1
|
Pingen M, Hughes CE, Medina-Ruiz L, Mathie H, Barrie JA, Hansell CA, Bartolini R, MacLeod MK, Graham GJ. Inflammatory chemokine receptors CCR1, CCR2, CCR3 and CCR5 are essential for an optimal T cell response to influenza. Mucosal Immunol 2025:S1933-0219(25)00052-2. [PMID: 40414601 DOI: 10.1016/j.mucimm.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Inflammatory chemokine receptors CCR1/2/3/5 (iCCRs) play an important role in the recruitment of immune cells involved in innate immune functions and orchestrating the adaptive immune response. Here we utilise an influenza A virus (IAV) challenge to investigate the combinatorial roles of the iCCRs in the anti-IAV immune response. We did not observe any gross differences in infection-driven pathology in the absence of iCCRs. iCCR deletion resulted in decreased numbers of some antigen-presenting cell types in the lung (B cells, DC1s, monocytes and inflammatory macrophages), though cell numbers in the draining lymph node were not affected. Whilst the total number of T cells was similar in lungs of iCCR-deficient mice, the number of IAV-specific CD4 but not CD8 T cells in the lung was strongly reduced in the absence of iCCRs. Furthermore, fewer CD4, but not CD8, T cells produced IFN-γ. This CD4 T cell phenotype persisted into the memory stage of infection, with fewer IAV-specific and IFN-γ+ CD4 but not CD8 T cells at 29 days post infection. In conclusion, despite having limited impact on antigen-presenting cell migration between the lung and the draining lymph node, iCCR deletion is associated with an altered CD4 T cell response to IAV infection.
Collapse
Affiliation(s)
- Marieke Pingen
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | - Catherine E Hughes
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Laura Medina-Ruiz
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Heather Mathie
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Jennifer A Barrie
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Chris Ah Hansell
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Robin Bartolini
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Megan Kl MacLeod
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Gerard J Graham
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
2
|
McBrien C, O’Connell DJ. The Use of Biologics for Targeting GPCRs in Metastatic Cancers. BIOTECH 2025; 14:7. [PMID: 39982274 PMCID: PMC11843943 DOI: 10.3390/biotech14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
A comprehensive review of studies describing the role of G-protein coupled receptor (GPCR) behaviour contributing to metastasis in cancer, and the developments of biotherapeutic drugs towards targeting them, provides a valuable resource toward improving our understanding of the opportunities to effectively target this malignant tumour cell adaptation. Focusing on the five most common metastatic cancers of lung, breast, colorectal, melanoma, and prostate cancer, we highlight well-studied and characterised GPCRs and some less studied receptors that are also implicated in the development of metastatic cancers. Of the approximately 390 GPCRs relevant to therapeutic targeting, as many as 125 of these have been identified to play a role in promoting metastatic disease in these cancer types. GPCR signalling through the well-characterised pathways of chemokine receptors, to emerging data on signalling by orphan receptors, is integral to many aspects of the metastatic phenotype. Despite having detailed information on many receptors and their ligands, there are only thirteen approved therapeutics specifically for metastatic cancer, of which three are small molecules with the remainder including synthetic and non-synthetic peptides or monoclonal antibodies. This review will cover the existing and potential use of monoclonal antibodies, proteins and peptides, and nanobodies in targeting GPCRs for metastatic cancer therapy.
Collapse
Affiliation(s)
| | - David J. O’Connell
- School of Biomolecular & Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
3
|
Liner AG, van Gogh M, Roblek M, Heikenwalder M, Borsig L. Non-redundant roles of the CCR1 and CCR2 chemokine axes in monocyte recruitment during lung metastasis. Neoplasia 2025; 59:101089. [PMID: 39566333 PMCID: PMC11617888 DOI: 10.1016/j.neo.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Monocytes and monocyte-derived macrophages facilitate cancer progression and metastasis. Inflammatory monocytes expressing CCR2 are actively recruited to metastatic lungs, where they promote tumor cell extravasation, metastatic outgrowth, and an immunosuppressive environment. The role of CCR1 in this process has remained unclear. We used Ccr1- and Ccr2-deficient mice and two different tumor cells lines, MC38 and LLC1 with and without Ccl2-deficiency in vitro and in vivo. The recruitment of both Ccr1- and Ccr2-deficient monocytes towards the Ccl2 chemokine was significantly impaired, while no substantial recruitment was observed towards Ccl5 in vitro. MC38 and LLC1 Ccl2-deficient tumor cells showed reduced lung metastasis in both Ccr1- and Ccr2-deficient mice when compared to wild-type mice. We detected reduced numbers of macrophages and myeloid cells in both chemokine receptor-deficient mice. Lung metastasis in both Ccr1- and Ccr2-deficient mice could be rescued to the same levels as in wild-type mice by an adoptive transfer of Ccr2-deficient but not Ccr1-deficient monocytic cells. Accumulation of Ccr1-deficient monocytes in the lungs was severely impaired upon intravenous monocyte injection, indicating the importance of this axis in cell recruitment. Moreover, the efficient recruitment of adoptive transferred Ccr2-deficient monocytes to the lungs and the restoration of lung metastasis suggests an involvement of an additional, Ccr2-independent chemokine pathway. This data defines the non-redundant functions of the Ccr1- and Ccr2-chemokine axes in monocyte recruitment and macrophage presence during lung metastasis. While Ccr2 is essential for the release of monocytes from the bone marrow, Ccr1 is primarily responsible for monocyte presence at metastatic sites.
Collapse
Affiliation(s)
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Switzerland
| | - Marko Roblek
- Institute of Physiology, University of Zurich, Switzerland
| | - Matthias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Switzerland; Comprehensive Cancer Center Zurich.
| |
Collapse
|
4
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
5
|
Hayes AJ, Pingen M, Wilson G, Hansell C, Love S, Burgoyne P, McElroy D, Bartolini R, Vidler F, Schuette F, Gamble A, Campbell J, Galatis D, Campbell JDM, Graham GJ. Enhanced CCR2 expression by ACKR2-deficient NK cells increases tumoricidal cell therapy efficacy. J Leukoc Biol 2024; 116:1544-1553. [PMID: 39052923 DOI: 10.1093/jleuko/qiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Chemokines regulate leukocyte navigation to inflamed sites and specific tissue locales and may therefore be useful for ensuring accurate homing of cell therapeutic products. We, and others, have shown that atypical chemokine receptor 2 (ACKR2)-deficient mice (ACKR2-/-) are protected from metastasis development in cell line and spontaneous mouse models. We have shown that this relates to enhanced CCR2 expression on ACKR2-/- natural killer cells, allowing them to home more effectively to CCR2 ligand-expressing metastatic deposits. Here we demonstrate that the metastatic-suppression phenotype in ACKR2-/- mice is not a direct effect of the absence of ACKR2. Instead, enhanced natural killer cell CCR2 expression is caused by passenger mutations that originate from the creation of the ACKR2-/- mouse strain in 129 embryonic stem cells. We further demonstrate that simple selection of CCR2+ natural killer cells enriches for a population of cells with enhanced antimetastatic capabilities. Given the widespread expression of CCR2 ligands by tumors, our study highlights CCR2 as a potentially important contributor to natural killer cell tumoricidal cell therapy.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Knockout
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Neoplasm Metastasis
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Mice, Inbred C57BL
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Alan J Hayes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gillian Wilson
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Chris Hansell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Samantha Love
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Paul Burgoyne
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Daniel McElroy
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Francesca Vidler
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Fabian Schuette
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Alistair Gamble
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jordan Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Dimitrios Galatis
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - John D M Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
6
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Masui H, Kawada K, Itatani Y, Hirai H, Nakanishi Y, Kiyasu Y, Hanada K, Okamoto M, Hirata W, Nishikawa Y, Sugimoto N, Tamura T, Sakai Y, Obama K. Synergistic antitumor activity by dual blockade of CCR1 and CXCR2 expressed on myeloid cells within the tumor microenvironment. Br J Cancer 2024; 131:63-76. [PMID: 38750114 PMCID: PMC11231281 DOI: 10.1038/s41416-024-02710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Chemokine signaling within the tumor microenvironment can promote tumor progression. Although CCR1 and CXCR2 on myeloid cells could be involved in tumor progression, it remains elusive what effect would be observed if both of those are blocked. METHODS We employed two syngeneic colorectal cancer mouse models: a transplanted tumor model and a liver metastasis model. We generated double-knockout mice for CCR1 and CXCR2, and performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type, Ccr1-/-, Cxcr2-/- or Ccr1-/-Cxcr2-/- mice. RESULTS Myeloid cells that express MMP2, MMP9 and VEGF were accumulated around both types of tumors through CCR1- and CXCR2-mediated pathways. Mice reconstituted with Ccr1-/-Cxcr2-/- BM exhibited the strongest suppression of tumor growth and liver metastasis compared with other three groups. Depletion of CCR1+CXCR2+ myeloid cells led to a higher frequency of CD8+ T cells, whereas the numbers of Ly6G+ neutrophils, FOXP3+ Treg cells and CD31+ endothelial cells were significantly decreased. Furthermore, treatment with a neutralizing anti-CCR1 mAb to mice reconstituted with Cxcr2-/- BM significantly suppressed tumor growth and liver metastasis. CONCLUSION Dual blockade of CCR1 and CXCR2 pathways in myeloid cells could be an effective therapy against colorectal cancer.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Surgery, Kurashiki Central Hospital, Okayama, Japan.
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoko Sugimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, Wang X, Liang Y, Tian G, Zhou R, Zhu Y, Ma J, Liu J, Lin S, Xu H, Chen D, Li Y, Peng L. CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun 2024; 15:2818. [PMID: 38561369 PMCID: PMC10985117 DOI: 10.1038/s41467-024-46735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Collapse
Affiliation(s)
- Maosheng Cheng
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518057, China
| | - Caihua Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihui Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhu
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahong Liu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China
| | - Shuibin Lin
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Demeng Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Li
- Department of Genetics, School of Life Sciences, Anhui Medical University, Hefei, 230031, China.
| | - Liang Peng
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
9
|
Tzetzo SL, Kramer ED, Mohammadpour H, Kim M, Rosario SR, Yu H, Dolan MR, Oturkar CC, Morreale BG, Bogner PN, Stablewski AB, Benavides FJ, Brackett CM, Ebos JM, Das GM, Opyrchal M, Nemeth MJ, Evans SS, Abrams SI. Downregulation of IRF8 in alveolar macrophages by G-CSF promotes metastatic tumor progression. iScience 2024; 27:109187. [PMID: 38420590 PMCID: PMC10901102 DOI: 10.1016/j.isci.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-resident macrophages (TRMs) are abundant immune cells within pre-metastatic sites, yet their functional contributions to metastasis remain incompletely understood. Here, we show that alveolar macrophages (AMs), the main TRMs of the lung, are susceptible to downregulation of the immune stimulatory transcription factor IRF8, impairing anti-metastatic activity in models of metastatic breast cancer. G-CSF is a key tumor-associated factor (TAF) that acts upon AMs to reduce IRF8 levels and facilitate metastasis. Translational relevance of IRF8 downregulation was observed among macrophage precursors in breast cancer and a CD68hiIRF8loG-CSFhi gene signature suggests poorer prognosis in triple-negative breast cancer (TNBC), a G-CSF-expressing subtype. Our data highlight the underappreciated, pro-metastatic roles of AMs in response to G-CSF and identify the contribution of IRF8-deficient AMs to metastatic burden. AMs are an attractive target of local neoadjuvant G-CSF blockade to recover anti-metastatic activity.
Collapse
Affiliation(s)
- Stephanie L. Tzetzo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elliot D. Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Melissa R. Dolan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chetan C. Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Brian G. Morreale
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Paul N. Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimee B. Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Fernando J. Benavides
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - John M.L. Ebos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sharon S. Evans
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
10
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Liu X, Wang Y, Zhang S, Lu S, Lang J, Zhao Y. The roles of tissue resident macrophages in health and cancer. Exp Hematol Oncol 2024; 13:3. [PMID: 38229178 PMCID: PMC10790434 DOI: 10.1186/s40164-023-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.
Collapse
Affiliation(s)
- Minmin Cao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanying Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Guixi Community Health Center of the Chengdu High-Tech Zone, Chengdu, China
| | - Binghua Xiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Elewa YHA, Abd Elwakil MM, Harashima H, Mohamed SKA, Zahran MH. Microenvironmental Changes in Mediastinal Fat-associated Lymphoid Clusters and Lungs in Early and Late Stages of Metastatic Lung Cancer Induction. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1228-1243. [PMID: 37749682 DOI: 10.1093/micmic/ozad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 09/27/2023]
Abstract
The prognosis of metastatic lung melanoma (MLM) has been reported to be poor. An increasing number of studies have reported the function of several immune cells in cancer regression. Although the function of mediastinal fat-associated lymphoid clusters (MFALCs) in the progression of inflammatory lung lesions has been previously reported, the association between MLM progression and MFALCs development has remained unexplored. Herein, we compared the microenvironmental changes in the lungs and MFALCs among phosphate-buffered saline (PBS) and cancer groups at early (1 week) and late (2 weeks) stages following the intravenous injection of B16-F10 melanoma cells into C57BL/6 mice. Except for lung CD4+ helper T-cells and Iba1+ macrophage populations of early stage, we observed a significant increase in the proliferating and immune cell (CD20+ B-lymphocytes, CD3+ T-lymphocytes, CD8+ cytotoxic T-cells, CD16+ natural killer (NK) cells populations, area of high endothelial venules, and lung lymphatic vessels in cancer groups at both the stages as compared with the PBS groups. Furthermore, a significant positive correlation was observed between immune cell populations in MFALCs and the lungs (B- and T-lymphocytes, and NK cells in both stages). Collectively, our findings suggest a promising cancer therapeutic strategy via targeting immune cells in MFALCs.
Collapse
Affiliation(s)
- Yaser Hosny Ali Elewa
- Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M Abd Elwakil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sherif Kh A Mohamed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
Tapmeier TT. A macrophage is a macrophage is a macrophage-in metastasis. Oncotarget 2023; 14:561-562. [PMID: 37279094 DOI: 10.18632/oncotarget.28423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
|