1
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
2
|
Shi W, Liu N, Lu H. Advancements and challenges in immunocytokines: A new arsenal against cancer. Acta Pharm Sin B 2024; 14:4649-4664. [PMID: 39664443 PMCID: PMC11628837 DOI: 10.1016/j.apsb.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/27/2024] [Indexed: 12/13/2024] Open
Abstract
Immunocytokines, employing targeted antibodies to concentrate cytokines at tumor sites, have shown potential advantages such as prolonged cytokine half-lives, mitigated adverse effects, and synergistic antitumor efficacy from both antibody and cytokine components. First, we present an in-depth analysis of the advancements of immunocytokines evaluated in preclinical and clinical applications. Notably, anti-PD-1-based immunocytokines can redirect cytokines to intratumoral CD8+ T cells and reinvigorate them to elicit robust antitumor immune responses. Then, we focus on their molecular structures and action mechanisms, striving to elucidate the correlations between diverse molecular structures and their antitumor efficacy. Moreover, our exploration extends to the realm of novel cytokines, including IL-10, IL-18, and IL-24, unraveling their potential in the construction of immunocytokines. However, safety concerns remain substantial barriers to immunocytokines' development. To address this challenge, we explore potential strategies, such as cytokine engineering and prodrug design, which can foster next-generation immunocytokines development. Overall, this review concentrates on the design of molecular structures in immunocytokines, underscoring the direction and focus of ongoing efforts to improve safety profiles while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huili Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
4
|
Zorko NA, Makovec A, Elliott A, Kellen S, Lozada JR, Arafa AT, Felices M, Shackelford M, Barata P, Zakharia Y, Narayan V, Stein MN, Zarrabi KK, Patniak A, Bilen MA, Radovich M, Sledge G, El-Deiry WS, Heath EI, Hoon DSB, Nabhan C, Miller JS, Hwang JH, Antonarakis ES. Natural Killer Cell Infiltration in Prostate Cancers Predict Improved Patient Outcomes. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00797-0. [PMID: 38418892 PMCID: PMC11349934 DOI: 10.1038/s41391-024-00797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Natural killer (NK) cells are non-antigen specific innate immune cells that can be redirected to targets of interest using multiple strategies, although none are currently FDA-approved. We sought to evaluate NK cell infiltration into tumors to develop an improved understanding of which histologies may be most amenable to NK cell-based therapies currently in the developmental pipeline. METHODS DNA (targeted/whole-exome) and RNA (whole-transcriptome) sequencing was performed from tumors from 45 cancer types (N = 90,916 for all cancers and N = 3365 for prostate cancer) submitted to Caris Life Sciences. NK cell fractions and immune deconvolution were inferred from RNA-seq data using quanTIseq. Real-world overall survival (OS) and treatment status was determined and Kaplan-Meier estimates were calculated. Statistical significance was determined using X2 and Mann-Whitney U tests, with corrections for multiple comparisons where appropriate. RESULTS In both a pan-tumor and prostate cancer (PCa) -specific setting, we demonstrated that NK cells represent a substantial proportion of the total cellular infiltrate (median range 2-9% for all tumors). Higher NK cell infiltration was associated with improved OS in 28 of 45 cancer types, including (PCa). NK cell infiltration was negatively correlated with common driver mutations and androgen receptor variants (AR-V7) in primary prostate biopsies, while positively correlated with negative immune regulators. Higher levels of NK cell infiltration were associated with patterns consistent with a compensatory anti-inflammatory response. CONCLUSIONS Using the largest available dataset to date, we demonstrated that NK cells infiltrate a broad range of tumors, including both primary and metastatic PCa. NK cell infiltration is associated with improved PCa patient outcomes. This study demonstrates that NK cells are capable of trafficking to both primary and metastatic PCa and are a viable option for immunotherapy approaches moving forward. Future development of strategies to enhance tumor-infiltrating NK cell-mediated cytolytic activity and activation while limiting inhibitory pathways will be key.
Collapse
Affiliation(s)
- Nicholas A Zorko
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - Allison Makovec
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Samuel Kellen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John R Lozada
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ali T Arafa
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Martin Felices
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Madison Shackelford
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Pedro Barata
- University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | | | - Vivek Narayan
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark N Stein
- Herbert Irving Comprehensive Cancer Center, Columbia University New York, New York, NY, USA
| | - Kevin K Zarrabi
- Sidney Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA, USA
| | - Akash Patniak
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | | | | | - Dave S B Hoon
- Saint John's Cancer Institute, Saint John's Health Center PHS, Santa Monica, CA, USA
| | | | - Jeffrey S Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Justin H Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | |
Collapse
|
5
|
Bergom HE, Sena LA, Day A, Miller B, Miller CD, Lozada JR, Zorko N, Wang J, Shenderov E, Lobo FP, Caramella-Pereira F, Marchionni L, Drake CG, Lotan T, De Marzo AM, Hwang J, Antonarakis ES. Divergent immune microenvironments in two tumor nodules from a patient with mismatch repair-deficient prostate cancer. NPJ Genom Med 2024; 9:7. [PMID: 38253539 PMCID: PMC10803790 DOI: 10.1038/s41525-024-00392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic MSH2 and MSH6 alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes ("hot nodule"), while the second displayed significantly fewer infiltrating lymphocytes ("cold nodule"). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (CD274) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.
Collapse
Affiliation(s)
- Hannah E Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Laura A Sena
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Miller
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Carly D Miller
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Zorko
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jinhua Wang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eugene Shenderov
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francisco Pereira Lobo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Janssen Research and Development, LLC, Springhouse, PA, USA
| | - Tamara Lotan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Al Salhi Y, Sequi MB, Valenzi FM, Fuschi A, Martoccia A, Suraci PP, Carbone A, Tema G, Lombardo R, Cicione A, Pastore AL, De Nunzio C. Cancer Stem Cells and Prostate Cancer: A Narrative Review. Int J Mol Sci 2023; 24:ijms24097746. [PMID: 37175453 PMCID: PMC10178135 DOI: 10.3390/ijms24097746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small and elusive subpopulation of self-renewing cancer cells with the remarkable ability to initiate, propagate, and spread malignant disease. In the past years, several authors have focused on the possible role of CSCs in PCa development and progression. PCa CSCs typically originate from a luminal prostate cell. Three main pathways are involved in the CSC development, including the Wnt, Sonic Hedgehog, and Notch signaling pathways. Studies have observed an important role for epithelial mesenchymal transition in this process as well as for some specific miRNA. These studies led to the development of studies targeting these specific pathways to improve the management of PCa development and progression. CSCs in prostate cancer represent an actual and promising field of research.
Collapse
Affiliation(s)
- Yazan Al Salhi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Manfredi Bruno Sequi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Fabio Maria Valenzi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Andrea Fuschi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Alessia Martoccia
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Paolo Pietro Suraci
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Antonio Carbone
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Giorgia Tema
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Riccardo Lombardo
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Cicione
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Luigi Pastore
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Cosimo De Nunzio
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
7
|
Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J Clin Med 2023; 12:jcm12041446. [PMID: 36835981 PMCID: PMC9966657 DOI: 10.3390/jcm12041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide, making up 21% of all cancer cases. With 345,000 deaths per year owing to the disease, there is an urgent need to optimize prostate cancer care. This systematic review collated and synthesized findings of completed Phase III clinical trials administering immunotherapy; a current clinical trial index (2022) of all ongoing Phase I-III clinical trial records was also formulated. A total of four Phase III clinical trials with 3588 participants were included administering DCVAC, ipilimumab, personalized peptide vaccine, and the PROSTVAC vaccine. In this original research article, promising results were seen for ipilimumab intervention, with improved overall survival trends. A total of 68 ongoing trial records pooling in 7923 participants were included, spanning completion until June 2028. Immunotherapy is an emerging option for patients with prostate cancer, with immune checkpoint inhibitors and adjuvant therapies forming a large part of the emerging landscape. With various ongoing trials, the characteristics and premises of the prospective findings will be key in improving outcomes in the future.
Collapse
|
8
|
Hambach J, Fumey W, Stähler T, Gebhardt AJ, Adam G, Weisel K, Koch-Nolte F, Bannas P. Half-Life Extended Nanobody-Based CD38-Specific Bispecific Killercell Engagers Induce Killing of Multiple Myeloma Cells. Front Immunol 2022; 13:838406. [PMID: 35651607 PMCID: PMC9150782 DOI: 10.3389/fimmu.2022.838406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
CD38 is a target for immunotherapy of multiple myeloma. Llama-derived CD38-specific nanobodies allow easy reformatting into mono-, bi- and multispecific proteins. To evaluate the utility of nanobodies for constructing CD38-specific nanobody-based killer cell engagers (nano-BiKEs), we generated half-life extended nano-BiKEs (HLE-nano-BiKEs) by fusing a CD38-specific nanobody to a CD16-specific nanobody for binding to the Fc-receptor on NK cells and further to an albumin-specific nanobody to extend the half-life in vivo. HLE-nano-BiKEs targeting three different epitopes (E1, E2, E3) of CD38 were expressed in transiently transfected HEK-6E cells. We verified specific and simultaneous binding to CD38 on myeloma cells, CD16 on NK cells, and to albumin. We tested the capacity of these HLE-nano-BiKEs to mediate cytotoxicity against CD38-expressing multiple myeloma cell lines and primary myeloma cells from human bone marrow biopsies in bioluminescence and flowcytometry assays with NK92 cells as effector cells. The results revealed specific time- and dose-dependent cytolysis of CD38+ myeloma cell lines and effective depletion of CD38-expressing multiple myeloma cells from primary human bone marrow samples. Our results demonstrate the efficacy of CD38-specific HLE-nano-BiKEs in vitro and ex vivo, warranting further preclinical evaluation in vivo of their therapeutic potential for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William Fumey
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Peter Bannas,
| |
Collapse
|
9
|
Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol 2022; 144:58-70. [DOI: 10.1016/j.molimm.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
10
|
von Amsberg G, Alsdorf W, Karagiannis P, Coym A, Kaune M, Werner S, Graefen M, Bokemeyer C, Merkens L, Dyshlovoy SA. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int J Mol Sci 2022; 23:2569. [PMID: 35269712 PMCID: PMC8910587 DOI: 10.3390/ijms23052569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Panagiotis Karagiannis
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Anja Coym
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Moritz Kaune
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Sergey A. Dyshlovoy
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| |
Collapse
|