1
|
Ma S, Yi S, Zou H, Fan S, Xiao Y. The role of PRMT1 in cellular regulation and disease: Insights into biochemical functions and emerging inhibitors for cancer therapy. Eur J Pharm Sci 2025; 204:106958. [PMID: 39521191 DOI: 10.1016/j.ejps.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Protein Arginine Methyltransferase 1 (PRMT1), a primary protein arginine methyltransferase, plays a pivotal role in cellular regulation, influencing processes such as gene expression, signal transduction, and cell differentiation. Dysregulation of PRMT1 has been linked to the development of various cancers, establishing it as a key target for therapeutic intervention. This review synthesizes the biochemical characteristics, structural domains, and functional mechanisms of PRMT1, focusing on its involvement in tumorigenesis. Additionally, the development and efficacy of emerging PRMT1 inhibitors as potential cancer therapies are examined. By employing molecular modeling and insights from existing literature, this review posits that targeting PRMT1's methyltransferase activity could disrupt cancer progression, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Shiyao Ma
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Shanhui Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Shasha Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Yin Xiao
- Department of Pharmacy, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, PR China.
| |
Collapse
|
2
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
3
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
4
|
Kang MC, Kong SY, Park SY, Park SY, Lee EG, Yoo CW, Kim YH, Kim H, Choi W. Case report: Extraskeletal Ewing sarcoma with a germline pathogenic variant of SMARCA4. Front Oncol 2024; 14:1422605. [PMID: 39439958 PMCID: PMC11493533 DOI: 10.3389/fonc.2024.1422605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
SMARCA4 (BRG1) is a core unit of the SWI/SNF complex, regulating gene transcription through chromatin remodeling. Germline SMARCA4 variants have been reported to be associated with various malignancies. Here, we report the first case of extraskeletal Ewing sarcoma in a young female patient with a germline pathogenic variant of SMARCA4 (c.3546 + 1G>A), diagnosed with next generation sequencing (NGS). This alteration was also identified in her familial lineage, including her sister who was previously diagnosed with small cell carcinoma of the ovary, hypercalcemic type, a malignancy highly associated with SMARCA4 mutations. Despite undergoing radical surgery and receiving systemic treatments including VeIP (vinblastine, ifosfamide, cisplatin), and VDC (vincristine, doxorubicin, cyclophosphamide) regimens, the patient succumbed to death due to disease progression. With the implementation of NGS, we anticipate that more cases with SMARCA4 mutations will be diagnosed in the future. Further research is necessary to unveil therapeutic targets associated for this oncogenic alteration.
Collapse
Affiliation(s)
- Min-Chae Kang
- Division of Rare and Refractory Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sun-Young Kong
- Division of Rare and Refractory Cancer, National Cancer Center, Goyang, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
- Department of Laboratory Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Eun-Gyeong Lee
- Center for Breast Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Chong Woo Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hwan Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Hyeji Kim
- Division of Rare and Refractory Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Wonyoung Choi
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
- Division of Cancer Biology, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
5
|
Kang Q, Ma D, Zhao P, Chai X, Huang Y, Gao R, Zhang T, Liu P, Deng B, Feng C, Zhang Y, Lu Y, Li Y, Fang Q, Wang J. BRG1 promotes progression of B-cell acute lymphoblastic leukemia by disrupting PPP2R1A transcription. Cell Death Dis 2024; 15:621. [PMID: 39187513 PMCID: PMC11347705 DOI: 10.1038/s41419-024-06996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.
Collapse
Affiliation(s)
- Qian Kang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao Chai
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Huang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhuo Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Deng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Feng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yanju Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
6
|
Redin E, Sridhar H, Zhan YA, Pereira Mello B, Zhong H, Durani V, Sabet A, Manoj P, Linkov I, Qiu J, Koche RP, de Stanchina E, Astorkia M, Betel D, Quintanal-Villalonga Á, Rudin CM. SMARCA4 controls state plasticity in small cell lung cancer through regulation of neuroendocrine transcription factors and REST splicing. J Hematol Oncol 2024; 17:58. [PMID: 39080761 PMCID: PMC11290012 DOI: 10.1186/s13045-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Small Cell Lung Cancer (SCLC) can be classified into transcriptional subtypes with distinct degrees of neuroendocrine (NE) differentiation. Recent evidence supports plasticity among subtypes with a bias toward adoption of low-NE states during disease progression or upon acquired chemotherapy resistance. Here, we identify a role for SMARCA4, the catalytic subunit of the SWI/SNF complex, as a regulator of subtype shift in SCLC. METHODS ATACseq and RNAseq experiments were performed in SCLC cells after pharmacological inhibition of SMARCA4. DNA binding of SMARCA4 was characterized by ChIPseq in high-NE SCLC patient derived xenografts (PDXs). Enrichment analyses were applied to transcriptomic data. Combination of FHD-286 and afatinib was tested in vitro and in a set of chemo-resistant SCLC PDXs in vivo. RESULTS SMARCA4 expression positively correlates with that of NE genes in both SCLC cell lines and patient tumors. Pharmacological inhibition of SMARCA4 with FHD-286 induces the loss of NE features and downregulates neuroendocrine and neuronal signaling pathways while activating non-NE factors. SMARCA4 binds to gene loci encoding NE-lineage transcription factors ASCL1 and NEUROD1 and alters chromatin accessibility, enhancing NE programs. Enrichment analysis applied to high-confidence SMARCA4 targets confirmed neuron related pathways as the top GO Biological processes regulated by SMARCA4 in SCLC. In parallel, SMARCA4 also controls REST, a known suppressor of the NE phenotype, by regulating SRRM4-dependent REST transcript splicing. Furthermore, SMARCA4 inhibition drives ERBB pathway activation in SCLC, rendering SCLC tumors sensitive to afatinib. CONCLUSIONS This study nominates SMARCA4 as a key regulator of the NE state plasticity and defines a novel therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harsha Sridhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hong Zhong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidushi Durani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Amin Sabet
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maider Astorkia
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
8
|
Yamashita K, Sewastjanow-Silva M, Yoshimura K, Rogers JE, Rosa Vicentini E, Pool Pizzi M, Fan Y, Zou G, Li JJ, Blum Murphy M, Gan Q, Waters RE, Wang L, Ajani JA. SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel. Cancers (Basel) 2024; 16:1300. [PMID: 38610978 PMCID: PMC11010836 DOI: 10.3390/cancers16071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The clinical impact of SMARCA4 mutations (SMARCA4ms) in gastroesophageal adenocarcinoma (GEA) remains underexplored. This study aimed to examine the association of SMARCA4ms with clinical outcomes and co-occurrence with other gene mutations identified through a next-generation sequencing (NGS) panel in GEA patients. METHODS A total of 256 patients with metastatic or recurrent GEA who underwent NGS panel profiling at the MD Anderson Cancer Center between 2016 and 2022 were included. Comparative analyses were performed to assess clinical outcomes related to SMARCA4ms. The frequency and types of SMARCA4ms and their co-occurrence with other gene mutations were also examined. RESULTS SMARCA4ms were identified in 19 patients (7.4%). These SMARCA4ms were significantly associated with non-signet ring cell subtype (p = 0.044) and PD-L1 positive expression (p = 0.046). No difference in survival between the SMARCA4m and SMARCA4-normal group was observed (p = 0.84). There were significant associations between SMARCA4ms and FANCA, IGF1R, KRAS, FANCL, and PTEN alterations. Notably, 15 of the 19 SMARCA4m cases involved SNV missense mutations, with frequent co-occurrences noted with TP53, KRAS, ARID1A, and ERBB2 mutations. CONCLUSIONS These results serve as the first comprehensive examination of the relationship between SMARCA4ms and clinical outcomes in GEA.
Collapse
Affiliation(s)
- Kohei Yamashita
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Matheus Sewastjanow-Silva
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Katsuhiro Yoshimura
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Jane E. Rogers
- Department of Pharmacy Clinical Programs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ernesto Rosa Vicentini
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Melissa Pool Pizzi
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Yibo Fan
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Gengyi Zou
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Jenny J. Li
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Mariela Blum Murphy
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Qiong Gan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.G.); (R.E.W.)
| | - Rebecca E. Waters
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.G.); (R.E.W.)
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaffer A. Ajani
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| |
Collapse
|
9
|
Ren X, Xu J, Xue Q, Tong Y, Xu T, Wang J, Yang T, Chen Y, Shi D, Li X. BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways. Theriogenology 2024; 215:10-23. [PMID: 38000125 DOI: 10.1016/j.theriogenology.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Brahma-related gene 1 (BRG1) enhances the pluripotency of embryonic and adult stem cells, however, its effect on induced pluripotent stem cell (iPSC) pluripotency has not been reported. The aim of this study was to investigate the effect of BRG1 on porcine iPSC pluripotency and its mechanisms. The effect of BRG1 on porcine iPSC pluripotency was explored by positive and negative control it. The mechanism was investigated by regulating the WNT/β-catenin signaling pathway and autophagy flux. The results showed that inhibition of BRG1 decreased pluripotency-related gene expression in porcine iPSCs; while its overexpression had the opposite effect, the expression of WNT/β-catenin signaling pathway- and autophagy-related genes was significantly up-regulated (P < 0.05) in the BRG1 overexpressed group when compared to the control group. Inhibited pluripotency-related gene or protein expression, decreased autophagy flux, and increased mitochondrial length and mitochondrial membrane potential (MMP) were observed when porcine iPSCs were treated with the WNT/β-catenin signaling pathway inhibitor IWR-1. Forced BRG1 expression restored porcine iPSC pluripotency, increased autophagy flux, shortened mitochondria, and reduced MMP. Lastly, Compound C was used to activate porcine iPSC autophagy, and it was found that the expression of BRG1 and β-catenin increased, and pluripotency-related gene and protein expression was up-regulated; these effects were reversed when the BRG1 inhibitor PFI-3 and IWR-1 were added. These results suggested that BRG1 enhanced the pluripotency of porcine iPSCs through WNT/β-catenin and autophagy pathways.
Collapse
Affiliation(s)
- Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianchun Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yi Tong
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jinli Wang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Ting Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yuan Chen
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
10
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
11
|
Isachesku E, Braicu C, Pirlog R, Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP, Berindan-Neagoe I. The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development. Int J Mol Sci 2023; 24:16320. [PMID: 38003512 PMCID: PMC10671451 DOI: 10.3390/ijms242216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.
Collapse
Affiliation(s)
- Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Lavinia-Lorena Pruteanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Deo Prakash Pandey
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| |
Collapse
|
12
|
Yang C, He Y, Wang Y, McKinnon PJ, Shahani V, Miller DD, Pfeffer LM. Next-generation bromodomain inhibitors of the SWI/SNF complex enhance DNA damage and cell death in glioblastoma. J Cell Mol Med 2023; 27:2770-2781. [PMID: 37593885 PMCID: PMC10494295 DOI: 10.1111/jcmm.17907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy-resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI-3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV-129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV-255 and IV-275 had higher bioactivity than IV-129, with IV-255 selectively binding to the bromodomain of BRG1 and not BRM, while IV-275 bound well to both BRG1 and BRM bromodomains. In contrast, IV-191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV-255 and IV-275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next-generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.
Collapse
Affiliation(s)
- Chuanhe Yang
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Yali He
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Yinan Wang
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Vijay Shahani
- Recursion Pharmaceuticals IncTorontoOntarioM5V 2A2Canada
| | - Duane D. Miller
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|