1
|
Lee JX, Tan YJ, Ismail NAS. NPHS Mutations in Pediatric Patients with Congenital and Steroid-Resistant Nephrotic Syndrome. Int J Mol Sci 2024; 25:12275. [PMID: 39596340 PMCID: PMC11594456 DOI: 10.3390/ijms252212275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
NPHS1 and NPHS2 are kidney gene components that encode for nephrin and podocin, respectively. They play a role in the progression of congenital (CNS) and steroid-resistant (SRNS) nephrotic syndrome. Hence, this study aimed to determine the prevalence and renal outcomes of NPHS mutations among pediatric patients with CNS and SRNS. We also aimed to identify potential predictors of NPHS mutations in this patient cohort. Overall, this study included 33 studies involving 2123 patients screened for NPHS1, whereas 2889 patients from 40 studies were screened for NPHS2 mutations. The patients' mean age was 4.9 ± 1 years (ranging from birth to 18 years), and 56% of patients were male (n = 1281). Using the random-effects model, the pooled proportion of NPHS1 mutations among pediatric patients with CNS and SRNS was 0.15 (95% CI 0.09; 0.24, p < 0.001, I2 = 92.0%). The pooled proportion of NPHS2 mutations was slightly lower, at 0.11 (95% CI 0.08; 0.14, p < 0.001, I2 = 73.8%). Among the 18 studies that reported ESRF, the pooled proportion was 0.47 (95% CI 0.34; 0.61, p < 0.001, I2 = 75.4%). Our study showed that the NPHS1 (β = 1.16, p = 0.35) and NPHS2 (β = 5.49, p = 0.08) mutations did not predict ESRF in CNS and SRNS pediatric patients. Nevertheless, patients from the European continent who had the NPHS2 mutation had a significantly higher risk of developing ESRF (p < 0.05, β = 1.3, OR = 7.97, 95% CI 0.30; 2.30) compared to those who had the NPHS1 mutation. We recommend NPHS mutation screening for earlier diagnosis and to avoid unnecessary steroid treatments. More data are needed to better understand the impact of NPHS mutations among pediatric patients with CNS and SRNS.
Collapse
Affiliation(s)
- Jun Xin Lee
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yan Jin Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Li R, Dong W, Chen Y, Tang T, Zhao X, Zhang L, Liang X. Effect of cyclosporine A on focal segmental glomerulosclerosis caused by MYO1E mutation in a Chinese adult patient: A case report. Medicine (Baltimore) 2023; 102:e32683. [PMID: 36705362 PMCID: PMC9875993 DOI: 10.1097/md.0000000000032683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Focal segmental glomerulosclerosis (FSGS) describes a renal histologic lesion with diverse causes and pathogenicities. Monogenic abnormalities which are associated with impaired function of podocyte could result in FSGS. Most of genetic FSGS do not respond to immunosuppressive agents and often develop end-stage kidney disease. We reported a case of FSGS caused by myosin1e (MYO1E) mutation, alleviated by cyclosporine A (CsA) and low-dose glucocorticoid. PATIENT CONCERNS The patient was a 38-year-old male with nephrotic range proteinuria. He didn't respond to prednisone 65mg/day. Kidney biopsy in our hospital showed FSGS with several hypoplasia and tiny loops. In addition, focal thickening and disorganization of the glomerular gasement membrane as well as diffuse foot process effacement were observed in electron microscope. DIAGNOSES Genetic testing indicated homozygous deletion mutation of MYO1E. The patient was diagnosed with genetic FSGS caused by MYO1E homozygous mutation. INTERVENTIONS The patient was treated with CsA 50mg twice a day and low-dose methylprednisolone. OUTCOMES CsA and low-dose glucocorticoid dramatically reduced proteinuria, and partial remission was attained in 3 years follow-up. LESSONS MYO1E autosomal recessive mutation was a rare FSGS causative mutation that might benefit from CsA treatment. However, the long-term effect of CsA on FSGS caused by this mutation should be investigated in the future.
Collapse
Affiliation(s)
- Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Dong
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yingwen Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tianwei Tang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- * Correspondence: Xinling Liang, Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China (e-mail: )
| |
Collapse
|
3
|
Thakor JM, Parmar G, Mistry KN, Gang S, Rank DN, Joshi CG. Mutational landscape of TRPC6, WT1, LMX1B, APOL1, PTPRO, PMM2, LAMB2 and WT1 genes associated with Steroid resistant nephrotic syndrome. Mol Biol Rep 2021; 48:7193-7201. [PMID: 34546508 DOI: 10.1007/s11033-021-06711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nephrotic syndrome appears as a group of symptoms like proteinuria, edema and hyperlipidemia. Identification of monogenic forms revealed the physiology and pathogenesis of the SRNS. METHODS AND RESULTS We performed Illumina panel sequencing of seven genes in 90 Indian patients to determine the role of these genetic mutations in nephrotic syndrome prognosis. Samtool was used for variants calling, and SnpEff and Snpsift did variants annotation. Clinical significance and variant classification were performed by the ClinVar database. In SSNS and SRNS patients, we found 0.78% pathogenic and 3.41% likely pathogenic mutations. Pathogenic mutations were found in LAMB2, LMX1B and WT1 genes, while likely pathogenic mutations were found in (6/13) LAMB2, (2/13) LMX1B, (2/13) TRPC6, (2/13) PTPRO and (1/13) PMM2 genes. Approximately 46% likely pathogenic mutations were contributed to the LAMB2 gene in SSNS and SRNS patients. We also detect 30 VUS (variants of uncertain significance), which were found (17/30) pathogenic and (13/30) likely pathogenic by different prediction tools. CONCLUSIONS Multigene panels were used for genetic screening of heterogeneous disorders like nephrotic syndrome in the Indian population. We found pathogenic, likely pathogenic and certain VUS, which were responsible for the pathogenesis of the disease. Therefore, mutational analysis of SSNS and SRNS is necessary to avoid adverse effects of corticosteroids, modify the intensity of immunosuppressing agents, and prevent the disease's progression.
Collapse
Affiliation(s)
- Jinal M Thakor
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Glory Parmar
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India.
| | - Sishir Gang
- Muljibhai Patel Urological Hospital, Dr. V.V. Desai Road, Nadiad, 387001, Gujarat, India
| | - Dharamshibhai N Rank
- Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|
4
|
Ye Q, Zhang Y, Zhuang J, Bi Y, Xu H, Shen Q, Liu J, Fu H, Wang J, Feng C, Tang X, Liu F, Gu W, Zhao F, Zhang J, Qin Y, Shang S, Shen H, Chen X, Shen H, Liu A, Xia Y, Lu Z, Shu Q, Mao J. The important roles and molecular mechanisms of annexin A 2 autoantibody in children with nephrotic syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1452. [PMID: 34734004 PMCID: PMC8506724 DOI: 10.21037/atm-21-3988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND In recent years, B-cell dysfunction has been found to play an important role in the pathogenesis of primary nephrotic syndrome (PNS). B cells play a pathogenic role by secreting antibodies against their target antigens after transforming into plasma cells. Therefore, this study aimed to screen the autoantibodies that cause PNS and explore their pathogenic mechanisms. METHODS Western blotting and mass spectrometry were employed to screen and identify autoantibodies against podocytes in children with PNS. Both in vivo and in vitro experiments were used to study the pathogenic mechanism of PNS. The results were confirmed in a large multicenter clinical study in children. RESULTS Annexin A2 autoantibody was highly expressed in children with PNS with a pathological type of minimal change disease (MCD) or focal segmental glomerulosclerosis without genetic factors. The mouse model showed that anti-Annexin A2 antibody could induce proteinuria in vivo. Mechanistically, the effect of Annexin A2 antibody on the Rho signaling pathway was realized through promoting the phosphorylation of Annexin A2 at Tyr24 on podocytes by reducing its binding to PTP1B, which led to the cytoskeletal rearrangement and damage of podocytes, eventually causing proteinuria and PNS. CONCLUSIONS Annexin A2 autoantibody may be responsible for some cases of PNS with MCD/FSGS in children.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingying Zhang
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jieqiu Zhuang
- Department of Pediatric Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Bi
- Department of Pediatric Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoxiao Tang
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjiang Zhang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhan Qin
- Department of Pediatric Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuejun Chen
- Department of Clinical Laboratory, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Aimin Liu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yonghui Xia
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhihong Lu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Guo HL, Li L, Xu ZY, Jing X, Xia Y, Qiu JC, Ji X, Chen F, Xu J, Zhao F. Steroid-resistant Nephrotic Syndrome in Children: A Mini-review on Genetic Mechanisms, Predictive Biomarkers and Pharmacotherapy Strategies. Curr Pharm Des 2021; 27:319-329. [PMID: 33138756 DOI: 10.2174/1381612826666201102104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) constitutes the second most frequent cause of chronic kidney disease in childhood. The etiology of SRNS remains largely unknown and no standardized treatment exists. Recent advances in genomics have helped to build understanding of the molecular mechanisms and pathogenesis of the disease. The genetic polymorphisms in genes encoding proteins which are involved in the pharmacokinetics and pharmacodynamics of glucocorticoids (GCs) partially account for the different responses between patients with nephrotic syndrome. More importantly, single-gene causation in podocytes-associated proteins was found in approximately 30% of SRNS patients. Some potential biomarkers have been tested for their abilities to discriminate against pediatric patients who are sensitive to GCs treatment and patients who are resistant to the same therapy. This article reviews the recent findings on genetic mechanisms, predictive biomarkers and current therapies for SRNS with the goal to improve the management of children with this syndrome.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ling Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ze-Yue Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Xia
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
7
|
Chan H, Lee H, Yang X, Wang J, Yang X, Gan C, Xiao H, Li Q, Jiao J, Wu D, Zhang G, Wang M, Yang H, Li Q. Relationships between the clinical phenotypes and genetic variants associated with the immunological mechanism in childhood idiopathic nephrotic syndrome: protocol for a prospective observational single-centre cohort study. BMJ Open 2019; 9:e028717. [PMID: 31467050 PMCID: PMC6720149 DOI: 10.1136/bmjopen-2018-028717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Idiopathic nephrotic syndrome (INS) is the most common glomerulopathy that results in childhood chronic kidney disease in China, but the relationships between different clinical phenotypes and immunological genetic variants observed in patients with INS are ambiguous and have not been well studied. A cohort study combined with whole exome sequencing might further identify the effects of immunological genetic variants on clinical phenotypes and treatment outcomes. METHODS AND ANALYSIS We describe a 3 year prospective observational single-centre cohort study to be conducted in the Children's Hospital of Chongqing Medical University in China. This study will recruit and investigate 336 patients with childhood-onset INS presenting with different clinical phenotypes. Whole exome sequencing will be conducted when patients progress to a confirmed clinical phenotype during follow-up. Relevant clinical and epidemiological data, as well as conventional specimens, will be collected at study entry and 1 month, 3 months, 6 months, 1 year, 2 years and 3 years after disease onset. After this cohort is generated, the immunological genetic variants of steroid-sensitive nephrotic syndrome without frequent relapse, steroid-resistant nephrotic syndrome and steroid-dependent/frequent relapse nephrotic syndrome will be evaluated. ETHICS AND DISSEMINATION The study protocol is approved by Ethics Committee of Children's Hospital of Chongqing Medical University (reference number 2018-140). The results will be disseminated through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER ChiCTR1800019795.
Collapse
Affiliation(s)
- Han Chan
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Lee
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xia Yang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jingzhi Wang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xueying Yang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Chun Gan
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Han Xiao
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Qianqian Li
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daoqi Wu
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiu Li
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
8
|
Stone H, Magella B, Bennett MR. The Search for Biomarkers to Aid in Diagnosis, Differentiation, and Prognosis of Childhood Idiopathic Nephrotic Syndrome. Front Pediatr 2019; 7:404. [PMID: 31681707 PMCID: PMC6805718 DOI: 10.3389/fped.2019.00404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of genes associated with childhood-onset nephrotic syndrome has significantly advanced our understanding of the pathogenesis of this complex disease over the past two decades, however the precise etiology in many cases remains unclear. At this time, we still rely on invasive kidney biopsy to determine the underlying cause of nephrotic syndrome in adults. In children, response to steroid therapy has been shown to be the best indicator of prognosis, and therefore all children are treated initially with corticosteroids. Because this strategy exposes a large number of children to the toxicities of steroids without providing any benefit, many researchers have sought to find a marker that could predict a patient's response to steroids at the time of diagnosis. Additionally, the identification of such a marker could provide prognostic information about a patient's response to medications, progression to end stage renal disease, and risk of disease recurrence following transplantation. Major advances have been made in understanding how genetic biomarkers can be used to predict a patient's response to therapies and disease course, especially after transplantation. Research attempting to identify urine- and serum-based biomarkers which could be used for the diagnosis, differentiation, and prognosis of nephrotic syndrome has become an area of emphasis. In this review, we explore the most exciting biomarkers and their potential clinical applications.
Collapse
Affiliation(s)
- Hillarey Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bliss Magella
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael R Bennett
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|