1
|
Li S, Zhou L, Ren J, Zhang Q, Xiao X. Maternal exercise programs placental miR-495-5p-mediated Snx7 expression and kynurenic acid metabolic pathway induced by prenatal high-fat diet: Based on miRNA-seq, transcriptomics, and metabolomics. J Nutr Biochem 2024; 137:109830. [PMID: 39647668 DOI: 10.1016/j.jnutbio.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Poor intrauterine environments increase the prevalence of chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive. Here, C57BL/6 female mice were subjected to either a normal control or a high-fat diet (HFD), half of the HFD-fed dams were housed with voluntary wheel running for 3 weeks before and during gestation. At embryonic day 18.5, we sacrificed parturient mice and then conducted miRNA-seq, transcriptomic, and metabolomic profiling of the placenta. Our data revealed that maternal HFD resulted in significant alterations in both miRNA and gene expressions, as well as metabolic pathways of the placenta, whereas prenatal exercise negated these perturbations. The common differentially expressed transcripts among three groups were enriched in multiple critical pathways involving energy expenditure, signal transduction, and fetal development. Through integrated analysis of multiomics data, we speculated that maternal exercise reversed the suppression of miR-495-5p induced by HFD, thereby inhibiting miR-495-5p-targeted Snx7 and modulating kynurenic acid production. These datasets provided novel mechanistic insight into how maternal exercise positively affects the metabolic homeostasis of offspring. The discovered important miRNAs, mRNAs, and metabolites could be promising predictive and therapeutic targets for protecting offspring metabolic health.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Tong CQ, Li MJ, Liu Y, Zhou Q, Sun WQ, Chen JY, Wang D, Li F, Chen ZJ, Song YH. Regulation of hippocampal miRNA expression by intestinal flora in anxiety-like mice. Eur J Pharmacol 2024; 984:177016. [PMID: 39369876 DOI: 10.1016/j.ejphar.2024.177016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study investigated the possible interaction between gut flora and miRNAs and the effect of both on anxiety disorders. The model group was induced with chronic restraint stress (CRS) and each group was tested for anxiety-like behaviour by open field test and elevated plus maze test. Meanwhile, the gut flora was analysed by 16S rRNA high-throughput sequencing. The miRNAs in hippocampus were analysed by high-throughput sequencing, and the key miRNAs were obtained by using the method of bioinformatics analysis. PCR was used to verify the significantly related key miRNAs. Spearman correlation analysis was used to explore the correlation between behaviour, key miRNAs and differential gut microbiota. The 16S rRNA high-throughput sequencing result showed that the gut flora was dysregulated in the model group. In particular, Verrucomicrobia, Akkermansia, Anaerostipes, Ralstonia, Burkholderia and Anaeroplasma were correlated with behaviour. The results of miRNA high-throughput sequencing analysis and bioinformatics analysis showed that 7 key miRNAs influenced the pathogenesis of anxiety, and qRT-PCR results were consistent with the high-throughput sequencing results. Mmu-miR-543-3p and mmu-miR-26a-5p were positively correlated with Verrucomicrobia, Akkermansia and Anaerostipes. Therefore, we infer that chronic stress caused the decrease of Akkermansia abundance, which may aggravate the decrease of mmu-miR-543-3p and mmu-miR-26a-5p expression, leading to the increase of SLC1A2 expression. In conclusion, gut flora has played an important influence on anxiety with changes in miRNAs.
Collapse
Affiliation(s)
- Chang-Qing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Meng-Jia Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Qin Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Wen-Qi Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Jia-Yi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Di Wang
- Department of traditional Chinese Medicine, Beijing ANDing hospital affiliated to capital University of medical sciences, Beijing, BJ, China
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Zi-Jie Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| | - Yue-Han Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| |
Collapse
|
3
|
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int J Mol Sci 2024; 25:11944. [PMID: 39596014 PMCID: PMC11594130 DOI: 10.3390/ijms252211944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) are double-membrane vesicles that facilitate intercellular communication and play a pivotal role in both physiological and pathological processes. A substantial body of evidence suggests that EVs play a role in the pathogenesis of various pregnancy complications. Because EVs can be detected in the peripheral blood, they are potential biomarkers for the early diagnosis of pregnancy complications and foetal developmental disorders. The majority of studies have demonstrated a correlation between alterations in the concentration of EVs and changes in their contents and the occurrence of pregnancy complications. Despite the current limitations in establishing a clear link between these findings and the pathogenesis of the disease, as well as the lack of sufficient evidence to support their use in clinical practice, it is noteworthy to highlight the potential role of specific miRNAs carried by EVs in the development of pregnancy complications. These include miR-210 and miR-136-5p for pre-eclampsia and gestational diabetes mellitus, miR-155, miR-26b-5p, miR-181a-5p, miR-495 and miR-374c for pre-eclampsia and preterm birth. The following miRNAs have been identified as potential biomarkers for preterm birth and gestational diabetes mellitus: miR-197-3p and miR-520h, miR-1323, miR-342-3p, miR-132-3p, miR-182-3p, miR-517-3p, miR-222-3p, miR-16-5p and miR-126-3p. Additionally, miR-127-3p has been linked to foetal growth restriction and preterm birth. Nevertheless, it would be premature to propose that EVs can be employed as biomarkers for pregnancy complications. Further research and the accumulation of results obtained using the methods proposed in the MISEV2023 guidelines will enable a definitive conclusion to be reached.
Collapse
Affiliation(s)
- Anastasiia K. Popova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatiana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
5
|
Yi Y, Wang T, Xu W, Zhang SH. Epigenetic modifications of placenta in women with gestational diabetes mellitus and their offspring. World J Diabetes 2024; 15:378-391. [PMID: 38591094 PMCID: PMC10999040 DOI: 10.4239/wjd.v15.i3.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development. As a bridge between the mother and the fetus, the placenta has nutrient transport functions, endocrine functions, etc., and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status. Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus. There are many reports on the placental pathophysiological changes associated with GDM, the impacts of GDM on the growth and development of offspring, and the prevalence of GDM in offspring after birth. Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases. This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.
Collapse
Affiliation(s)
- Yan Yi
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wei Xu
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - San-Hong Zhang
- Department of Pediatric, Xiantao First People’s Hospital, Xiantao 433000, Hubei Province, China
| |
Collapse
|
6
|
Lizárraga D, García-Gasca T, Lund G, Ávalos-Soriano A, García-Gasca A. Global DNA methylation and miR-126-3p expression in Mexican women with gestational diabetes mellitus: a pilot study. Mol Biol Rep 2023; 51:5. [PMID: 38085382 DOI: 10.1007/s11033-023-09005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), a type of diabetes that occurs for the first time during pregnancy, may predispose the development of chronic degenerative diseases and metabolic alterations in mother and offspring. DNA methylation and microRNA (miRNA) expression are regulatory mechanisms of gene expression that may contribute to the pathogenesis of GDM. Therefore, we determined global DNA methylation and miR-126-3p expression levels in 8 and 7 Mexican women with and without GDM, respectively. METHODS AND RESULTS Global DNA methylation was assessed by measuring the percentage of 5-methylcytosine (5-mC) in placenta, umbilical cord, and plasma DNA samples, whereas miR-126-3p expression was quantified by real-time PCR using the 2-ΔCt method of the corresponding RNA samples. A significant increase in the percentage of 5-mC was detected in placenta samples from GDM patients compared to healthy women, while plasma samples showed a significant decrease. Conversely, miR-126-3p expression levels were significantly higher in plasma from the GDM group, while placenta and umbilical cord samples showed no significant differences across experimental groups. Furthermore, DNA methylation correlated significantly with glucose levels in placenta and plasma. Likewise, miR-126-3p expression correlated significantly with plasma glucose, in addition to maternal body mass index (BMI at first trimester). CONCLUSION The results indicate that GDM is associated with alterations in global DNA methylation levels and miR-126-3p expression in placenta and/or plasma, providing insights into future novel approaches to diagnose and/or prevent this pathology.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, Juriquilla, Querétaro, Querétaro, 76230, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norte Carretera Irapuato León Kilómetro 9.6, Carr Panamericana, Irapuato, Guanajuato, 36821, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico.
| |
Collapse
|
7
|
Jo S, Alejandro EU. RISING STARS: Mechanistic insights into maternal-fetal cross talk and islet beta-cell development. J Endocrinol 2023; 259:e230069. [PMID: 37855321 PMCID: PMC10692651 DOI: 10.1530/joe-23-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
The metabolic health trajectory of an individual is shaped as early as prepregnancy, during pregnancy, and lactation period. Both maternal nutrition and metabolic health status are critical factors in the programming of offspring toward an increased propensity to developing type 2 diabetes in adulthood. Pancreatic beta-cells, part of the endocrine islets, which are nutrient-sensitive tissues important for glucose metabolism, are primed early in life (the first 1000 days in humans) with limited plasticity later in life. This suggests the high importance of the developmental window of programming in utero and early in life. This review will focus on how changes to the maternal milieu increase offspring's susceptibility to diabetes through changes in pancreatic beta-cell mass and function and discuss potential mechanisms by which placental-driven nutrient availability, hormones, exosomes, and immune alterations that may impact beta-cell development in utero, thereby affecting susceptibility to type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
9
|
Wu F, Wang F, Yang Q, Zhang Y, Cai K, Zhang J, Xia M, Wang Y, Wang X, Gui Y, Li Q. Upregulation of miR-21-5p rescues the inhibition of cardiomyocyte proliferation induced by high glucose through negative regulation of Rhob. J Dev Orig Health Dis 2023; 14:670-677. [PMID: 38073570 DOI: 10.1017/s2040174423000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neonatology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qian Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jialing Zhang
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Min Xia
- Department of Neonatology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
10
|
Li H, Wang Y, Feng S, Chang K, Yu X, Yang F, Huang H, Wang Y, Li X, Guan F. Reciprocal regulation of TWIST1 and OGT determines the decitabine efficacy in MDS/AML. Cell Commun Signal 2023; 21:255. [PMID: 37736724 PMCID: PMC10514931 DOI: 10.1186/s12964-023-01278-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Chemoresistance poses a significant impediment to effective treatment strategies for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Our previous study unveiled that oncogene TWIST1 interacted with DNA methyltransferase 3a (DNMT3a) to regulate the decitabine (DAC) resistance in MDS/AML. However, the underlying mechanism of TWIST1 dysregulation in DAC resistance remained enigmatic. Here, we found that O-GlcNAc modification was upregulated in CD34+ cells from MDS/AML patients who do not respond to DAC treatment. Functional study revealed that O-GlcNAcylation could stabilize TWIST1 by impeding its interaction with ubiquitin E3 ligase CBLC. In addition, as one typical transcription factor, TWIST1 could bind to the promoter of O-GlcNAc transferase (OGT) gene and activate its transcription. Collectively, we highlighted the crucial role of the O-GlcNAcylated TWIST1 in the chemoresistance capacity of MDS/AML clonal cells, which may pave the way for the development of a new therapeutic strategy targeting O-GlcNAcylated proteins and reducing the ratio of MDS/AML relapse. Video Abstract.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, 710068, China
| | - Shuang Feng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haozhe Huang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuanbo Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
- College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
11
|
Yan YS, Feng C, Yu DQ, Tian S, Zhou Y, Huang YT, Cai YT, Chen J, Zhu MM, Jin M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front Nutr 2023; 10:1067282. [PMID: 37255932 PMCID: PMC10226394 DOI: 10.3389/fnut.2023.1067282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Diabetes mellitus during pregnancy, which can be classified into pregestational diabetes and gestational diabetes, has become much more prevalent worldwide. Maternal diabetes fosters an intrauterine abnormal environment for fetus, which not only influences pregnancy outcomes, but also leads to fetal anomaly and development of diseases in later life, such as metabolic and cardiovascular diseases, neuropsychiatric outcomes, reproduction malformation, and immune dysfunction. The underlying mechanisms are comprehensive and ambiguous, which mainly focus on microbiota, inflammation, reactive oxygen species, cell viability, and epigenetics. This review concluded with the influence of intrauterine hyperglycemia on fetal structure development and organ function on later life and outlined potential mechanisms that underpin the development of diseases in adulthood. Maternal diabetes leaves an effect that continues generations after generations through gametes, thus more attention should be paid to the prevention and treatment of diabetes to rescue the pathological attacks of maternal diabetes from the offspring.
Collapse
Affiliation(s)
- Yi-Shang Yan
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Qing Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Cai
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao-Miao Zhu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Luo SS, Zhu H, Huang HF, Ding GL. Sex differences in glycolipidic disorders after exposure to maternal hyperglycemia during early development. J Endocrinol Invest 2023:10.1007/s40618-023-02069-5. [PMID: 36976483 DOI: 10.1007/s40618-023-02069-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE The aim of this review was to summarize sex differences in glycolipid metabolic phenotypes of human and animal models after exposure to maternal hyperglycemia and overview the underlying mechanisms, providing a new perspective on the maternal hyperglycemia-triggered risk of glycolipidic disorders in offspring. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to studies on offspring exposed to maternal hyperglycemia investigating the sex differences of glycolipid metabolism were reviewed. RESULTS Maternal hyperglycemia increases the risk of glycolipid metabolic disorders in offspring, such as obesity, glucose intolerance and diabetes. Whether with or without intervention, metabolic phenotypes have been shown to exhibit sex differences between male and female offspring in response to maternal hyperglycemia, which may be related to gonadal hormones, organic intrinsic differences, placenta, and epigenetic modifications. CONCLUSION Sex may play a role in the different incidences and pathogenesis of abnormal glycolipid metabolism. More studies investigating both sexes are needed to understand how and why environmental conditions in early life affect long-term health between male and female individuals.
Collapse
Affiliation(s)
- S-S Luo
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - H Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - H-F Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - G-L Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
13
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
14
|
Ye Z, Wang S, Huang X, Chen P, Deng L, Li S, Lin S, Wang Z, Liu B. Plasma Exosomal miRNAs Associated With Metabolism as Early Predictor of Gestational Diabetes Mellitus. Diabetes 2022; 71:2272-2283. [PMID: 35926094 PMCID: PMC9630082 DOI: 10.2337/db21-0909] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
To date, the miRNA expression profile of plasma exosomes in women whose pregnancy is complicated by gestational diabetes mellitus (GDM) has not been fully clarified. In this study, differentially expressed miRNAs in plasma exosomes were identified by high-throughput small-RNA sequencing in 12 pregnant women with GDM and 12 with normal glucose tolerance (NGT) and validated in 102 pregnant women with GDM and 101 with NGT. A total of 22 exosomal miRNAs were found, five of which were verified by real-time qPCR. Exosomal miR-423-5p was upregulated, whereas miR-122-5p, miR-148a-3p, miR-192-5p, and miR-99a-5p were downregulated in women whose pregnancy was complicated by GDM. IGF1R and GYS1 as target genes of miR-423-5p, and G6PC3 and FDFT1 as target genes of miR-122-5p were associated with insulin and AMPK signaling pathways and may participate in the regulation of metabolism in GDM. The five exosomal miRNAs had an area under the curve of 0.82 (95%CI, 0.73, ∼0.91) in early prediction of GDM. Our study demonstrates that dysregulated exosomal miRNAs in plasma from pregnant women with GDM might influence the insulin and AMPK signaling pathways and could contribute to the early prediction of GDM.
Collapse
Affiliation(s)
- Zhixin Ye
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Songzi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqing Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Langhui Deng
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shiqi Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Suiwen Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Corresponding author: Bin Liu,
| |
Collapse
|
15
|
Wan J, Xu S, Li J, Yu M, Zhang K, Wei G, Su Z. Facile synthesis of multifunctional pharmaceutical carbon dots for targeted bioimaging and chemotherapy of tumors. NANOSCALE 2022; 14:11359-11368. [PMID: 35894806 DOI: 10.1039/d2nr03321f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug-derived carbon dots (CDs) not only have excellent photoluminescence properties of CDs, but also maintain pharmacological effects of original drugs, so as to realize extended applications for both bioimaging and chemotherapy. In this work, metformin (Met)-derived CDs (Met-CDs) as multifunctional nanocarriers with tumor cell imaging and cancer therapy are synthesized using Met and citric acid as precursors. The created Met-CDs exhibit obvious resistance to photobleaching, significant pH sensitivity in acidic environments, good pH stability in alkaline environments, and high temperature sensitivity. In addition, we further investigate the biological activity of Met-CDs using diabetic cell models, which demonstrate the ability of Met-CDs to treat diabetes and reduce the production of reactive oxygen species in diseased cells. Subsequently, human alveolar adenocarcinoma basal epithelial cells (A549) are cultured in both normal glucose and low glucose media, and different concentrations of Met and Met-CDs are added to investigate the effect of Met-CDs on A549 cells. Finally, we successfully utilize the prepared Met-CDs to image live A549 cells in vitro in normal glucose medium. The Met-CDs prepared in this work reveal high potential to be used as both fluorescent probes and drug agents for tumor therapy, realizing controllable integrated diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Jiafeng Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shiqing Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengliu Yu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
16
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Bathla T, Abolbaghaei A, Reyes AB, Burger D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab Vasc Dis Res 2022; 19:14791641221093901. [PMID: 35395915 PMCID: PMC9021497 DOI: 10.1177/14791641221093901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy worldwide. Despite extensive study, the molecular mechanisms leading to GDM and associated perinatal complications are not well understood. The condition is also associated with an increased risk of future cardiometabolic disease in both mothers and their offspring. Thus, there is a pressing need for the development of effective screening tools and to identify novel molecular mechanisms responsible for the short and long-term risks associated with GDM. In this regard, extracellular vesicles (EVs) offer promise as novel biomarkers of GDM-mediated changes to both mother and fetus. The purpose of this scoping review is to provide an overview of studies examining EVs in the context of GDM. EMBASE and Ovid Medline were searched for articles published from inception to December 2020. We update current knowledge in this area and identify key knowledge gaps with recommendations for future research.
Collapse
Affiliation(s)
- Tanvi Bathla
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Akram Abolbaghaei
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Agafe Bless Reyes
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Starzyńska A, Wychowański P, Nowak M, Sobocki BK, Jereczek-Fossa BA, Słupecka-Ziemilska M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int J Mol Sci 2022; 23:2473. [PMID: 35269617 PMCID: PMC8910384 DOI: 10.3390/ijms23052473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
- Specialized Private Implantology Clinic Wychowanski Stomatologia, 9/33 Rakowiecka Street, 02-517 Warsaw, Poland
| | - Maciej Nowak
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy;
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
19
|
Sugino KY, Mandala A, Janssen RC, Gurung S, Trammell M, Day MW, Brush RS, Papin JF, Dyer DW, Agbaga MP, Friedman JE, Castillo-Castrejon M, Jonscher KR, Myers DA. Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:945768. [PMID: 36935840 PMCID: PMC10012127 DOI: 10.3389/fcdhc.2022.945768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael W. Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- CORRESPONDENCE: Karen R. Jonscher,
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
20
|
Gall AR, Amoah SK, Kitase Y, Jantzie LL. Placental mediated mechanisms of perinatal brain injury: Evolving inflammation and exosomes. Exp Neurol 2022; 347:113914. [PMID: 34752783 PMCID: PMC8712107 DOI: 10.1016/j.expneurol.2021.113914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Pregnancy is an inflammatory process that is carefully regulated by the placenta via immunomodulation and cell-to-cell communication of maternal and fetal tissues. Exosomes, types of extracellular vesicles, facilitate the intercellular communication and traffic biologically modifying cargo within the maternal-placental-fetal axis in normal and pathologic pregnancies. Chorioamnionitis is characterized by inflammation of chorioamniotic membranes that produces systemic maternal and fetal inflammatory responses of cytokine dysregulation and has been associated with brain injury and neurodevelopmental disorders. This review focuses on how pathologic placental exosomes propagate acute and chronic inflammation leading to brain injury. The evidence reviewed here highlights the need to investigate exosomes from pathologic pregnancies and those with known brain injury to identify new diagnostics, biomarkers, and potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander R Gall
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen K Amoah
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuma Kitase
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Kennedy Krieger Institute, Baltimore, MD, USA,Corresponding author at: 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD 21287, USA. (L.L. Jantzie)
| |
Collapse
|
21
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Na Wu, Department of Endocrinology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of China, Tel +86 18940258445, Email
| |
Collapse
|
22
|
Significance of Sex Differences in ncRNAs Expression and Function in Pregnancy and Related Complications. Biomedicines 2021; 9:biomedicines9111509. [PMID: 34829737 PMCID: PMC8614665 DOI: 10.3390/biomedicines9111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
In the era of personalized medicine, fetal sex-specific research is of utmost importance for comprehending the mechanisms governing pregnancy and pregnancy-related complications. In recent times, noncoding RNAs (ncRNAs) have gained increasing attention as critical players in gene regulation and disease pathogenesis, and as candidate biomarkers in human diseases as well. Different types of ncRNAs, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in every step of pregnancy progression, although studies taking into consideration fetal sex as a central variable are still limited. To date, most of the available data have been obtained investigating sex-specific placental miRNA expression. Several studies revealed that miRNAs regulate the (patho)-physiological processes in a sexually dimorphic manner, ensuring normal fetal development, successful pregnancy, and susceptibility to diseases. Moreover, the observation that ncRNA profiles differ according to cells, tissues, and developmental stages of pregnancy, along with the complex interactions among different types of ncRNAs in regulating gene expression, strongly indicates that more studies are needed to understand the role of sex-specific ncRNA in pregnancy and associated disorders.
Collapse
|
23
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
24
|
Human Milk Exosomal MicroRNA: Associations with Maternal Overweight/Obesity and Infant Body Composition at 1 Month of Life. Nutrients 2021; 13:nu13041091. [PMID: 33801634 PMCID: PMC8066780 DOI: 10.3390/nu13041091] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Among all the body fluids, breast milk is one of the richest sources of microRNAs (miRNAs). MiRNAs packaged within the milk exosomes are bioavailable to breastfeeding infants. The role of miRNAs in determining infant growth and the impact of maternal overweight/obesity on human milk (HM) miRNAs is poorly understood. The objectives of this study were to examine the impact of maternal overweight/obesity on select miRNAs (miR-148a, miR-30b, miR-29a, miR-29b, miR-let-7a and miR-32) involved in adipogenesis and glucose metabolism and to examine the relationship of these miRNAs with measures of infant body composition in the first 6 months of life. Milk samples were collected from a cohort of 60 mothers (30 normal-weight [NW] and 30 overweight [OW]/obese [OB]) at 1-month and a subset of 48 of these at 3 months of lactation. Relative abundance of miRNA was determined using real-time PCR. The associations between the miRNAs of interest and infant weight and body composition at one, three, and six months were examined after adjusting for infant gestational age, birth weight, and sex. The abundance of miR-148a and miR-30b was lower by 30% and 42%, respectively, in the OW/OB group than in the NW group at 1 month. miR-148a was negatively associated with infant weight, fat mass, and fat free mass, while miR-30b was positively associated with infant weight, percent body fat, and fat mass at 1 month. Maternal obesity is negatively associated with the content of select miRNAs in human milk. An association of specific miRNAs with infant body composition was observed during the first month of life, suggesting a potential role in the infant's adaptation to enteral nutrition.
Collapse
|
25
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|