1
|
Chapman PA, Hudson D, Morgan XC, Beck CW. The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis. FEMS Microbiol Ecol 2024; 100:fiae131. [PMID: 39317670 PMCID: PMC11503959 DOI: 10.1093/femsec/fiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.
Collapse
Affiliation(s)
- Phoebe A Chapman
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Daniel Hudson
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| | - Caroline W Beck
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
2
|
Castro LGZ, Sousa MR, Pereira LÉC, Martins DV, Oliveira FAS, Bezerra SGS, Melo VMM, Hissa DC. Pioneer access of the foam nest bacterial community of Leptodactylidae frogs and its biotechnological potential. BRAZ J BIOL 2024; 84:e280884. [PMID: 38922194 DOI: 10.1590/1519-6984.280884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
Many anuran amphibians deposit their eggs in foam nests, biostructures that help protect the eggs and tadpoles from predators. Currently, there are no other identification and description studies of the cultivable microbiota role in the nests of the Leptodactylid frogs such as Physalaemus cuvieri, Leptodactylus vastus and Adenomera hylaedactyla. This study aimed to isolate and identify the culturable bacteria from these three anuran species' nests, as well as to prospect enzymes produced by this microbiota. Foam nests samples and environmental samples were diluted and viable cell count was determined. Bacterial morphotypes from foam nest samples were isolated through spread plate technique. Isolates' DNAs were extracted followed by rRNA 16S gene amplification and Sanger sequencing. To evaluate their enzymatic potential, the isolates were cultured in ATGE medium supplemented with starch (0.1% w/v), gelatin (3% w/v) and skimmed milk (1% w/v), to verify amylase and protease activity. A total of 183 bacterial morphotypes were isolated, comprising 33 bacterial genera. Proteobacteria phylum was the most abundant in all the three nests (79%). The genera Pseudomonas and Aeromonas were the most abundant taxon in P. cuvieri and L. vastus. In A. Hylaedactyla, were Enterobacter and Bacillus. Regarding enzymatic activities, 130 isolates displayed protease activity and 45 isolates were positive for amylase activity. Our results provide unprecedented information concerning culturable bacterial microbiota of the foam nests of the Leptodactylid frogs, as well as their potential for biomolecules of biotechnological interest.
Collapse
Affiliation(s)
- L G Z Castro
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - M R Sousa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - L É C Pereira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D V Martins
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - F A S Oliveira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - S G S Bezerra
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - V M M Melo
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D C Hissa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| |
Collapse
|
3
|
Jones KR, Belden LK, Hughey MC. Priority effects alter microbiome composition and increase abundance of probiotic taxa in treefrog tadpoles. Appl Environ Microbiol 2024; 90:e0061924. [PMID: 38757977 PMCID: PMC11218634 DOI: 10.1128/aem.00619-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Host-associated microbial communities, like other ecological communities, may be impacted by the colonization order of taxa through priority effects. Developing embryos and their associated microbiomes are subject to stochasticity during colonization by bacteria. For amphibian embryos, often developing externally in bacteria-rich environments, this stochasticity may be particularly impactful. For example, the amphibian microbiome can mitigate lethal outcomes from disease for their hosts; however, this may depend on microbiome composition. Here, we examined the assembly of the bacterial community in spring peeper (Pseudacris crucifer) embryos and tadpoles. First, we reared embryos from identified mating pairs in either lab or field environments to examine the relative impact of environment and parentage on embryo and tadpole bacterial communities. Second, we experimentally inoculated embryos to determine if priority effects (i) could be used to increase the relative abundance of Janthinobacterium lividum, an amphibian-associated bacteria capable of preventing fungal infection, and (ii) would lead to observed differences in the relative abundances of two closely related bacteria from the genus Pseudomonas. Using 16S rRNA gene amplicon sequencing, we observed differences in community composition based on rearing location and parentage in embryos and tadpoles. In the inoculation experiment, we found that priority inoculation could increase the relative abundance of J. lividum, but did not find that either Pseudomonas isolate was able to prevent colonization by the other when given priority. These results highlight the importance of environmental source pools and parentage in determining microbiome composition, while also providing novel methods for the administration of a known amphibian probiotic. IMPORTANCE Harnessing the functions of host-associated bacteria is a promising mechanism for managing disease outcomes across different host species. In the case of amphibians, certain frog-associated bacteria can mitigate lethal outcomes of infection by the fungal pathogen Batrachochytrium dendrobatidis. Successful probiotic applications require knowledge of community assembly and an understanding of the ecological mechanisms that structure these symbiotic bacterial communities. In our study, we show the importance of environment and parentage in determining bacterial community composition and that community composition can be influenced by priority effects. Further, we provide support for the use of bacterial priority effects as a mechanism to increase the relative abundance of target probiotic taxa in a developing host. While our results show that priority effects are not universally effective across all host-associated bacteria, our ability to increase the relative abundance of specific probiotic taxa may enhance conservation strategies that rely on captive rearing of endangered vertebrates.
Collapse
Affiliation(s)
- Korin Rex Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Myra C. Hughey
- Department of Biology, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
4
|
Neely WJ, Souza KMC, Martins RA, Marshall VM, Buttimer SM, Brito de Assis A, Medina D, Whetstone RD, Lyra ML, Ribeiro JW, Greenspan SE, Haddad CFB, Alves dos Anjos L, Becker CG. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240530. [PMID: 39100162 PMCID: PMC11296196 DOI: 10.1098/rsos.240530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.
Collapse
Affiliation(s)
- Wesley J. Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Kassia M. C. Souza
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Renato A. Martins
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | | | - Shannon M. Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | - Ananda Brito de Assis
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Daniel Medina
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- Sistema Nacional de Investigación, SENACYT, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Ross D. Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mariana L. Lyra
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - José Wagner Ribeiro
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Sasha E. Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
| | - Célio F. B. Haddad
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Luciano Alves dos Anjos
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huch Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16803, USA
| |
Collapse
|
5
|
Romero-Contreras YJ, González-Serrano F, Bello-López E, Formey D, Aragón W, Cevallos MÁ, Rebollar EA, Serrano M. Bacteria from the skin of amphibians promote growth of Arabidopsis thaliana and Solanum lycopersicum by modifying hormone-related transcriptome response. PLANT MOLECULAR BIOLOGY 2024; 114:39. [PMID: 38615069 PMCID: PMC11016013 DOI: 10.1007/s11103-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.
Collapse
Affiliation(s)
- Yordan J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| | | | - Elena Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Wendy Aragón
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Blvd. Príncipe Akishino s/n, 30798, Tapachula, Chiapas, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
6
|
Romero-Contreras YJ, Gonzalez-Serrano F, Formey D, Aragón W, Chacón FI, Torres M, Cevallos MÁ, Dib JR, Rebollar EA, Serrano M. Amphibian skin bacteria display antifungal activity and induce plant defense mechanisms against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2024; 15:1392637. [PMID: 38654899 PMCID: PMC11035788 DOI: 10.3389/fpls.2024.1392637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Botrytis cinerea is the causal agent of gray mold, which affects a wide variety of plant species. Chemical agents have been used to prevent the disease caused by this pathogenic fungus. However, their toxicity and reduced efficacy have encouraged the development of new biological control alternatives. Recent studies have shown that bacteria isolated from amphibian skin display antifungal activity against plant pathogens. However, the mechanisms by which these bacteria act to reduce the effects of B. cinerea are still unclear. From a diverse collection of amphibian skin bacteria, three proved effective in inhibiting the development of B. cinerea under in vitro conditions. Additionally, the individual application of each bacterium on the model plant Arabidopsis thaliana, Solanum lycopersicum and post-harvest blueberries significantly reduced the disease caused by B. cinerea. To understand the effect of bacteria on the host plant, we analyzed the transcriptomic profile of A. thaliana in the presence of the bacterium C32I and the fungus B. cinerea, revealing transcriptional regulation of defense-related hormonal pathways. Our study shows that bacteria from the amphibian skin can counteract the activity of B. cinerea by regulating the plant transcriptional responses.
Collapse
Affiliation(s)
- Yordan J. Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Francisco Gonzalez-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Wendy Aragón
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
| | - Florencia Isabel Chacón
- Planta Piloto de Procesos Industriales Microbiológicos (PROIM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Julian Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos (PROIM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
- Instituto de Microbiología, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Neely WJ, Martins RA, Mendonça da Silva CM, Ferreira da Silva T, Fleck LE, Whetstone RD, Woodhams DC, Cook WH, Prist PR, Valiati VH, Greenspan SE, Tozetti AM, Earley RL, Becker CG. Linking microbiome and stress hormone responses in wild tropical treefrogs across continuous and fragmented forests. Commun Biol 2023; 6:1261. [PMID: 38087051 PMCID: PMC10716138 DOI: 10.1038/s42003-023-05600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Renato A Martins
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila M Mendonça da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Tainá Ferreira da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Lucas E Fleck
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ross D Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - W Harrison Cook
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Paula R Prist
- EcoHealth Alliance, 520 Eight Avenue, Suite 1200, New York, NY, 10018, USA
| | - Victor H Valiati
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexandro M Tozetti
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ryan L Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Sun D, Herath J, Zhou S, Ellepola G, Meegaskumbura M. Associations of Batrachochytrium dendrobatidis with skin bacteria and fungi on Asian amphibian hosts. ISME COMMUNICATIONS 2023; 3:123. [PMID: 37993728 PMCID: PMC10665332 DOI: 10.1038/s43705-023-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Amphibian skin harbors microorganisms that are associated with the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, one of the most significant wildlife diseases known. This pathogen originated in Asia, where diverse Bd lineages exist; hence, native amphibian hosts have co-existed with Bd over long time periods. Determining the nuances of this co-existence is crucial for understanding the prevalence and spread of Bd from a microbial context. However, associations of Bd with the natural skin microbiome remain poorly understood for Asian hosts, especially in relation to skin-associated fungi. We used 16 S rRNA and fungal internal transcribed spacer (ITS) gene sequencing to characterize the skin microbiome of four native Asian amphibian species and examined the relationships between Bd infection and their skin bacterial and fungal communities; we also analyzed the correlates of the putative anti-Bd bacteria. We show that both skin bacterial and fungal community structure and composition had significant associations with infection status (Bd presence/absence) and infection intensity (frequency of Bd sequence reads). We also found that the putative anti-Bd bacterial richness was correlated with Bd infection status and infection intensity, and observed that the relative abundance of anti-Bd bacteria roughly correspond with changes in both Bd prevalence and mean infection intensity in populations. Additionally, the microbial co-occurrence network of infected frogs was significantly different from that of uninfected frogs that were characterized by more keystone nodes (connectors) and larger proportions in correlations between bacteria, suggesting stronger inter-module bacterial interactions. These results indicate that the mutual effects between Bd and skin-associated microbiome, including the interplay between bacteria and fungi, might vary with Bd infection in susceptible amphibian species. This knowledge will help in understanding the dynamics of Bd from a microbial perspective, potentially contributing to mitigate chytridiomycosis in other regions of the world.
Collapse
Affiliation(s)
- Dan Sun
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No 704 Negombo Rd, Welisara, 71722, Sri Lanka
| | - Shipeng Zhou
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Gajaba Ellepola
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, KY20400, Sri Lanka
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
9
|
Ochoa-Sánchez M, Acuña Gomez EP, Moreno L, Moraga CA, Gaete K, Eguiarte LE, Souza V. Body site microbiota of Magellanic and king penguins inhabiting the Strait of Magellan follow species-specific patterns. PeerJ 2023; 11:e16290. [PMID: 37933257 PMCID: PMC10625763 DOI: 10.7717/peerj.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Animal hosts live in continuous interaction with bacterial partners, yet we still lack a clear understanding of the ecological drivers of animal-associated bacteria, particularly in seabirds. Here, we investigated the effect of body site in the structure and diversity of bacterial communities of two seabirds in the Strait of Magellan: the Magellanic penguin (Spheniscus magellanicus) and the king penguin (Aptenodytes patagonicus). We used 16S rRNA gene sequencing to profile bacterial communities associated with body sites (chest, back, foot) of both penguins and the nest soil of Magellanic penguin. Taxonomic composition showed that Moraxellaceae family (specifically Psychrobacter) had the highest relative abundance across body sites in both penguin species, whereas Micrococacceae had the highest relative abundance in nest soil. We were able to detect a bacterial core among 90% of all samples, which consisted of Clostridium sensu stricto and Micrococcacea taxa. Further, the king penguin had its own bacterial core across its body sites, where Psychrobacter and Corynebacterium were the most prevalent taxa. Microbial alpha diversity across penguin body sites was similar in most comparisons, yet we found subtle differences between foot and chest body sites of king penguins. Body site microbiota composition differed across king penguin body sites, whereas it remained similar across Magellanic penguin body sites. Interestingly, all Magellanic penguin body site microbiota composition differed from nest soil microbiota. Finally, bacterial abundance in penguin body sites fit well under a neutral community model, particularly in the king penguin, highlighting the role of stochastic process and ecological drift in microbiota assembly of penguin body sites. Our results represent the first report of body site bacterial communities in seabirds specialized in subaquatic foraging. Thus, we believe it represents useful baseline information that could serve for long-term comparisons that use marine host microbiota to survey ocean health.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Claudio A. Moraga
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Katherine Gaete
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Valeria Souza
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
10
|
Siomko SA, Greenspan SE, Barnett KM, Neely WJ, Chtarbanova S, Woodhams DC, McMahon TA, Becker CG. Selection of an anti-pathogen skin microbiome following prophylaxis treatment in an amphibian model system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220126. [PMID: 37305917 PMCID: PMC10258671 DOI: 10.1098/rstb.2022.0126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/03/2022] [Indexed: 06/13/2023] Open
Abstract
With emerging diseases on the rise, there is an urgent need to identify and understand novel mechanisms of prophylactic protection in vertebrate hosts. Inducing resistance against emerging pathogens through prophylaxis is an ideal management strategy that may impact pathogens and their host-associated microbiome. The host microbiome is recognized as a critical component of immunity, but the effects of prophylactic inoculation on the microbiome are unknown. In this study, we investigate the effects of prophylaxis on host microbiome composition, focusing on the selection of anti-pathogenic microbes contributing to host acquired immunity in a model host-fungal disease system, amphibian chytridiomycosis. We inoculated larval Pseudacris regilla against the fungal pathogen Batrachochytrium dendrobatidis (Bd) with a Bd metabolite-based prophylactic. Increased prophylactic concentration and exposure duration were associated with significant increases in proportions of putatively Bd-inhibitory host-associated bacterial taxa, indicating a protective prophylactic-induced shift towards microbiome members that are antagonistic to Bd. Our findings are in accordance with the adaptive microbiome hypothesis, where exposure to a pathogen alters the microbiome to better cope with subsequent pathogen encounters. Our study advances research on the temporal dynamics of microbiome memory and the role of prophylaxis-induced shifts in microbiomes contributing to prophylaxis effectiveness. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Samantha A. Siomko
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sasha E. Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - K. M. Barnett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Wesley J. Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Taegan A. McMahon
- Department of Biology, Connecticut College, New London, CT 06320, USA
| | - C. Guilherme Becker
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Jones KR, Hughey MC, Belden LK. Colonization order of bacterial isolates on treefrog embryos impacts microbiome structure in tadpoles. Proc Biol Sci 2023; 290:20230308. [PMID: 36946107 PMCID: PMC10031419 DOI: 10.1098/rspb.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Priority effects, or impacts of colonization order, may have lasting influence on ecological community composition. The embryonic microbiome is subject to stochasticity in colonization order of bacteria. Stochasticity may be especially impactful for embryos developing in bacteria-rich environments, such as the embryos of many amphibians. To determine if priority effects experienced as embryos impacted bacterial community composition in newly hatched tadpoles, we selectively inoculated the embryos of laboratory-raised hourglass treefrogs, Dendropsophus ebraccatus, with bacteria initially isolated from the skin of wild D. ebraccatus adults over 2 days. First, embryos were inoculated with two bacteria in alternating sequences. Next, we evaluated the outcomes of priority effects in an in vitro co-culture assay absent of host factors. We then performed a second embryo experiment, inoculating embryos with one of three bacteria on the first day and a community of five target bacteria on the second. Through 16S rRNA gene amplicon sequencing, we observed relative abundance shifts in tadpole bacteria communities due to priority effects. Our results suggest that the initial bacterial source pools of embryos shape bacterial communities at later life stages; however, the magnitude of those changes is dependent on the host environment and the identity of bacterial colonists.
Collapse
Affiliation(s)
- Korin Rex Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Myra C. Hughey
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| |
Collapse
|
12
|
Cevallos MA, Basanta MD, Bello-López E, Escobedo-Muñoz AS, González-Serrano FM, Nemec A, Romero-Contreras YJ, Serrano M, Rebollar EA. Genomic characterization of antifungal Acinetobacter bacteria isolated from the skin of the frogs Agalychnis callidryas and Craugastor fitzingeri. FEMS Microbiol Ecol 2022; 98:6775075. [PMID: 36288213 DOI: 10.1093/femsec/fiac126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023] Open
Abstract
Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.
Collapse
Affiliation(s)
- M A Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M D Basanta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México.,Department of Biology, University of Nevada Reno, 1664 N Virgina St, Reno, NV 89557, United States
| | - E Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A S Escobedo-Muñoz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A Nemec
- Laboratory of Bacterial Genetics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, 100 00 Prague 10, Czechia.,Department of Medical Microbiology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czechia
| | - Y J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| |
Collapse
|
13
|
Zhu W, Zhao C, Feng J, Chang J, Zhu W, Chang L, Liu J, Xie F, Li C, Jiang J, Zhao T. Effects of Habitat River Microbiome on the Symbiotic Microbiota and Multi-Organ Gene Expression of Captive-Bred Chinese Giant Salamander. Front Microbiol 2022; 13:884880. [PMID: 35770173 PMCID: PMC9234736 DOI: 10.3389/fmicb.2022.884880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The reintroduction of captive-bred individuals is a primary approach to rebuild the wild populations of the Chinese giant salamander (Andrias davidianus), the largest extant amphibian species. However, the complexity of the wild habitat (e.g., diverse microorganisms and potential pathogens) potentially threatens the survival of reintroduced individuals. In this study, fresh (i.e., containing environmental microbiota) or sterilized river sediments (120°C sterilized treatment) were added to the artificial habitats to treat the larvae of the Chinese giant salamander (control group—Cnt: 20 individuals, treatment group 1 with fresh river sediments—T1: 20 individuals, and treatment group 2 with sterilized river sediments—T2: 20 individuals). The main objective of this study was to test whether this procedure could provoke their wild adaptability from the perspective of commensal microbiotas (skin, oral cavity, stomach, and gut) and larvae transcriptomes (skin, spleen, liver, and brain). Our results indicated that the presence of habitat sediments (whether fresh or sterilized) reshaped the oral bacterial community composition. Specifically, Firmicutes decreased dramatically from ~70% to ~20–25% (mainly contributed by Lactobacillaceae), while Proteobacteria increased from ~6% to ~31–36% (mainly contributed by Gammaproteobacteria). Consequently, the proportion of antifungal operational taxonomic units (OTUs) increased, and the function of oral microbiota likely shifted from growth-promoting to pathogen defense. Interestingly, the skin microbiota, rather than the colonization of habitat microbiota, was the major source of the pre-treated oral microbiota. From the host perspective, the transcriptomes of all four organs were changed for treated individuals. Specifically, the proteolysis and apoptosis in the skin were promoted, and the transcription of immune genes was activated in the skin, spleen, and liver. Importantly, more robust immune activation was detected in individuals treated with sterilized sediments. These results suggested that the pathogen defense of captive-bred individuals was improved after being treated, which may benefit their survival in the wild. Taken together, our results suggested that the pre-exposure of captive-bred Chinese giant salamander individuals to habitat sediments could be considered and added into the reintroduction processes to help them better adapt to wild conditions.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Chunlin Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianyi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenbo Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Liming Chang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiongyu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Feng Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Cheng Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jianping Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- *Correspondence: Jianping Jiang
| | - Tian Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Tian Zhao
| |
Collapse
|
14
|
Martins RA, Greenspan SE, Medina D, Buttimer S, Marshall VM, Neely WJ, Siomko S, Lyra ML, Haddad CFB, São-Pedro V, Becker CG. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim Microbiome 2022; 4:40. [PMID: 35672870 PMCID: PMC9172097 DOI: 10.1186/s42523-022-00188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species.
Results
Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization.
Conclusions
Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.
Collapse
|
15
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
16
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
17
|
Buttimer S, Hernández-Gómez O, Rosenblum EB. Skin bacterial metacommunities of San Francisco Bay Area salamanders are structured by host genus and habitat quality. FEMS Microbiol Ecol 2021; 97:6464136. [PMID: 34918086 DOI: 10.1093/femsec/fiab162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Host-associated microbial communities can influence physiological processes of macroorganisms, including contributing to infectious disease resistance. For instance, some bacteria that live on amphibian skin produce antifungal compounds that inhibit two lethal fungal pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Therefore, differences in microbiome composition among host species or populations within a species can contribute to variation in susceptibility to Bd/Bsal. This study applies 16S rRNA sequencing to characterize the skin bacterial microbiomes of three widespread terrestrial salamander genera native to the western United States. Using a metacommunity structure analysis, we identified dispersal barriers for these influential bacteria between salamander families and localities. We also analyzed the effects of habitat characteristics such as percent natural cover and temperature seasonality on the microbiome. We found that certain environmental variables may influence the skin microbial communities of some salamander genera more strongly than others. Each salamander family had a somewhat distinct community of putative anti-Bd skin bacteria, suggesting that salamanders may select for a functional assembly of cutaneous symbionts that could differ in its ability to protect these amphibians from disease. Our observations raise the need to consider host identity and environmental heterogeneity during the selection of probiotics to treat wildlife diseases.
Collapse
Affiliation(s)
- Shannon Buttimer
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,Department of Biological Sciences - The University of Alabama, Tuscaloosa, AL, U.S.A
| | - Obed Hernández-Gómez
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,School of Health and Natural Sciences - Dominican University of California, San Rafael, CA, U.S.A
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A
| |
Collapse
|
18
|
Zhu W, Shi X, Qi Y, Wang X, Chang L, Zhao C, Zhu L, Jiang J. Commensal microbiota and host metabolic divergence are associated with the adaptation of Diploderma vela to spatially heterogeneous environments. Integr Zool 2021; 17:346-365. [PMID: 34520122 DOI: 10.1111/1749-4877.12590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023]
Abstract
Heterogeneous environment adaptation is critical to understand the species evolution and response to climate change. However, how narrow-range species adapt to micro-geographic heterogeneity has been overlooked, and there is a lack of insights from metabolism and commensal microbiota. Here, we studied the environmental adaptation for 3 geographic populations (>40 km apart) of Diploderma vela, a lizard endemic to dry-hot valleys of the Hengduan Mountain Region. The climatic boundary caused a cooler, droughtier, and barren environment for northernmost population (RM) than the middle (QZK) and southernmost populations (FS). Correspondingly, significant divergences in liver and muscle metabolism and commensal microbiota were detected between RM and QZK or FS individuals, but not between QZK and FS individuals. Phospholipid composition, coenzyme level (i.e. pyridoxal and NAD+ ), and cholesterol metabolism (e.g. androgen and estriol synthesis) constituted the major metabolic difference between RM and QZK/FS groups. FS and QZK individuals kept abundant Proteobacteria and antifungal strains, while RM individuals maintained more Firmicutes and Bacteroidota. Strong associations existed between varied host metabolite and gut microbes. How were these interpopulation variations associated to the environment adaptation were discussed. These results provided some novel insights into the environmental adaptation and implicated the consequence of climate change on narrow-range species.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Xiudong Shi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.,Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Chengdu, China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.,Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Chengdu, China
| |
Collapse
|
19
|
Medina D, Greenspan SE, Carvalho T, Becker CG, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol 2021; 97:6134751. [PMID: 33580951 DOI: 10.1093/femsec/fiab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.
Collapse
Affiliation(s)
- Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil.,Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
The Fungicide Chlorothalonil Changes the Amphibian Skin Microbiome: A Potential Factor Disrupting a Host Disease-Protective Trait. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin microbiome is an important part of amphibian immune defenses and protects against pathogens such as the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis. Alteration of the microbiome by anthropogenic factors, like pesticides, can impact this protective trait, disrupting its functionality. Chlorothalonil is a widely used fungicide that has been recognized as having an impact on amphibians, but so far, no studies have investigated its effects on amphibian microbial communities. In the present study, we used the amphibian Lithobates vibicarius from the montane forest of Costa Rica, which now appears to persist despite ongoing Bd-exposure, as an experimental model organism. We used 16S rRNA amplicon sequencing to investigate the effect of chlorothalonil on tadpoles’ skin microbiome. We found that exposure to chlorothalonil changes bacterial community composition, with more significant changes at a higher concentration. We also found that a larger number of bacteria were reduced on tadpoles’ skin when exposed to the higher concentration of chlorothalonil. We detected four presumed Bd-inhibitory bacteria being suppressed on tadpoles exposed to the fungicide. Our results suggest that exposure to a widely used fungicide could be impacting host-associated bacterial communities, potentially disrupting an amphibian protective trait against pathogens.
Collapse
|
21
|
Abarca JG, Whitfield SM, Zuniga-Chaves I, Alvarado G, Kerby J, Murillo-Cruz C, Pinto-Tomás AA. Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica. MICROBIOLOGY-SGM 2021; 167. [PMID: 33529150 DOI: 10.1099/mic.0.001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amphibians have declined around the world in recent years, in parallel with the emergence of an epidermal disease called chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has been associated with mass mortality in amphibians worldwide, including in Costa Rica, and Bd is considered an important contributor to the disappearance of this group of vertebrates. While many species are susceptible to the disease, others show tolerance and manage to survive infection with the pathogen. We evaluated the pathogen Bd circulating in Costa Rica and the capacity of amphibian skin bacteria to inhibit the growth of the pathogen in vitro. We isolated and characterized - genetically and morphologically - several Bd isolates from areas with declining populations of amphibians. We determined that the circulating chytrid fungus in Costa Rica belongs to the virulent strain Bd-GPL-2, which has been related to massive amphibian deaths worldwide; however, the isolates obtained showed genetic and morphological variation. Furthermore, we isolated epidermal bacteria from 12 amphibian species of surviving populations, some in danger of extinction, and evaluated their inhibitory activity against the collection of chytrid isolates. Through bioassays we confirmed the presence of chytrid-inhibitory bacterial genera in Costa Rican amphibians. However, we observed that the inhibition varied between different isolates of the same bacterial genus, and each bacterial isolation inhibited fungal isolation differently. In total, 14 bacterial isolates belonging to the genera Stenotrophomonas, Streptomyces, Enterobacter, Pseudomonas and Klebsiella showed inhibitory activity against all Bd isolates. Given the observed variation both in the pathogen and in the bacterial inhibition capacity, it is highly relevant to include local isolates and to consider the origin of the microorganisms when performing in vivo infection tests aimed at developing and implementing mitigation strategies for chytridiomycosis.
Collapse
Affiliation(s)
- Juan G Abarca
- Laboratorio de Recursos Naturales y Vida Silvestre (LARNAVISI), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, Costa Rica
| | - Steven M Whitfield
- Conservation and Research Department, Zoo Miami, St, Miami, FL 33177, USA
| | - Ibrahim Zuniga-Chaves
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Gilbert Alvarado
- Laboratorio de Patología Experimental y Comparada (LAPECOM), Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Jacob Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
22
|
Ikenaga M, Kataoka M, Yin X, Murouchi A, Sakai M. Characterization and Distribution of Agar-degrading Steroidobacter agaridevorans sp. nov., Isolated from Rhizosphere Soils. Microbes Environ 2021; 36:ME20136. [PMID: 33716238 PMCID: PMC7966939 DOI: 10.1264/jsme2.me20136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/30/2021] [Indexed: 11/25/2022] Open
Abstract
The environment of plant rhizosphere soil differs from that of non-rhizosphere soil due to the secretion of mucilage polysaccharides from the roots. This environment is regarded as one of the preferential habitats for agar-degrading bacteria. In a previous study, agar-degrading Steroidobacter agariperforans KA5-BT was isolated from agar-enriched agricultural soil using diffusible metabolites from Rhizobiales bacteria. Based on the hypothesis that similar characteristic bacteria still exist in the rhizosphere, isolation was performed using rhizosphere soils. Agar-degrading SA29-BT and YU21-B were isolated from onion and soybean rhizosphere soils. The 16S rRNA genes of these strains showed ≥98.7% identities with the most closely related strain KA5-BT. However, differences were noted in polysaccharide utilization, and average nucleotide identities were <95-96% against strain KA5-BT, indicating that they are different species from S. agariperforans KA5-BT. To investigate the distribution of bacterial sequences affiliated with novel strains, a primer set was designed and a meta-analysis of the 16S rRNA gene was performed. Sequences were widely distributed in rhizospheres throughout Japan, but varied in plant- and region-dependent manners. Regarding phenotypic characterization, distinguishable features were observed in growth temperatures, pH, and dominant fatty acids. SA29-BT and YU21-B grew at 15-40°C and pH 6.0-12 and contained C16:0 as the dominant cell fatty acid, whereas KA5-BT showed no growth at 40°C and pH 12 and contained a moderate amount of C16:0. Based on these characteristics, SA29-BT (JCM 333368T=KCTC 72223T) and YU21-B (JCM 333367=KCTC 72222) represent novel species in the genus Steroidobacter, for which the name Steroidobacter agaridevorans sp. nov. is proposed.
Collapse
Affiliation(s)
- Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Machi Kataoka
- Faculty of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Xuan Yin
- Faculty of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Aya Murouchi
- Graduate School of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Masao Sakai
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| |
Collapse
|
23
|
Lemieux-Labonté V, Dorville NASY, Willis CKR, Lapointe FJ. Antifungal Potential of the Skin Microbiota of Hibernating Big Brown Bats ( Eptesicus fuscus) Infected With the Causal Agent of White-Nose Syndrome. Front Microbiol 2020; 11:1776. [PMID: 32793178 PMCID: PMC7390961 DOI: 10.3389/fmicb.2020.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (Eptesicus fuscus), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of E. fuscus in the context of Pd has not been done. In January 2017, we captured hibernating E. fuscus, sampled their skin microbiota, and inoculated them with Pd or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) Pd infection would not disrupt the skin microbiota of Pd-resistant E. fuscus; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with Pd. Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of Pd-inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, Pseudomonas and Rhodococcus are known for antifungal potential against Pd and other fungi. Thus, in contrast to hypothesis 1, Pd infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of E. fuscus, suggesting potential associations between the bat skin microbiota and resistance to the Pd infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.
Collapse
Affiliation(s)
| | - Nicole A. S.-Y. Dorville
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K. R. Willis
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
24
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
25
|
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental Factors and Host Microbiomes Shape Host-Pathogen Dynamics. Trends Parasitol 2020; 36:616-633. [PMID: 32402837 DOI: 10.1016/j.pt.2020.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms are increasingly recognized as ecosystem-relevant components because they affect the population dynamics of hosts. Functioning at the interface of the host and pathogen, skin and gut microbiomes are vital components of immunity. Recent work reveals a strong influence of biotic and abiotic environmental factors (including the environmental microbiome) on disease dynamics, yet the importance of the host-host microbiome-pathogen-environment interaction has been poorly reflected in theory. We use amphibians and the disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis to show how interactions between host, host microbiome, pathogen, and the environment all affect disease outcome. Our review provides new perspectives that improve our understanding of disease dynamics and ecology by incorporating environmental factors and microbiomes into disease theory.
Collapse
Affiliation(s)
- Adriana P Bernardo-Cravo
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany; Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Adeline Loyau
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, D-16775, Germany
| |
Collapse
|
26
|
Walker DM, Hill AJ, Albecker MA, McCoy MW, Grisnik M, Romer A, Grajal-Puche A, Camp C, Kelehear C, Wooten J, Rheubert J, Graham SP. Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. MICROBIAL ECOLOGY 2020; 79:985-997. [PMID: 31802185 DOI: 10.1007/s00248-019-01456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.
Collapse
Affiliation(s)
- Donald M Walker
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA.
| | - Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 N. Dixie Ave, Cookeville, TN, 38505, USA
| | - Molly A Albecker
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Matthew Grisnik
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alexander Romer
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alejandro Grajal-Puche
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Carlos Camp
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Crystal Kelehear
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama, Republic of Panama
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| | - Jessica Wooten
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Justin Rheubert
- Department of Natural Sciences, The University of Findlay, 1000 N. Main St, Findlay, OH, 45840, USA
| | - Sean P Graham
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| |
Collapse
|
27
|
Jiménez RR, Alvarado G, Estrella J, Sommer S. Moving Beyond the Host: Unraveling the Skin Microbiome of Endangered Costa Rican Amphibians. Front Microbiol 2019; 10:2060. [PMID: 31572313 PMCID: PMC6751270 DOI: 10.3389/fmicb.2019.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023] Open
Abstract
Some neotropical amphibians, including a few species in Costa Rica, were presumed to be "extinct" after dramatic population declines in the late 1980s but have been rediscovered in isolated populations. Such populations seem to have evolved a resistance/tolerance to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that causes a deadly skin disease and is considered one of the main drivers of worldwide amphibian declines. The skin microbiome is an important component of the host's innate immune system and is associated with Bd-resistance. However, the way that the bacterial diversity of the skin microbiome confers protection against Bd in surviving species remains unclear. We studied variation in the skin microbiome and the prevalence of putatively anti-Bd bacterial taxa in four co-habiting species in the highlands of the Juan Castro Blanco National Park in Costa Rica using 16S rRNA amplicon sequencing. Lithobates vibicarius, Craugastor escoces, and Isthmohyla rivularis have recently been rediscovered, whereas Isthmohyla pseudopuma has suffered population fluctuations but has never disappeared. To investigate the life stage at which the protective skin microbiome is shaped and when shifts occur in the diversity of putatively anti-Bd bacteria, we studied the skin microbiome of tadpoles, juveniles and adults of L. vibicarius. We show that the skin bacterial composition of sympatric species and hosts with distinct Bd-infection statuses differs at the phyla, family, and genus level. We detected 94 amplicon sequence variants (ASVs) with putative anti-Bd activity pertaining to distinct bacterial taxa, e.g., Pseudomonas spp., Acinetobacter johnsonii, and Stenotrophomonas maltophilia. Bd-uninfected L. vibicarius harbored 79% more putatively anti-Bd ASVs than Bd-infected individuals. Although microbiome composition and structure differed across life stages, the diversity of putative anti-Bd bacteria was similar between pre- and post-metamorphic stages of L. vibicarius. Despite low sample size, our results support the idea that the skin microbiome is dynamic and protects against ongoing Bd presence in endangered species persisting after their presumed extinction. Our study serves as a baseline to understand the microbial patterns in species of high conservation value. Identification of microbial signatures linked to variation in disease susceptibility might, therefore, inform mitigation strategies for combating the global decline of amphibians.
Collapse
Affiliation(s)
- Randall R. Jiménez
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Gilbert Alvarado
- Laboratory of Comparative Wildlife Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental and Comparative Pathology (LAPECOM), Biology School, University of Costa Rica, San José, Costa Rica
| | - Josimar Estrella
- Laboratory of Experimental and Comparative Pathology (LAPECOM), Biology School, University of Costa Rica, San José, Costa Rica
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
28
|
Becker CG, Bletz MC, Greenspan SE, Rodriguez D, Lambertini C, Jenkinson TS, Guimarães PR, Assis APA, Geffers R, Jarek M, Toledo LF, Vences M, Haddad CFB. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc Biol Sci 2019; 286:20191114. [PMID: 31409249 DOI: 10.1098/rspb.2019.1114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wildlife disease dynamics are strongly influenced by the structure of host communities and their symbiotic microbiota. Conspicuous amphibian declines associated with the waterborne fungal pathogen Batrachochytrium dendrobatidis (Bd) have been observed in aquatic-breeding frogs globally. However, less attention has been given to cryptic terrestrial-breeding amphibians that have also been declining in tropical regions. By experimentally manipulating multiple tropical amphibian assemblages harbouring natural microbial communities, we tested whether Bd spillover from naturally infected aquatic-breeding frogs could lead to Bd amplification and mortality in our focal terrestrial-breeding host: the pumpkin toadlet Brachycephalus pitanga. We also tested whether the strength of spillover could vary depending on skin bacterial transmission within host assemblages. Terrestrial-breeding toadlets acquired lethal spillover infections from neighbouring aquatic hosts and experienced dramatic but generally non-protective shifts in skin bacterial composition primarily attributable to their Bd infections. By contrast, aquatic-breeding amphibians maintained mild Bd infections and higher survival, with shifts in bacterial microbiomes that were unrelated to Bd infections. Our results indicate that Bd spillover from even mildly infected aquatic-breeding hosts may lead to dysbiosis and mortality in terrestrial-breeding species, underscoring the need to further investigate recent population declines of terrestrial-breeding amphibians in the tropics.
Collapse
Affiliation(s)
- C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35847, USA
| | - Molly C Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35847, USA
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Carolina Lambertini
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP 13083-865, Brazil
| | - Thomas S Jenkinson
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paulo R Guimarães
- Departamento de Ecologia, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Ana Paula A Assis
- Departamento de Ecologia, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, LS 38124, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, LS 38124, Germany
| | - Luís Felipe Toledo
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP 13083-865, Brazil
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Braunschweig University of Technology, Braunschweig, LS 38106, Germany
| | - Célio F B Haddad
- Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|