC10517212 DOI: 10.1002/ctm2.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Xiao‐Yun Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Chan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Junling Peng
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xinxin Zeng
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Hailin Zheng
- Department of Clinical LaboratorySun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Wenjian Cen
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Xia Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Weijie Zhu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiao‐Yan Wu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dongyi Ling
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Lu‐Lu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Mingbiao Wei
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Ye Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Deshen Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Feng‐Hua Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Hong Li
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Ziming Du
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| |
Collapse
|
5
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is the primary challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signalings incorporated in resistance mechanisms or develop active targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Further, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways and thoroughly discussed using aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Curigliano G, Shapiro GI, Kristeleit RS, Abdul Razak AR, Leong S, Alsina M, Giordano A, Gelmon KA, Stringer-Reasor E, Vaishampayan UN, Middleton M, Olszanski AJ, Rugo HS, Kern KA, Pathan N, Perea R, Pierce KJ, Mutka SC, Wainberg ZA. A Phase 1B open-label study of gedatolisib (PF-05212384) in combination with other anti-tumour agents for patients with advanced solid tumours and triple-negative breast cancer. Br J Cancer 2023; 128:30-41. [PMID: 36335217 PMCID: PMC9814742 DOI: 10.1038/s41416-022-02025-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND This Phase 1b study (B2151002) evaluated the PI3K/mTOR inhibitor gedatolisib (PF-05212384) in combination with other anti-tumour agents in advanced solid tumours. METHODS Patients with various malignancies were administered gedatolisib (90‒310 mg intravenously every week [QW]) plus docetaxel (arm A) or cisplatin (arm B) (each 75 mg/m2 intravenously Q3W) or dacomitinib (30 or 45 mg/day orally). The safety and tolerability of combination therapies were assessed during dose escalation; objective response (OR) and safety were assessed during dose expansion. RESULTS Of 110 patients enrolled, 107 received gedatolisib combination treatment. Seven of 70 (10.0%) evaluable patients had dose-limiting toxicities; the most common was grade 3 oral mucositis (n = 3). Based upon reprioritisation of the sponsor's portfolio, dose expansion focused on arm B, gedatolisib (180 mg QW) plus cisplatin in patients (N = 22) with triple-negative breast cancer (TNBC). OR (95% CI) was achieved in four of ten patients in first-line (overall response rate 40.0% [12.2-73.8%]) and four of 12 in second/third-line (33.3% [9.9-65.1%]) settings. One patient in each TNBC arm (10%, first-line; 8.3%, second/third-line) achieved a complete response. CONCLUSIONS Gedatolisib combination therapy showed an acceptable tolerability profile, with clinical activity at the recommended Phase 2 dose in patients with TNBC. CLINICAL TRIAL ClinicalTrial.gov: NCT01920061.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milano, Italy.
- University of Milan, Milano, Italy.
| | | | | | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Maria Alsina
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Antonio Giordano
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Erica Stringer-Reasor
- University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, AL, USA
| | - Ulka N Vaishampayan
- University of Michigan/Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | | | | | | - Zev A Wainberg
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wang B, Chen H, Yang R, Xing L, Chen C, Chen J. LncRNA RP11-551L14.4 suppresses breast cancer development by inhibiting the expression of miR-4472. PeerJ 2022; 10:e14482. [PMID: 36523479 PMCID: PMC9745927 DOI: 10.7717/peerj.14482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have been reported that long non-coding RNA (lncRNA) can regulate the expression of genes which are involved in many important cellular processes The potential role of lncRNA RP11-551L14.4 in the development of breast cancer and the possible regulatory mechanisms was investigated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze RP11-551L14.4 expression in 36 paired breast cancer tissues and adjacent tissues. The expression of RP11-551L14.4 in multiple breast cancer cell lines was detected by qRT-PCR. Meanwhile, overexpression of RP11-551L14.4 models was established using lentivirus in BT474 and T47D breast cancer cells. Cell counting kit-8 (CCK-8), cell colony formation and cell cycle assays were performed to detect the effects of RP11-551L14.4 on the biological function of breast cancer cells. Besides, bioinformatics techniques, dual luciferase reporter gene assay and rescue experiments were used to investigate the potential mechanisms. Results RP11-551L14.4 expression was negatively associated with the advanced tumor stage. Breast cancer patients with low RP11-551L14.4 expression manifested a poorer prognosis. The results of qRT-PCR showed that RP11-551L14.4 expression in breast cancer tissues was significantly lower than in adjacent tissues. Meanwhile, overexpression of RP11-551L14.4 significantly decreased the cell proliferation and cell cycle. Bioinformatics technology showed that RP11-551L14.4 could complementarily bind to miR-4472. qRT-PCR results indicated that the expression levels of miR-4472 and RP11-551L14.4 in breast cancer were negatively correlated. Luciferase reporter gene assay showed that miR-4472 remarkably decreased the relative luciferase activity of the wild-type RP11-551L14.4 vector. miR-4472 is a direct target gene of RP11-551L14.4. miR-4472 levels were reduced, and repulsive guidance molecule A (RGMA) mRNA or protein levels were increased after overexpression of RP11-551L14.4 in the breast cancer cells. miR-4472 reversed the effects caused by RP11-551L14.4 in breast cancer cells. Conclusion RP11-551L14.4 expression was remarkably decreased in breast cancer tissues and cells. RP11-551L14.4 may inhibit the malignant progression of breast cancer by regulating miR-4472 expression.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China,Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Lei Xing
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Han X, Liu T, Zhai J, Liu C, Wang W, Nie C, Wang Q, Zhu X, Zhou H, Tian W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ 2022; 10:e13774. [PMID: 36164608 PMCID: PMC9508887 DOI: 10.7717/peerj.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose Altered DNA methylation, genetic alterations, and environmental factors are involved in tumorigenesis. As a tumor suppressor gene, abnormal EPHA5 methylation was found in gastric cancer (GC) tissues and was linked to the initiation, progression and prognosis of GC. In this study, the EPHA5 methylation level in peripheral blood leukocytes (PBLs) was detected to explore its relationship with GC risk and prognosis. Methods A total of 366 GC cases and 374 controls were selected as the subjects of this study to collect their environmental factors, and the EPHA5 methylation status was detected through the methylation-sensitive high-resolution melting method. Logistic regression analysis was utilized to evaluate the associations among EPHA5 methylation, environmental factors and GC risk. Meanwhile, the propensity score (PS) was used to adjust the imbalance of some independent variables. Results After PS adjustment, EPHA5 Pm (positive methylation) was more likely to increase the GC risk than EPHA5 Nm (negative methylation) (ORb = 1.827, 95% CI [1.202-2.777], P = 0.005). EPHA5 Pm had a more significant association with GC risk in the elderly (ORa = 2.785, 95% CI [1.563-4.961], P = 0.001) and H. pylori-negative groups (ORa = 2.758, 95% CI [1.369-5.555], P = 0.005). Moreover, the combined effects of EPHA5 Pm and H. pylori infection (ORc a = 3.543, 95% CI [2.233-5.621], P < 0.001), consumption of alcohol (ORc a = 2.893, 95% CI [1.844-4.539], P < 0.001), and salty food intake (ORc a = 4.018, 95% CI [2.538-6.362], P < 0.001) on increasing the GC risk were observed. In addition, no convincing association was found between EPHA5 Pm and the GC prognosis. Conclusions EPHA5 methylation in PBLs and its combined effects with environmental risk factors are related to the GC risk.
Collapse
|
9
|
Mao W, Wang K, Zhang W, Chen S, Xie J, Zheng Z, Li X, Zhang N, Zhang Y, Zhang H, Peng B, Yao X, Che J, Zheng J, Chen M, Li W. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:252. [PMID: 35986402 PMCID: PMC9389749 DOI: 10.1186/s13046-022-02467-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background The accumulating evidence confirms that long non-coding RNAs (lncRNAs) play a critical regulatory role in the progression of renal cell carcinoma (RCC). But, the application of lncRNAs in gene therapy remains scarce. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA-SLERCC (SLERCC) in RCC cells. Methods We performed lncRNAs expression profiling in paired cancer and normal tissues through microarray and validated in our clinical data and TCGA dataset. The Plasmid-SLERCC@PDA@MUC12 nanoparticles (PSPM-NPs) were tested in vivo and in vitro, including cellular uptake, entry, CCK-8 assay, tumor growth inhibition, histological assessment, and safety evaluations. Furthermore, experiments with nude mice xenografts model were performed to evaluate the therapeutic effect of PSPM-NPs nanotherapeutic system specific to the SLERCC. Results We found that the expression of SLERCC was downregulated in RCC tissues, and exogenous upregulation of SLERCC could suppress metastasis of RCC cells. Furthermore, high expression DNMT3A was recruited at the SLERCC promoter, which induced aberrant hypermethylation, eventually leading to downregulation of SLERCC expression in RCC. Mechanistically, SLERCC could directly bind to UPF1 and exert tumor-suppressive effects through the Wnt/β-catenin signaling pathway, thereby inhibiting progression and metastasis in RCC. Subsequently, the PSPM-NPs nanotherapeutic system can effectively inhibit the growth of RCC metastases in vivo. Conclusions Our findings suggested that SLERCC is a promising therapeutic target and that plasmid-encapsulated nanomaterials targeting transmembrane metastasis markers may open a new avenue for the treatment in RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02467-2.
Collapse
|
10
|
Müller T. Perspective: cell death mechanisms and early diagnosis as precondition for disease modification in Parkinson's disease: are we on the right track? Expert Rev Mol Diagn 2022; 22:403-409. [PMID: 35400295 DOI: 10.1080/14737159.2022.2065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Current research paradigms on biomarkers for chronic neurodegenerative diseases, such as Parkinson's disease, focus on identification of reliable, easy-to-apply tools for diagnostic screening and progression assessment. AREAS COVERED This perspective discusses possible misconceptions of biomarker research in chronic neurodegeneration from a clinician's view based on a not systematic literature search. Multifactorial disease triggers, heterogeneity of symptom and their progression are main reasons for the still missing availability of biomarkers. EXPERT OPINION Onset of chronic neurodegenerative disease entities may probably result from a decompensated endogenous repair machinery in the central nervous system, for example the neogenin receptor associated repulsive guidance molecule pathway. Future clinical research is warranted on these repair structures and aim to identify markers for the imbalance between damage and repair, which hypothetically contributes to generation of disease. An assignment to a specific chronic neurodegenerative disease entity probably appears to be secondary. Decryption of probable molecular signals of an impaired repair potential will enable an earlier diagnosis, better monitoring of disease progress and of treatment response. This concept will hopefully provide better preconditions for prevention, cure or therapeutic beneficial disease modification. These unmet therapeutic needs may be achieved for example via antagonism of repulsive guidance molecule A.
Collapse
Affiliation(s)
- Thomas Müller
- Department of NeurologySt. Joseph Hospital Berlin-Weißensee, Gartenstr.1 Berlin, Germany
| |
Collapse
|