1
|
Xiao Z, Li G, Fu S, Chen Y. GS-4997 halts the progression of tubulointerstitial injury in lupus nephritis. FASEB J 2024; 38:e70253. [PMID: 39680018 DOI: 10.1096/fj.202401676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Tubulointerstitial injury has been increasingly recognized as an important component in lupus nephritis (LN) pathology over the last decades. However, current clinical treatment options for this process remain limited. In this study, we aimed to investigate the potential benefits of GS-4997, a selective inhibitor of ASK1, in tubulointerstitial injury of LN. Female MRL/lpr mice were used as a classical lupus-prone murine model. Development of nephritis was assessed by monitoring of proteinuria, renal function, and histologic analysis. GS-4997 (50 mg/kg) or vehicle were treated orally. In vitro study, human kidney-2 (HK-2) cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) to mimic the response of renal tubular epithelial cells undergoing inflammatory responses during LN. GS-4997 could inhibit the activation of the ASK1 in renal tubulointerstitium in MRL/lpr mice and LPS-induced HK-2 cells. GS-4997 treatment improved renal function, proteinuria, and attenuated tubular injury, renal interstitial fibrosis, and inflammation both in vivo and in vitro. Additionally, we found that in MRL/lpr mice, GS-4997 reduced deposition of IgG and C3 in the kidneys, antibody levels in the serum, splenic enlargement, and inflammatory cell infiltration in the spleen. Mechanistically, GS-4997 inhibited the activation of downstream signaling molecules, p38 and JNK, in the ASK1 signaling pathway. Pharmacological inhibition of ASK1 may prevent the progression of tubulointerstitial injury via inhibiting the ASK1/MAPK pathway in LN. Therefore, our findings demonstrate the potential use of GS-4997 for LN treatment.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Nephrology, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Guoli Li
- Department of Nephrology, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shuangshuang Fu
- Department of Nephrology, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yinyin Chen
- Department of Nephrology, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Chen J, Li M, Shang S, Cheng L, Tang Z, Huang C. LncRNA XIST/miR-381-3P/STAT1 axis as a potential biomarker for lupus nephritis. Lupus 2024; 33:1176-1191. [PMID: 39126180 DOI: 10.1177/09612033241273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
OBJECTIVE We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ming Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuangshuang Shang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lili Cheng
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhongfu Tang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chuanbing Huang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Chernova I. Lupus Nephritis: Immune Cells and the Kidney Microenvironment. KIDNEY360 2024; 5:1394-1401. [PMID: 39120952 PMCID: PMC11441818 DOI: 10.34067/kid.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
Lupus nephritis (LN) is the most common major organ manifestation of the autoimmune disease SLE (lupus), with 10% of those afflicted progressing to ESKD. The kidney in LN is characterized by a significant immune infiltrate and proinflammatory cytokine milieu that affects intrinsic renal cells and is, in part, responsible for the tissue damage observed in LN. It is now increasingly appreciated that LN is not due to unidirectional immune cell activation with subsequent kidney damage. Rather, the kidney microenvironment influences the recruitment, survival, differentiation, and activation of immune cells, which, in turn, modify kidney cell function. This review covers how the biochemical environment of the kidney ( i.e ., low oxygen tension and hypertonicity) and unique kidney cell types affect the intrarenal immune cells in LN. The pathways used by intrinsic renal cells to interact with immune cells, such as antigen presentation and cytokine production, are discussed in detail. An understanding of these mechanisms can lead to the design of more kidney-targeted treatments and the avoidance of systemic immunosuppressive effects and may represent the next frontier of LN therapies.
Collapse
Affiliation(s)
- Irene Chernova
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Fang Q, Wu W, Xiao Z, Zeng D, Liang R, Wang J, Yuan J, Su W, Xu X, Zheng Y, Lai T, Sun J, Fu Q, Zheng SG. Gingival-derived mesenchymal stem cells alleviate allergic asthma inflammation via HGF in animal models. iScience 2024; 27:109818. [PMID: 38766356 PMCID: PMC11099335 DOI: 10.1016/j.isci.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Jia Yuan
- Division of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Zheng
- Department of Dermatology Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianwen Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| |
Collapse
|
5
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
6
|
Zhang X, Zhang Z, Zhao Y, Jin L, Tai Y, Tang Y, Geng S, Zhang H, Zhai Y, Yang Y, Pan P, He P, Fang S, Sun C, Chen Y, Zhou M, Liu L, Wang H, Xu L, Zhang T, Hua J, Wang H, Zhang L. Sodium chloride promotes macrophage pyroptosis and aggravates rheumatoid arthritis by activating SGK1 through GABA receptors Slc6a12. Int J Biol Sci 2024; 20:2922-2942. [PMID: 38904021 PMCID: PMC11186373 DOI: 10.7150/ijbs.93242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and the production of autoantibodies. Previous studies have indicated an association between high-salt diets (HSD) and an increased risk of RA, yet the underlying mechanisms remain unclear. Macrophage pyroptosis, a pro-inflammatory form of cell death, plays a pivotal role in RA. In this study, we demonstrate that HSD exacerbates the severity of arthritis in collagen-induced arthritis (CIA) mice, correlating with macrophage infiltration and inflammatory lesions. Given the significant alterations observed in macrophages from CIA mice subjected to HSD, we specifically investigate the impact of HSD on macrophage responses in the inflammatory milieu of RA. In our in vitro experiments, pretreatment with NaCl enhances LPS-induced pyroptosis in RAW.264.7 and THP-1 cells through the p38 MAPK/NF-κB signaling pathway. Subsequent experiments reveal that Slc6a12 inhibitors and SGK1 silencing inhibit sodium-induced activation of macrophage pyroptosis and the p38 MAPK/NF-κB signaling pathway, whereas overexpression of the SGK1 gene counteracts the effect of sodium on macrophages. In conclusion, our findings verified that high salt intake promotes the progression of RA and provided a detailed elucidation of the activation of macrophage pyroptosis induced by sodium transportation through the Slc6a12 channel.
Collapse
Affiliation(s)
- Xianzheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yujing Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Shuo Geng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yufang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Peng He
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuqi Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Chenlong Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| |
Collapse
|
7
|
陈 君, 黄 传, 李 明. [ Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:465-473. [PMID: 38597437 PMCID: PMC11006693 DOI: 10.12122/j.issn.1673-4254.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To explore the therapeutic mechanism of Jianpi Zishen (JPZS) granules for systemic lupus erythematosus(SLE) in light of podocyte autophagy regulation. METHODS TCMSP, GeneCards, OMIM, and TTD databases were used to obtain the targets of JPZS granules, SLE, and podocyte autophagy. The protein-protein interaction network was constructed using Cytoscape, and the key active ingredients and targets were screened for molecular docking. In the clinical study, 46 patients with SLE were randomized into two groups to receive baseline treatment with prednisone acetate and mycophenolate mofetil (control group) and additional treatment with JPZS granules (observation group) for 12 weeks, with 10 healthy volunteers as the healthy control group. Urinary levels of nephrin and synaptopodin of the patients were detected with ELISA. Western blotting was performed to determine peripheral blood levels of p-JAK1/JAK1, p-STAT1/STAT1, LC3II/LC3I, and p62 proteins of the participants. RESULTS Four key active ingredients and 5 core target genes (STAT1, PIK3CG, MAPK1, PRKCA, and CJA1) were obtained, and enrichment analysis identified the potentially involved signaling pathways including AGE-RAGE, JAK/STAT, EGFR, and PI3K/Akt. Molecular docking analysis showed that STAT1 was the most promising target protein with the highest binding activity, suggesting its role as an important mediator for signal transduction after JPZS granule treatment. In the 43 SLE patients available for analysis, treatment with JPZS granule significantly reduced serum levels of p-JAK1/JAK1, p-STAT1/STAT1, and LC3II/LC3I (P < 0.05 or 0.01), increased the protein level of P62 (P < 0.05), and reduced urinary levels of nephrin and synaptopodin (P < 0.05). CONCLUSION The therapeutic effect of JPZS granules on SLE is mediated probably by coordinated actions of quercetin, kaempferol, β-sitosterol, and isorhamnetin on their target gene STAT1 to inhibit the JAK/STAT pathway, thus suppressing autophagy and alleviating podocyte injuries in SLE.
Collapse
Affiliation(s)
- 君洁 陈
- 安徽中医药大学第一临床医学院,安徽 合肥 230000First Clinical College, Anhui University of Chinese Medicine, Hefei 230000, China
| | - 传兵 黄
- 安徽中医药大学第一附属医院风湿免疫科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 明 李
- 安徽中医药大学第一附属医院风湿免疫科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
8
|
Dai J, Mao J, Wei Y, Hou K, Luo XM, Wang H. Soybean Agglutinin Alters the Gut Microbiota and Promotes Inflammation in Lupus-Prone MRL/lpr Mice. J Nutr 2024; 154:1039-1049. [PMID: 38224737 DOI: 10.1016/j.tjnut.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Certain foods can trigger flares in patients with systemic lupus erythematosus. Lectins in edible plants have been reported to increase inflammation. OBJECTIVE This study aimed to determine the effects of 1-time intake of soybean agglutinin (SBA) on the gut microbiota and immune response in lupus-prone MRL/MpJ (MRL)/lpr mice. METHODS MRL/MpJ-Faslpr/J (MRL/lpr) and MRL mice were randomly assigned into 4 groups (8 mice/group): MRL mice + phosphate-buffered saline (PBS) (CON), MRL mice + SBA (CS), MRL/lpr mice + PBS (LPR), and MRL/lpr + SBA (LS). PBS and SBA were orally administered at 16 wk of age, and all mice were killed 24 h after oral challenge. The disease phenotype, levels of proinflammatory cytokines, and composition of the intestinal microbiota were determined. RESULTS Interferon-gamma (IFN-γ) in the serum was significantly higher, whereas the level of serum IL-10 was significantly lower in LS mice than in LPR mice [fold change (FC) = 1.31 and FC = 0.36, respectively]. The expression levels of IL-6 and TNF-α in the spleen of LS mice were significantly higher than those in LPR mice (FC = 1.66 and FC = 1.96, respectively). The expression levels of IL-6, TNF-α, and IL-1β in the kidney were also significantly higher in LS mice than in LPR mice (FC = 2.89, FC = 3.78, and FC = 2.02, respectively). The relative abundances of Erysipelotrichaceae and Turicibacter in LS mice were significantly higher than those in LPR mice (FC = 1.73 and FC = 1.74, respectively). The percentage of Breg cells in the mesenteric lymph nodes was significantly lower in LS mice than in LPR mice (FC = 0.53) (P < 0.05). No change was found between SBA treatment or not in the control (MRL) mice. CONCLUSIONS One-time intake of SBA can promote the secretion of proinflammatory cytokines, downregulate Breg cells, and alter the intestinal flora in MRL/lpr mice within 24 h of oral challenge, which may contribute to exacerbation of lupus.
Collapse
Affiliation(s)
- Jinyan Dai
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jiangdi Mao
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Yusen Wei
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Kangwei Hou
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Haifeng Wang
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
10
|
Afsar B, Afsar RE. Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Curr Nutr Rep 2023; 12:830-844. [PMID: 37980312 DOI: 10.1007/s13668-023-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE OF REVIEW Sodium is vital for human health. High salt intake is a global health problem and is associated with cardiovascular morbidity and mortality. Recent evidence suggests that both innate and adaptive immune systems are affected by sodium. In general, excess salt intake drives immune cells toward a pro-inflammatory phenotype. The incidence of autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is steadily increasing. As excess salt induces a pro-inflammatory state, increased salt intake may have impacts on autoimmune diseases. The relationship between salt intake and autoimmune diseases is most widely studied in patients with SLE or RA. This review aimed to summarize the relationship between salt intake and SLE and RA. RECENT FINDINGS Most, but not all, of these studies showed that high salt intake might promote SLE by M1 macrophage shift, increase in Th17/Treg cell ratio, activation of dendritic and follicular helper T cells, and increased secretion of pro-inflammatory cytokines. In RA, apart from driving immune cells toward a pro-inflammatory state, high salt intake also influences cellular signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL), Rho GTPases, and MAPK (mitogen-activated protein kinase). There is now sufficient evidence that excess salt intake may be related to the development and progression of SLE and RA, although there are still knowledge gaps. More studies are warranted to further highlight the relationship between excess salt intake, SLE, and RA. Salt intake may affect cell types and pro-inflammatory cytokines and signaling pathways associated with the development and progression of systemic lupus erythematosus and rheumatoid arthritis. Bcl-6 B-cell lymphoma, 6 Erk extracellular signal-regulated kinases, IFN-γ interferon-gamma, JNK c-Jun N-terminal kinase, IL-4 interleukin 4, IL-6 interleukin 6, MAPK mitogen-activated protein kinase, STAT signal transducer and activator of transcription, Tnf-α tumor necrosis factor, Treg T regulatory cell.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
11
|
Liu Y, Zhu E, Lei Y, Luo A, Yan Y, Cai M, Liu S, Huang Y, Guan H, Zhong M, Li W, Lin L, Hultstöm M, Lai E, Zheng Z, Liu X, Tang C. Diagnostic Values of METTL1-Related Genes and Immune Characteristics in Systemic Lupus Erythematosus. J Inflamm Res 2023; 16:5367-5383. [PMID: 38026241 PMCID: PMC10661937 DOI: 10.2147/jir.s431628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Methyltransferase like 1 (METTL1) regulates epitranscriptomes via the m7G modification in mammalian mRNA and microRNA. Systemic lupus erythematosus (SLE) is caused by abnormal immune reactivity and has diverse clinical manifestations. RNA methylation as a mechanism to regulate gene expression is widely implicated in immune regulation. However, the role of m7G in immune response of SLE has not been extensively studied. Patients and Methods Expression of METTL1 was identified in the public dataset GSE122459 and validated in an independent cohort of SLE patients. We investigated the association between METTL1-expression and clinical manifestations of SLE. Subsequently, differentially expressed genes (DEG) that were correlated with METTL1-expression in GSE122459 were used for functional enrichment analysis. The correlation between infiltrating immune cells and METTL1, as well as candidate biomarkers identified to be correlated with either METTL1 or immune cell infiltration were assessed by single-sample GSEA. Potential mechanisms were explored with Gene ontology and KEGG pathway enrichment. Diagnostic performances of candidate biomarkers in SLE were analyzed. Results The mRNA and protein expression of METTL1 in SLE patients were significantly decreased in both datasets. METTL1-coexpressed DEGs were enriched in several key immune-related pathways. Activated CD8 T cells, activated CD4 T cells, memory B cells and type 2 helper T cells were different between patients with high and low METTL1 expression. Further, activated CD8 T-cells, activated CD4 T-cells, memory B-cells were correlated with METTL1. The genes of LAMP3, CD83, PDCD1LG2, IGKVD3D-20, IGKV5-2, IGKV2D-30, IGLV3-19 and IGLV4-60 were identified as candidate targets that were correlated with immune cell proportion. Moreover, LAMP3, CD83, and PDCD1LG2 expression were of diagnostic value in SLE as indicated by ROC analysis. Conclusion Our findings suggested that METTL1 and its candidate targets LAMP3, CD83, PDCD1LG2 may be used for diagnosing SLE and could be explored for developing targeted molecular therapy for SLE.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yan Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510623, People’s Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Michael Hultstöm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Unit for Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
12
|
Li F, Zhang XQ, Ho W, Tang M, Li Z, Bu L, Xu X. mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy. Nat Commun 2023; 14:4223. [PMID: 37454146 PMCID: PMC10349854 DOI: 10.1038/s41467-023-39938-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Synergistically improving T-cell responsiveness is promising for favorable therapeutic outcomes in immunologically cold tumors, yet current treatments often fail to induce a cascade of cancer-immunity cycle for effective antitumor immunity. Gasdermin-mediated pyroptosis is a newly discovered mechanism in cancer immunotherapy; however, cleavage in the N terminus is required to activate pyroptosis. Here, we report a single-agent mRNA nanomedicine-based strategy that utilizes mRNA lipid nanoparticles (LNPs) encoding only the N-terminus of gasdermin to trigger pyroptosis, eliciting robust antitumor immunity. In multiple female mouse models, we show that pyroptosis-triggering mRNA/LNPs turn cold tumors into hot ones and create a positive feedback loop to promote antitumor immunity. Additionally, mRNA/LNP-induced pyroptosis sensitizes tumors to anti-PD-1 immunotherapy, facilitating tumor growth inhibition. Antitumor activity extends beyond the treated lesions and suppresses the growth of distant tumors. We implement a strategy for inducing potent antitumor immunity, enhancing immunotherapy responses in immunologically cold tumors.
Collapse
Affiliation(s)
- Fengqiao Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, PR China.
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Lei Bu
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
13
|
Yue C, Wang W, Gao S, Ye J, Zhang T, Xing Z, Xie Y, Qian H, Zhou X, Li S, Yu A, Wang L, Wang J, Hua C. Agomir miRNA-150-5p alleviates pristane-induced lupus by suppressing myeloid dendritic cells activation and inflammation via TREM-1 axis. Inflamm Res 2023:10.1007/s00011-023-01754-8. [PMID: 37326693 DOI: 10.1007/s00011-023-01754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Triggering receptors expressed on myeloid cells-1 (TREM-1) has been shown to participate in inflammatory autoimmune diseases. Nevertheless, the detailed underlying mechanisms and therapeutic benefits by targeting TREM-1 remain elusive, especially in myeloid dendritic cells (mDCs) and systemic lupus erythematosus (SLE). Disorders of epigenetic processes including non-coding RNAs give rise to SLE, resulting in complicated syndromes. Here, we aim to address this issue and explore the miRNA to inhibit the activation of mDCs and alleviate the progress of SLE by targeting TREM-1 signal axis. METHODS Bioinformatics methods were used to analyze the differentially expressed genes (DEGs) between patients with SLE and healthy individuals by four mRNA microarray datasets from Gene Expression Omnibus (GEO). Then we identified the expression of TREM-1 and its soluble form (sTREM-1) in clinical samples by ELISA, quantitative real-time PCR and Western blot. Phenotypic and functional changes of mDCs elicited by TREM-1 agonist were determined. Three databases of miRNAs target prediction and a dual-luciferase reporter assay were used to screen and verify miRNAs that can directly inhibit TREM-1 expression in vitro. Moreover, pristane-induced lupus mice were injected with miR-150-5p agomir to evaluate the effects of miR-150-5p on mDCs in lymphatic organs and disease activity in vivo. RESULTS We screened TREM-1 as one of the hub genes closely correlated with the progression of SLE and identified sTREM-1 in serum as a valuable diagnostic biomarker for SLE. Moreover, activation of TREM-1 by its agonist promoted activation and chemotaxis of mDCs and increased the production of inflammatory cytokines and chemokines, showing higher expression of IL-6, TNF-α, and MCP-1. We showed that lupus mice displayed a unique miRNA signature in spleen, among which miR-150 was the most significantly expressed miRNA that targeting TREM-1 compared with wild type group. Transfection of miRNA-150-5p mimics directly suppressed the expression of TREM-1 by binding to its 3' UTR. Our in vivo experiments first indicated that administration of miR-150-5p agomir effectively ameliorated lupus symptoms. Intriguingly, miR-150 inhibited the over activation of mDCs through TREM-1 signal pathway in lymphatic organs and renal tissues. CONCLUSIONS TREM-1 represents a potentially novel therapeutic target and we identify miR-150-5p as one of the mechanisms to alleviate lupus disease, which is attributable for inhibiting mDCs activation through TREM-1 signaling pathway.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Hengrong Qian
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Xueyin Zhou
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Shuting Li
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Anni Yu
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Jianguang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
14
|
Ge Y, Zhang J, Jin K, Ye Z, Wang W, Zhou Z, Ye J. Multifunctional Nanoparticles Precisely Reprogram the Tumor Microenvironment and Potentiate Antitumor Immunotherapy after Near-Infrared-II Light-Mediated Photothermal Therapy. Acta Biomater 2023:S1742-7061(23)00316-1. [PMID: 37302731 DOI: 10.1016/j.actbio.2023.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy. However, mild PTT alone usually fails to activate the immune response and prevent tumor metastasis. Herein, a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an effective PTT effect in the second near-infrared (NIR-II) window, is developed. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response. Copper ions are released in the acidic TME to promote the M1 polarization of tumor-associated macrophages. The model antigen OVA not only acts as a scaffold for nanoparticle growth but also promotes the maturation of dendritic cells, which primes naive T cells to stimulate adaptive immunity. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, which suppresses tumor growth and metastasis in a mouse melanoma model. The proposed therapeutic platform, CuS@OVA nanoparticles, may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies. STATEMENT OF SIGNIFICANCE: Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy, but usually fails to activate the immune response and prevent tumor metastasis. Herein, we develop a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an excellent PTT effect in the second near-infrared (NIR-II) window. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response by promoting the M1 polarization of tumor-associated macrophages and the maturation of dendritic cells. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, suppressing tumor growth and metastasis. The platform may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies.
Collapse
Affiliation(s)
- Yanni Ge
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Jiaojiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
16
|
Chernova I, Song W, Steach H, Hafez O, Al Souz J, Chen PM, Chandra N, Cantley L, Veselits M, Clark MR, Craft J. The ion transporter Na +-K +-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. SCIENCE ADVANCES 2023; 9:eadf8156. [PMID: 36724234 PMCID: PMC9891690 DOI: 10.1126/sciadv.adf8156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidney is a comparatively hostile microenvironment characterized by highsodium concentrations; however, lymphocytes infiltrate and survive therein in autoimmune diseases such as lupus. The effects of sodium-lymphocyte interactions on tissue injury in autoimmune diseases and the mechanisms used by infiltrating lymphocytes to survive the highsodium environment of the kidney are not known. Here, we show that kidney-infiltrating B cells in lupus adapt to elevated sodium concentrations and that expression of sodium potassium adenosine triphosphatase (Na+-K+-ATPase) correlates with the ability of infiltrating cells to survive. Pharmacological inhibition of Na+-K+-ATPase and genetic knockout of Na+-K+-ATPase γ subunit resulted in reduced B cell infiltration into kidneys and amelioration of proteinuria. B cells in human lupus nephritis biopsies also had high expression of Na+-K+-ATPase. Our study reveals that kidney-infiltrating B cells in lupus initiate a tissue adaption program in response to sodium stress and identifies Na+-K+-ATPase as an organ-specific therapeutic target.
Collapse
Affiliation(s)
- Irene Chernova
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Omeed Hafez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jafar Al Souz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nisha Chandra
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd Cantley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Marcus R. Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Joe Craft
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| |
Collapse
|
17
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
18
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
20
|
IL-38, a potential therapeutic agent for lupus, inhibits lupus progression. Inflamm Res 2022; 71:963-975. [PMID: 35776155 DOI: 10.1007/s00011-022-01581-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Previous studies reported that IL-38 was abnormally expressed in patients with systemic lupus erythematosus (SLE). However, the involvement of IL-38 in the pathophysiology of SLE remains unknown. METHODS The therapeutic potential of IL-38 was tested in pristane-treated wild-type (WT) and IL-38-/- mice. Thus, SLE was induced via pristane in WT and IL-38-/- mice. Afterwards, the liver, spleen, and kidney of each mouse were obtained. The flow cytometric analysis of the immune cells, serologic expression of inflammatory cytokines and autoantibodies, renal histopathology, and inflammatory signaling were evaluated. RESULTS WT mice with pristane-induced lupus exhibited hepatomegaly, splenomegaly, severe kidney damages, increased lymphoproliferation, enhanced lymphoproliferation, and upregulated inflammatory cytokines, such as IL-6, IL-13, IL-17A, MIP-3α, IL-12p70, and IFNγ, and elevated levels of autoantibodies, such as ANA IgG, anti-dsDNA IgG, and total IgG. IL-38-/- mice whose lupus progressed, had elevated cells of CD14+, CD19+, CD3+, and Th1, upregulated inflammatory cytokines and autoantibodies, and severe pathological changes in kidney. Administration of recombinant murine IL-38 to pristane-treated IL-38-/- mice improved their renal histopathology, which depended on ERK1/2, JNK1/2, p38, NF-κB p65, and STAT5 signaling pathways. CONCLUSION IL-38 regulates SLE pathogenesis. Furthermore, targeting IL-38 is critical in the treatment of SLE.
Collapse
|
21
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Huang X, Luu LDW, Jia N, Zhu J, Fu J, Xiao F, Liu C, Li S, Shu G, Hou J, Kang M, Zhang D, Xu Y, Wang Y, Cui X, Lai J, Li J, Tai J. Multi-Platform Omics Analysis Reveals Molecular Signatures for Pathogenesis and Activity of Systemic Lupus Erythematosus. Front Immunol 2022; 13:833699. [PMID: 35514958 PMCID: PMC9063006 DOI: 10.3389/fimmu.2022.833699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with heterogeneous clinical manifestations and the pathogenesis of SLE is still unclear. Various omics results have been reported for SLE, but the molecular hallmarks of SLE, especially in patients with different disease activity, using an integrated multi-omics approach have not been fully investigated. Here, we collected blood samples from 10 healthy controls (HCs) and 40 SLE patients with different clinical activity including inactive (IA), low activity (LA), and high activity (HA). Using an integrative analysis of proteomic, metabolomic and lipidomic profiles, we report the multi-omics landscape for SLE. The molecular changes suggest that both the complement system and the inflammatory response were activated in SLEs and were associated with disease activity. Additionally, activation of the immunoglobulin mediated immune response were observed in the LA stage of the disease, however this immune response was suppressed slightly in the HA stage. Finally, an imbalance in lipid metabolism, especially in sphingolipid metabolism, accompanied with dysregulated apolipoproteins were observed to contribute to the disease activity of SLE. The multi-omics data presented in this study and the characterization of peripheral blood from SLE patients may thus help provide important clues regarding the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jia Zhu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunyan Liu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Shengnan Li
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Gaixiu Shu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jun Hou
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Min Kang
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Dan Zhang
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Yingjie Xu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaodai Cui
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jianming Lai
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jieqiong Li
- Department of Respiratory Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
23
|
Correa-Rodríguez M, DelOlmo-Romero S, Pocovi-Gerardino G, Callejas-Rubio JL, Ríos-Fernández R, Ortego-Centeno N, Rueda-Medina B. Dietary Sodium, Potassium, and Sodium to Potassium Ratio in Patients With Systemic Lupus Erythematosus. Biol Res Nurs 2022; 24:235-244. [PMID: 34978207 DOI: 10.1177/10998004211065491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: The aim of this study was to investigate the association between dietary sodium, potassium, and sodium:potassium ratio and clinical disease activity parameters, damage accrual, and cardiovascular disease risk factors in a population of patients with systemic lupus erythematous (SLE). Research design and study sample: A cross-sectional study including a total of 280 patients was conducted (90.4% females; mean age 46.9 ± 12.85 years). Data collection: The SLE Disease Activity Index (SLEDAI-2K) and the SDI Damage Index were used to assess disease activity and disease-related damage, respectively. A 24-hour diet recall was used to estimate dietary intake of sodium and potassium. Results: Dietary sodium intake was significantly associated with anti-dsDNA (β = -.005; 95% CI [.002 .008]; p = .001) and complement C4 level (β = -.002; 95% CI [-.003, .000]; p = .039). Dietary potassium intake was also significantly associated with complement C3 level (β = -.004; 95% CI [-.007, -.001]; p = .021). Multiple logistic regression models revealed a positive association between dietary sodium intake and the risk of having hsCRP > 3 (p = .005) and an inverse association between dietary potassium intake and the risk of having hsCRP > 3 (p = .004). Conclusions: SLE patients with higher dietary sodium and lower dietary potassium intakes had an increased risk of higher hsCRP. Dietary sodium intake was significantly associated with anti-dsDNA and complement C4 level, while dietary potassium intake was associated with complement C3 level, supporting that dietary sodium and potassium intakes might play a key role in markers related to disease activity in SLE patients.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Institute of Biomedical Research (IBS), Granada, Spain.,Nursing Department, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Sara DelOlmo-Romero
- Nursing Department, Faculty of Health Sciences, University of Granada, Granada, Spain
| | | | - José-Luis Callejas-Rubio
- Institute of Biomedical Research (IBS), Granada, Spain.,Systemic Autoimmune Diseases Unit, 16581San Cecilio University Hospital, Granada, Spain.,Faculty of Medicine, University of Granada, Granada, Spain
| | - Raquel Ríos-Fernández
- Institute of Biomedical Research (IBS), Granada, Spain.,Systemic Autoimmune Diseases Unit, 16581San Cecilio University Hospital, Granada, Spain.,Faculty of Medicine, University of Granada, Granada, Spain
| | - Norberto Ortego-Centeno
- Institute of Biomedical Research (IBS), Granada, Spain.,Faculty of Medicine, University of Granada, Granada, Spain
| | - Blanca Rueda-Medina
- Institute of Biomedical Research (IBS), Granada, Spain.,Nursing Department, Faculty of Health Sciences, University of Granada, Granada, Spain
| |
Collapse
|
24
|
The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2022; 166:50-62. [DOI: 10.1016/j.yjmcc.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
|
25
|
Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, Liu HF, Pan Q. Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus: Novel Insights into Mechanisms and Promising Therapeutic Strategies. Front Immunol 2021; 12:799788. [PMID: 34925385 PMCID: PMC8677698 DOI: 10.3389/fimmu.2021.799788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.
Collapse
Affiliation(s)
- Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyan Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
26
|
Wan C, Chen S, Zhao K, Ren Z, Peng L, Xia H, Wei H, Yu B. Serum Untargeted Metabolism Reveals the Mechanism of L. plantarum ZDY2013 in Alleviating Kidney Injury Induced by High-Salt Diet. Nutrients 2021; 13:nu13113920. [PMID: 34836175 PMCID: PMC8620752 DOI: 10.3390/nu13113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet (HSD) is one of the key risk factors for hypertension and kidney injury. In this study, a HSD C57BL/6J mice model was established with 4% NaCl, and then different concentrations of Lactobacillus plantarum ZDY2013 were intragastrically administered for 2 weeks to alleviate HSD-induced renal injury. For the study, 16S rRNA gene sequencing, non-targeted metabonomics, real-time fluorescent quantitative PCR, and Masson’s staining were used to investigate the mechanism of L. plantarum ZDY2013 in alleviating renal damage. Results showed that HSD caused intestinal inflammation and changed the intestinal permeability of mice, disrupted the balance of intestinal flora, and increased toxic metabolites (tetrahydrocorticosteron (THB), 3-methyhistidine (3-MH), creatinine, urea, and L-kynurenine), resulting in serious kidney damage. Interestingly, L. plantarum ZDY2013 contributed to reconstructing the intestinal flora of mice by increasing the level of Lactobacillus and Bifidobacterium and decreasing that of Prevotella and Bacteroides. Moreover, the reconstructed intestinal microbiota significantly changed the concentration of the metabolites of hosts through metabolic pathways, including TCA cycle, ABC transport, purine metabolism, and histidine metabolism. The content of uremic toxins such as L-kynurenine, creatinine, and urea in the serum of mice was found to be decreased by L. plantarum ZDY2013, which resulted in renal injury alleviation. Our data suggest that L. plantarum ZDY2013 can indeed improve chronic kidney injury by regulating intestinal flora, strengthening the intestinal barrier, limiting inflammatory response, and reducing uremic toxins.
Collapse
Affiliation(s)
- Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Kui Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Huiling Xia
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Bo Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
- Correspondence: ; Tel.: +86-791-8833-4578
| |
Collapse
|
27
|
Lv X, Liu X, Zhao M, Wu H, Zhang W, Lu Q, Chen X. RNA Methylation in Systemic Lupus Erythematosus. Front Cell Dev Biol 2021; 9:696559. [PMID: 34307373 PMCID: PMC8292951 DOI: 10.3389/fcell.2021.696559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with complicated clinical manifestations. Although our understanding of the pathogenesis of SLE has greatly improved, the understanding of the pathogenic mechanisms of SLE is still limited by disease heterogeneity, and targeted therapy is still unavailable. Substantial evidence shows that RNA methylation plays a vital role in the mechanisms of the immune response, prompting speculation that it might also be related to the occurrence and development of SLE. RNA methylation has been a hot topic in the field of epigenetics in recent years. In addition to revealing the modification process, relevant studies have tried to explore the relationship between RNA methylation and the occurrence and development of various diseases. At present, some studies have provided evidence of a relationship between RNA methylation and SLE pathogenesis, but in-depth research and analysis are lacking. This review will start by describing the specific mechanism of RNA methylation and its relationship with the immune response to propose an association between RNA methylation and SLE pathogenesis based on existing studies and then discuss the future direction of this field.
Collapse
Affiliation(s)
- Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wuiguang Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
28
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
A High-Salt Diet Disturbs the Development and Function of Natural Killer Cells in Mice. J Immunol Res 2020; 2020:6687143. [PMID: 33426093 PMCID: PMC7772026 DOI: 10.1155/2020/6687143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet (HSD) is common worldwide and can lead to cardiovascular disease, chronic inflammation, and autoimmune diseases. Moreover, increasing evidence shows that HSD is closely related to a variety of immune diseases. Natural killer (NK) cells are important innate immune cells that directly kill their targets via degranulation and secretion of interferon gamma (IFN-γ). NK cells play a vital role in resisting viruses and preventing the malignant transformation of cells; however, whether HSD affects the development and function of NK cells has not yet been elucidated. Therefore, the purpose of the present study was to understand the effects of HSD on the development and function of NK cells, in addition to investigating the underlying molecular mechanism. Our results show that the number of NK cells in the spleen and lungs of HSD-fed mice was significantly reduced, which may be due to the inhibition of NK cell proliferation. Further, the development of NK cells in mice was evaluated, and it was found that HSD reduced the effective NK cell subset (CD27+CD11b−). Moreover, it was also found that the ability of NK cells to secrete CD107a and IFN-γ in HSD-fed mice was decreased following stimulation with RMA-S and YAC-1 tumor cells. Finally, the underlying molecular mechanism was evaluated, and it was found that HSD increased the production of reactive oxygen species (ROS) by NK cells, while the expression of CD122 was decreased, suggesting that HSD downregulates CD122 expression in NK cells via ROS signaling, thereby reducing the responsiveness to IL-15 and ultimately inhibiting NK cell function. The present research discovered a novel mechanism by which HSD inhibits the function of NK cells, providing an alternative avenue for the treatment of immune diseases caused by HSD.
Collapse
|
30
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|