1
|
Yue D, Sun X. Retraction Note: Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis 2024; 15:773. [PMID: 39448559 PMCID: PMC11502737 DOI: 10.1038/s41419-024-07162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Affiliation(s)
- Dan Yue
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Tang Z, Zhang Y, Yu Z, Luo Z. Metformin Suppresses Stemness of Non-Small-Cell Lung Cancer Induced by Paclitaxel through FOXO3a. Int J Mol Sci 2023; 24:16611. [PMID: 38068934 PMCID: PMC10705988 DOI: 10.3390/ijms242316611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on cancer stemness derived from paclitaxel (PTX)-resistant non-small-cell lung cancer (NSCLC) cells. We showed that CSC-like features were acquired by the chronic induction of resistance to PTX, concurrently with inactivation of FOXO3a. In line with this, knockdown of FOXO3a in PTX-sensitive cells led to changes toward stemness, while overexpression of FOXO3a in PTX-resistant cells mitigated stemness in vitro and remarkably curbed the tumorigenesis of NSCLC/PTX cells in vivo. Furthermore, metformin suppressed the self-renewal ability of PTX-resistant cells, reduced the expression of stemness-related markers (c-MYC, Oct4, Nanog and Notch), and upregulated FOXO3a, events concomitant with the activation of AMP-activated protein kinase (AMPK). All these changes were recapitulated by silencing FOXO3a in PTX-sensitive cells. Intriguingly, the introduction of the AMPK dominant negative mutant offset the inhibitory effect of metformin on the stemness of PTX-resistant cells. In addition, FOXO3a levels were elevated by the treatment of PTX-resistant cells with MK2206 (an Akt inhibitor) and U0126 (a MEK inhibitor). Collectively, our findings indicate that metformin exerts its effect on FOXO3a through the activation of AMPK and the inhibition of protein kinase B (Akt) and MAPK/extracellular signal-regulated kinase (MEK), culminating in the suppression of stemness in paclitaxel-resistant NSCLC cells.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
| | - Yilan Zhang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhengyi Yu
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| |
Collapse
|
4
|
Tan X, Zhang Z, Liu P, Yao H, Shen L, Tong JS. Retraction Note: Inhibition of EZH2 enhances the therapeutic effect of 5-FU via PUMA upregulation in colorectal cancer. Cell Death Dis 2023; 14:226. [PMID: 36991015 DOI: 10.1038/s41419-023-05764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Affiliation(s)
- Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China.
| | - Zhongqiang Zhang
- Department of Liver Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Sun Z, Zhao M, Wang W, Hong L, Wu Z, Luo G, Lu S, Tang Y, Li J, Wang J, Zhang Y, Zhang L. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett 2023; 554:216032. [PMID: 36493899 DOI: 10.1016/j.canlet.2022.216032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/04/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is clinically promising in destructing primary tumors and immunotherapy awakes host immunity to control distant metastases. 5-aminolevulinic acid (5-ALA), a smart photosensitizer, converts into a physiological PDT agent with no dark toxicity in vivo. In this study, we found for the first time 5-ALA-PDT induced colorectal cancer (CRC) cells death by immunogenic cell death (ICD) upon AKT inhibition. Dying cancer cells induced by 5-ALA-PDT efficiently activated bone-marrow derived dendritic cells (BMDCs). Simultaneously, autophagy was observed after AKT inhibition by 5-ALA-PDT. Besides, we found cells died more remarkable by ICD under a circumstance of low occurrence of autophagy. To evaluate the effects of 5-ALA-PDT in vivo, we applied subcutaneous tumor mouse model and delightedly found 5-ALA-PDT induced a systemic antitumor immune response to control both primary tumors and distant metastases. Meanwhile, 5-ALA-PDT enhanced Th1 immunity, leading cytotoxic T lymphocyte response, and raised tumor-specific T cells. Combining with Chloroquine (CQ), 5-ALA-PDT further augmented tumor-specific immunity effects indicating protective role of autophagy. Together, the combination therapy of 5-ALA-PDT and autophagy inhibitor synergistically led to a novel clinical approach and potential ICD-based tumor vaccine for CRC patients.
Collapse
Affiliation(s)
- Zhuoran Sun
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China; Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Weibi Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Lanhui Hong
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Zhongguang Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Guang Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Siyao Lu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yueyue Tang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Jiehan Li
- School of Biomedical Sciences, Hunan University, Changsha, 410082, PR China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Yingjie Zhang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, PR China.
| | - Lingling Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
6
|
Jenkins LJ, Luk IY, Fairlie WD, Lee EF, Palmieri M, Schoffer KL, Tan T, Ng I, Vukelic N, Tran S, Tse JW, Nightingale R, Alam Z, Chionh F, Iatropoulos G, Ernst M, Afshar-Sterle S, Desai J, Gibbs P, Sieber OM, Dhillon AS, Tebbutt NC, Mariadason JM. Genotype-Tailored ERK/MAPK Pathway and HDAC Inhibition Rewires the Apoptotic Rheostat to Trigger Colorectal Cancer Cell Death. Mol Cancer Ther 2023; 22:52-62. [PMID: 36343387 PMCID: PMC9808369 DOI: 10.1158/1535-7163.mct-22-0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
The EGFR/RAS/MEK/ERK signaling pathway (ERK/MAPK) is hyperactivated in most colorectal cancers. A current limitation of inhibitors of this pathway is that they primarily induce cytostatic effects in colorectal cancer cells. Nevertheless, these drugs do induce expression of proapoptotic factors, suggesting they may prime colorectal cancer cells to undergo apoptosis. As histone deacetylase inhibitors (HDACis) induce expression of multiple proapoptotic proteins, we examined whether they could synergize with ERK/MAPK inhibitors to trigger colorectal cancer cell apoptosis. Combined MEK/ERK and HDAC inhibition synergistically induced apoptosis in colorectal cancer cell lines and patient-derived tumor organoids in vitro, and attenuated Apc-initiated adenoma formation in vivo. Mechanistically, combined MAPK/HDAC inhibition enhanced expression of the BH3-only proapoptotic proteins BIM and BMF, and their knockdown significantly attenuated MAPK/HDAC inhibitor-induced apoptosis. Importantly, we demonstrate that the paradigm of combined MAPK/HDAC inhibitor treatment to induce apoptosis can be tailored to specific MAPK genotypes in colorectal cancers, by combining an HDAC inhibitor with either an EGFR, KRASG12C or BRAFV600 inhibitor in KRAS/BRAFWT; KRASG12C, BRAFV600E colorectal cancer cell lines, respectively. These findings identify a series of ERK/MAPK genotype-tailored treatment strategies that can readily undergo clinical testing for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Laura J. Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Ian Y. Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Michelle Palmieri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kael L. Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Tao Tan
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Irvin Ng
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Janson W.T. Tse
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Zakia Alam
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - George Iatropoulos
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Amardeep S. Dhillon
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Niall C. Tebbutt
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - John M. Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Corresponding Author: John M. Mariadason, Olivia Newton-John Cancer Wellness and Research Centre, 145-163 Studley Road, Melbourne, Victoria, 3084, Australia. Phone: 613-9496-3068; E-mail:
| |
Collapse
|
7
|
Parekh PR, Botting GM, Thurber DB, Boruszczak M, Murphy W, Bertenshaw GP. Predictive biomarkers for response to trametinib in non-small cell lung cancer. Tumour Biol 2022; 44:249-267. [PMID: 36502357 DOI: 10.3233/tub-220009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading cause of cancer deaths. Current companion diagnostics use driver mutation sequencing to select patients for molecularly targeted agents (MTA), even though most patients lack actionable mutations. These diagnostics utilize static biomarkers, ignoring real-time tumor cell biology. OBJECTIVE Trametinib is FDA-approved in combination with dabrafenib for BRAF V600E-positive NSCLC, however, it has plausible utility beyond these patients. We sought to identify novel biomarkers for maximizing trametinib application. METHODS Trametinib responses were evaluated in 12 EGFR/BRAF wild-type (WT) NSCLC cell lines with diverse RAS mutational status. We identified three response categories by colony assay. Trametinib-induced molecular dynamics were studied using immunoassays and apoptosis/necrosis assays, to identify predictive response biomarkers. RESULTS p27 accumulation and cyclin D1 downregulation suggested universal cell cycle arrest with trametinib. However, 4 cell lines showed PARP cleavage and 8 showed increased phospho-4E-BP1, suggesting varied cellular outcomes from apoptosis, necrosis, senescence to autophagy. Cleaved PARP, phospho-4E-BP1 and phospho-AKT expression can predict these outcomes. CONCLUSIONS Trametinib monotherapy outcome may depend upon cellular context more than oncogenic mutation status. In BRAF WT NSCLC, trametinib may be best suited for combination therapy and dynamic biomarkers could select combinations and predict responses.
Collapse
Affiliation(s)
- Palak R Parekh
- BioMarker Strategies LLC., Rockville, MD, USA.,AstraZeneca, Gaithersburg, MD, USA
| | - Gregory M Botting
- BioMarker Strategies LLC., Rockville, MD, USA.,AstraZeneca, Gaithersburg, MD, USA
| | | | - Marika Boruszczak
- BioMarker Strategies LLC., Rockville, MD, USA.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William Murphy
- BioMarker Strategies LLC., Rockville, MD, USA.,Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA
| | | |
Collapse
|
8
|
Lou J, Lv JX, Zhang YP, Liu ZJ. OSI-027 inhibits the tumorigenesis of colon cancer through mediation of c-Myc/FOXO3a/PUMA axis. Cell Biol Int 2022; 46:1204-1214. [PMID: 35293663 DOI: 10.1002/cbin.11792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/16/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Colon cancer is a gastrointestinal malignancy which is one of the leading causes of tumor-associated deaths. It has been reported that mTOR can lead to the progression of colon cancer. However, the mechanism by which mTOR inhibitor (OSI-027) mediates the tumorigenesis of colon cancer remains largely unknown. Cell function of colon cancer was investigated by CCK-8 flow cytometry and TUNEL staining. In addition, qRT-PCR and western blot were used to investigate the mechanism underlying the function of OSI-027 in colon cancer. OSI-027 dose-dependently reduced colon cancer cell viability through inducing the cell apoptosis. In addition, OSI-027 induced the apoptosis of colon cancer cells via upregulation of PUMA. OSI-027 promoted the expression of PUMA by activation of FOXO3a, and c-Myc knockdown partially increased FOXO3a and PUMA level. Moreover, OSI-027 attenuated the tumor growth of colon cancer through mediation of mTOR/c-Myc/FOXO3a axis. OSI-027 attenuates colon cancer progression through mediation of c-Myc/FOXO3a/PUMA axis. Thereby, this research might shed new insights on exploring the strategies against colon cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Lou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - Jian-Xin Lv
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - You-Ping Zhang
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
9
|
Pairawan S, Akcakanat A, Kopetz S, Tapia C, Zheng X, Chen H, Ha MJ, Rizvi Y, Holla V, Wang J, Evans KW, Zhao M, Busaidy N, Fang B, Roth JA, Dumbrava EI, Meric-Bernstam F. Combined MEK/MDM2 inhibition demonstrates antitumor efficacy in TP53 wild-type thyroid and colorectal cancers with MAPK alterations. Sci Rep 2022; 12:1248. [PMID: 35075200 PMCID: PMC8786858 DOI: 10.1038/s41598-022-05193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Most tumors with activating MAPK (mitogen-activated protein kinase) pathway alterations respond poorly to MEK inhibitors alone. Here, we evaluated combination therapy with MEK inhibitor selumetinib and MDM2 inhibitor KRT-232 in TP53 wild-type and MAPK altered colon and thyroid cancer models. In vitro, we showed synergy between selumetinib and KRT-232 on cell proliferation and colony formation assays. Immunoblotting confirmed p53 upregulation and MEK pathway inhibition. The combination was tested in vivo in seven patient-derived xenograft (PDX) models (five colorectal carcinoma and two papillary thyroid carcinoma models) with different KRAS, BRAF, and NRAS mutations. Combination therapy significantly prolonged event-free survival compared with monotherapy in six of seven models tested. Reverse-phase protein arrays and immunohistochemistry, respectively, demonstrated upregulation of the p53 pathway and in two models cleaved caspase 3 with combination therapy. In summary, combined inhibition of MEK and MDM2 upregulated p53 expression, inhibited MAPK signaling and demonstrated greater antitumor efficacy than single drug therapy in both in vitro and in vivo settings. These findings support further clinical testing of the MEK/MDM2 inhibitor combination in tumors of epithelial origin with MAPK pathway alterations.
Collapse
Affiliation(s)
- Seyed Pairawan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Epizyme Inc., Boston, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasmeen Rizvi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naifa Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ecaterina Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC8.3044, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Yan J, Yang S, Tian H, Zhang Y, Zhao H. Copanlisib promotes growth inhibition and apoptosis by modulating the AKT/FoxO3a/PUMA axis in colorectal cancer. Cell Death Dis 2020; 11:943. [PMID: 33139695 PMCID: PMC7606528 DOI: 10.1038/s41419-020-03154-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is the type of cancer with the third highest incidence and is associated with high mortality and low 5-year survival rates. We observed that copanlisib, an inhibitor of PI3K (pan-class I phosphoinositide 3-kinase) that preferentially inhibits PI3Kδ and PI3Kα, impedes the growth of CRC cells by inducing apoptosis via PUMA. There was a marked increase in the expression of PUMA independent of p53 after treatment with copanlisib. The response of CRC cells to copanlisib could be predicted by PUMA expression. Copanlisib was found to induce PUMA expression through FoxO3a by directly binding to the PUMA promoter after inhibiting AKT signaling. PUMA deficiency mitigated the apoptosis induced by copanlisib. Caspase activation and mitochondrial dysfunction led to copanlisib resistance, as observed through a clonogenic assay, whereas enhanced expression of PUMA increased the copanlisib-induced susceptibility to apoptosis. Moreover, the antitumor effects of copanlisib were suppressed by a deficiency of PUMA in a xenograft model, and caspase activation and reduced apoptosis were also observed in vivo. Copanlisib-mediated chemosensitization seemed to involve the concurrent induction of PUMA expression via mechanisms that were both dependent and independent of p53. These observations indicate that apoptosis mediated by PUMA is crucial for the anticancer effects of copanlisib and that manipulation of PUMA may aid in enhancing anticancer activities.
Collapse
Affiliation(s)
- Ji Yan
- Department of Medicine Laboratory, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Shida Yang
- Department of Laboratory Medicine, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning, China
| | - Hong Tian
- Oncology Department, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Yang Zhang
- Department of Pathology, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Ballout F, Monzer A, Fatfat M, Ouweini HE, Jaffa MA, Abdel-Samad R, Darwiche N, Abou-Kheir W, Gali-Muhtasib H. Thymoquinone induces apoptosis and DNA damage in 5-Fluorouracil-resistant colorectal cancer stem/progenitor cells. Oncotarget 2020; 11:2959-2972. [PMID: 32821342 PMCID: PMC7415406 DOI: 10.18632/oncotarget.27426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The high recurrence rates of colorectal cancer have been associated with a small population of cancer stem cells (CSCs) that are resistant to the standard chemotherapeutic drug, 5-fluorouracil (5FU). Thymoquinone (TQ) has shown promising antitumor properties on numerous cancer systems both in vitro and in vivo; however, its effect on colorectal CSCs is poorly established. Here, we investigated TQ's potential to target CSCs in a three-dimensional (3D) sphere-formation assay enriched for a population of colorectal cancer stem/progenitor cells. Our results showed a significant decrease in self-renewal potential of CSC populations enriched from 5FU-sensitive and resistant HCT116 cells at 10-fold lower concentrations when compared to 2D monolayers. TQ decreased the expression levels of colorectal stem cell markers CD44 and Epithelial Cell Adhesion Molecule EpCAM and proliferation marker Ki67 in colonospheres derived from both cell lines and reduced cellular migration and invasion. Further investigation revealed that TQ treatment led to increased TUNEL positivity and a dramatic increase in the amount of the DNA damage marker gamma H2AX particularly in 5FU-resistant colonospheres, suggesting that the diminished sphere forming ability in TQ-treated colonospheres is due to induction of DNA damage and apoptotic cell death. The intraperitoneal injection of TQ in mice inhibited tumor growth of spheres derived from 5FU-sensitive and 5FU-resistant HCT116 cells. Furthermore, TQ induced apoptosis and inhibited NF-κB and MEK signaling in mouse tumors. Altogether, our findings document TQ's effect on colorectal cancer stem-like cells and provide insights into its underlying mechanism of action.
Collapse
Affiliation(s)
- Farah Ballout
- 1Department of Biology, American University of Beirut, Lebanon
| | - Alissar Monzer
- 1Department of Biology, American University of Beirut, Lebanon
| | - Maamoun Fatfat
- 1Department of Biology, American University of Beirut, Lebanon
| | - Hala El Ouweini
- 1Department of Biology, American University of Beirut, Lebanon
| | - Miran A. Jaffa
- 2Department of Epidemiology and Population Health, American University of Beirut, Lebanon
| | - Rana Abdel-Samad
- 3Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon
| | - Nadine Darwiche
- 3Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon
| | - Wassim Abou-Kheir
- 4Center for Drug Discovery and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
- Wassim Abou-Kheir, email:
| | - Hala Gali-Muhtasib
- 1Department of Biology, American University of Beirut, Lebanon
- 4Center for Drug Discovery and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
- Correspondence to: Hala Gali-Muhtasib, email:
| |
Collapse
|
12
|
Kim SJ, Kim YS, Kim JH, Jang HY, Ly DD, Das R, Park KS. Activation of ERK1/2-mTORC1-NOX4 mediates TGF-β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells. Biochem Biophys Res Commun 2020; 529:747-752. [PMID: 32736702 DOI: 10.1016/j.bbrc.2020.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a crucial role in the development of epithelial to mesenchymal transition (EMT) and fibrosis, particularly in an ocular disorder such as proliferative vitreoretinopathy (PVR). However, the key molecular mechanism underlying its pathogenesis remains unknown. In the present study, using cultured ARPE-19 cells, we determined that TGF-β initiates a signaling pathway through extracellular signal-regulated kinase (ERK)-mammalian target of rapamycin complex 1 (mTORC1) that stimulates trans-differentiation and fibrosis of retinal pigment epithelium. Blocking this pathway by a TGF-βRI, ERK or mTORC1 inhibitor protected cells from EMT and fibrotic protein expression. TGF-β1 treatment increased reactive oxygen species (ROS) via NOX4 upregulation, which acts downstream of ERK and mTORC1, as the ROS scavenger N-acetylcysteine and a pan-NADPH oxidase (NOX) inhibitor DPI dissipated excess ROS generation. TGF-β1-induced oxidative stress resulted in EMT and fibrotic changes, as NAC and DPI prevented α-SMA, Col4α3 expression and cell migration. All these inhibitors blocked the downstream pathway activation in addition to clearly preventing the activation of its upstream molecules, indicating the presence of a feedback loop system that may boost the upstream events. Furthermore, the FDA-approved drug trametinib (10 nM) blunted TGF-β1-induced mTORC1 activation and downstream pathogenic alterations through ERK1/2 inhibition, which opens a therapeutic avenue for the treatment of PVR in the future.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Department of Physiology, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | - Jeong Hun Kim
- Department of Ophthalmology & Biomedical Sciences, Seoul National University College of Medicine, South Korea; Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dat Da Ly
- Department of Physiology, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ranjan Das
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Kyu-Sang Park
- Department of Physiology, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
13
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Lin L, Ding D, Xiao X, Li B, Cao P, Li S. Trametinib potentiates TRAIL-induced apoptosis via FBW7-dependent Mcl-1 degradation in colorectal cancer cells. J Cell Mol Med 2020; 24:6822-6832. [PMID: 32352219 PMCID: PMC7299726 DOI: 10.1111/jcmm.15336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Trametinib is a MEK1/2 inhibitor and exerts anticancer activity against a variety of cancers. However, the effect of Trametinib on colorectal cancer (CRC) is not well understood. In the current study, our results demonstrate the ability of sub-toxic doses of Trametinib to enhance TRAIL-mediated apoptosis in CRC cells. Our findings also indicate that Trametinib and TRAIL activate caspase-dependent apoptosis in CRC cells. Moreover, Mcl-1 overexpression can reduce apoptosis in CRC cells treated with Trametinib with or without TRAIL. We further demonstrate that Trametinib degrades Mcl-1 through the proteasome pathway. In addition, GSK-3β phosphorylates Mcl-1 at S159 and promotes Mcl-1 degradation. The E3 ligase FBW7, known to polyubiquitinate Mcl-1, is involved in Trametinib-induced Mcl-1 degradation. Taken together, these results provide the first evidence that Trametinib enhances TRAIL-mediated apoptosis through FBW7-dependent Mcl-1 ubiquitination and degradation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Ding
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoguang Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Penglong Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijun Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Li X, Liu K, Zhou W, Jiang Z. MiR-155 targeting FoxO3a regulates oral cancer cell proliferation, apoptosis, and DDP resistance through targeting FoxO3a. Cancer Biomark 2019; 27:105-111. [DOI: 10.3233/cbm-190555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoting Li
- Department of Stomatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kun Liu
- Department of Stomatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhe Jiang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Wei J, Hu J, Wang L, Xie L, Jin MS, Chen X, Liu J, Jin J. Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. J Med Chem 2019; 62:10897-10911. [PMID: 31730343 DOI: 10.1021/acs.jmedchem.9b01528] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MEK1 and MEK2 (also known as MAP2K1 and MAP2K2) are the "gatekeepers" of the ERK signaling output with redundant roles in controlling ERK activity. Numerous inhibitors targeting MEK1/2 have been developed including three FDA-approved drugs. However, acquired resistance to MEK1/2 inhibitors has been observed in patients, and new therapeutic strategies are needed to overcome the resistance. Here, we report a first-in-class degrader of MEK1/2, MS432 (23), which potently and selectively degraded MEK1 and MEK2 in a VHL E3 ligase- and proteasome-dependent manner and suppressed ERK phosphorylation in cells. It inhibited colorectal cancer and melanoma cell proliferation much more effectively than its negative control MS432N (24), and its effect was phenocopied by MEK1/2 knockdown. Compound 23 was highly selective for MEK1/2 in global proteomic profiling studies. It was also bioavailable in mice and can be used for in vivo efficacy studies. We provide two well-characterized chemical tools to the biomedical community.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Li Wang
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ling Xie
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Margaret S Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Xian Chen
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
17
|
Tsubaki M, Takeda T, Noguchi M, Jinushi M, Seki S, Morii Y, Shimomura K, Imano M, Satou T, Nishida S. Overactivation of Akt Contributes to MEK Inhibitor Primary and Acquired Resistance in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11121866. [PMID: 31769426 PMCID: PMC6966459 DOI: 10.3390/cancers11121866] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
RAS and BRAF-mutated colorectal cancers are associated with resistance to chemotherapy and poor prognosis, highlighting the need for new therapeutic strategies. Although these cancers sometimes respond to mitogen activated protein kinase kinase (MEK) inhibitor treatment, they often acquire resistance via mechanisms, which are poorly understood. Here, we investigated the mechanism of MEK inhibitor resistance in primary- and acquired-resistant cells. Cell viability was examined using the trypan blue dye exclusion assay. Protein expression was analyzed by western blotting. Somatic mutations in colorectal cancer cells were investigated using the polymerase chain reaction array. PD0325901 and trametinib induced cell death in LoVo and Colo-205 cells but not in DLD-1 and HT-29 cells, which have a PIK3CA mutation constitutively activating Akt and NF-κB. Treatment with PD0325901 and trametinib suppressed ERK1/2 activation in all four cell lines but only induced Akt and NF-κB activation in DLD-1 and HT-29 cells. Inhibition of Akt but not NF-κB, overcame MEK inhibitor resistance in DLD-1 and HT-29 cells. Acquired-resistant LoVo/PR, Colo-205/PR and LoVo/TR cells have constitutively active Akt due to a M1043V mutation in the kinase activation loop of PIK3CA and Akt inhibitor resensitized these cells to MEK inhibitor. These results demonstrate that the overactivation of Akt plays a critical role in MEK inhibitor primary and acquired resistance and implicate combined Akt/MEK inhibition as a potentially useful treatment for RAS/BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Masaki Noguchi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Minami Jinushi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Kazunori Shimomura
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan.;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Correspondence:
| |
Collapse
|
18
|
TGFβ induces stemness through non-canonical AKT-FOXO3a axis in oral squamous cell carcinoma. EBioMedicine 2019; 48:70-80. [PMID: 31629677 PMCID: PMC6838363 DOI: 10.1016/j.ebiom.2019.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background FOXO3a has been widely regarded as a tumor suppressor. It also plays a paradoxical role in regulating the cancer stem cells (CSCs), responsible for tumor-initiation, chemo-resistance, and recurrence in various solid tumors, including oral squamous cell carcinoma (OSCC). This study aims to uncover the role of FOXO3a and its importance for a non-canonical pathway of TGFβ in regulating the OSCC stemness. Methods We identified FOXO3a expression in OSCC tissues and cell lines using immunohistochemistry and western blot. The correlation between FOXO3a and stemness was evaluated. Stable cell lines with differential expression of FOXO3a were constructed using lentiviruses. The effects of FOXO3a on stem-cell like properties in OSCC was further evaluated in vitro and in vivo. We also explored the effect of TGFβ on FOXO3a with respect to its expression and function. Findings Our findings suggest that FOXO3a was widely expressed and negatively correlated with the stemness in OSCC. This regulation can be abolished by TGFβ through phosphorylation, nuclear exclusion, and degradation in the non-Smad pathway. We also observed that non-Smad AKT-FOXO3a axis is essential to regulate stemness of CSCs by TGFβ. Interpretation TGFβ induces stemness through non-canonical AKT-FOXO3a axis in OSCC. Our study provides a foundation to understand the mechanism of CSCs and a possible therapeutic target to eliminate CSCs.
Collapse
|
19
|
Huang X, Chen Z, Shi W, Zhang R, Li L, Liu H, Wu L. TMF inhibits miR-29a/Wnt/β-catenin signaling through upregulating Foxo3a activity in osteoarthritis chondrocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2009-2019. [PMID: 31354246 PMCID: PMC6590397 DOI: 10.2147/dddt.s209694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Background: miR-29a, a downstream factor of Wnt/β-catenin signaling, promotes the activity of the Wnt/β-catenin signaling in a positive feedback loop. Our previous work showed that 5,7,3ʹ,4ʹ-tetramethoxyflavone (TMF), a major constituent from Murraya exotica L., exhibited chondroprotective activity by inhibiting the activity of Wnt/β-catenin signaling. Purpose: To investigate whether TMF showed the inhibitory effects on miR-29a/β-catenin signaling by up regulation of Foxo3a expression. Methods: Rat knee OA models were duplicated by using Hulth’s method. TMF (5 μg/mL and 20 μg/mL) was used for administration to cultured cells, which were isolated from the rat cartilages. Analysis of chondrocytes apoptosis, gene expression, and protein expression were conducted. In addition, miR-29a mimics and pcDNA3.1(+)-Foxo3a vector were used for transfection, luciferase reporter assay for detecting the activity of Wnt/β-catenin signaling, and co-immunoprecipitation for determining proteins interaction. Results: TMF down regulated miR-29a/β-catenin signaling activity and cleaved caspase-3 expression and up regulated Foxo3a expression in OA rat cartilages. In vitro, miR-29a mimics down regulated the expression of Foxo3a and up regulated the activity of Wnt/β-catenin signaling and cleaved caspase-3 expression. TMF ameliorated miR-29a/β-catenin-induced chondrocytes apoptosis by up regulation of Foxo3a expression. Conclusion: TMF exhibited chondroprotective activity by up regulating Foxo3a expression and subsequently inhibiting miR-29a/Wnt/β-catenin signaling activity.
Collapse
Affiliation(s)
- Xianhua Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Rui Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
20
|
Eberle J. Countering TRAIL Resistance in Melanoma. Cancers (Basel) 2019; 11:cancers11050656. [PMID: 31083589 PMCID: PMC6562618 DOI: 10.3390/cancers11050656] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope of finally defeating this deadly disease. TNF-related apoptosis-inducing ligand (TRAIL) represents a promising antitumor strategy. The principal sensitivity of melanoma cells for TRAIL was demonstrated in previous studies; however, inducible resistance appeared as a major problem. To address this issue, combination strategies were tested, and survival pathway inhibitors were shown to sensitize melanoma cells for TRAIL-induced apoptosis. Finally, cell cycle inhibition was identified as a common principle of TRAIL sensitization in melanoma cells. Mitochondrial apoptosis pathways, pro- and antiapoptotic Bcl-2 proteins as well as the rheostat consisted of Smac (Second mitochondria-derived activator of caspase) and XIAP (X-linked inhibitor of apoptosis protein) appeared to be of particular importance. Furthermore, the role of reactive oxygen species (ROS) was recognized in this setting. Inducible TRAIL resistance in melanoma can be explained by (i) high levels of antiapoptotic Bcl-2 proteins, (ii) high levels of XIAP, and (iii) suppressed Bax activity. These hurdles have to be overcome to enable the use of TRAIL in melanoma therapy. Several strategies appear as particularly promising, including new TRAIL receptor agonists, Smac and BH3 mimetics, as well as selective kinase inhibitors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany.
| |
Collapse
|
21
|
BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction. Cancer Gene Ther 2019; 27:226-234. [PMID: 30518782 DOI: 10.1038/s41417-018-0068-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022]
Abstract
A significant roadblock in treatment of GBM multiforme (GBM) is resistance to temozolomide (TMZ). In this study, we investigated whether I-BET151, a specific BET inhibitor, could sensitize GBM cells to TMZ. Our findings showed that the action of I-BET151 could augment the effect of TMZ on cancer cells U251 and U87 cells. In U251 cells, administration of I-BET151 increased the TMZ-induced apoptosis GBM cells. I-BET151 remarkably enhanced the activities of caspase-3. In addition, I-BET151 promoted TMZ-induced migration and invasion in GBM cells. Moreover, I-BET151 increased the amount of reactive oxygen species as well as superoxide anions with a decrease of activity of SOD and the anti-oxidative properties of GBM cells. I-BET151 also induced increased PUMA expression, which is required for the functions of I-BET151 and regulates the synergistic cytotoxic effects of i-BET151 and TMZ in GBM cells. I-BET151 with TMZ also showed synergistic cytotoxic effects in vivo. These point out to an approach to tackle GBM using TMZ along with BET inhibitors.
Collapse
|