1
|
Sun F, Yang H, Zhang X, Tan F, Wang G, Shi Q. Metagenomic and metabolomic analysis of the effect of bleaching on unsaturated fatty acid synthesis pathways in coral symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169487. [PMID: 38142991 DOI: 10.1016/j.scitotenv.2023.169487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Unsaturated fatty acids (UFAs) are known to play a vital role in regulating stress resistance and metabolism in corals. Nevertheless, a comprehensive understanding of the microbial and functional composition of the UFA synthesis pathway (UFASP) remains lacking. This study employed metagenome and metabolome to investigate the microbial community, function, and metabolic response of UFASP in reef-building corals inhabiting the Nansha Islands. Our findings revealed significantly higher diversity for the UFASP microbe in bleached corals compared to unbleached corals. Furthermore, principal coordinates analysis (PCoA) and taxonomy assessments exhibited notable distinctions in the microbe between the two coral states. Notably, the dominant microorganisms involved in UFASP were Dinophyceae, Sordariomycetes, Ulvophyceae, and Chlorophyceae. Bleaching resulted in a considerable increase in fungal abundance within coral symbionts. A total of 12 KEGG Orthology (KO) were identified in UFASP, with PCoA analysis indicating significant differences in their abundance between bleached and unbleached corals. UFASP's beta-Oxidation module exhibited reduced abundance in bleached corals. Contribution analysis highlighted the participation of Symbiodiniaceae, Ascomycota, Chlorophyta, Proteobacteria, and Actinobacteria in UFASP. Notably, Symbiodiniaceae and Ascomycota were the major contributors to two UFASP modules, with the latter displaying greater involvement in bleached corals. Furthermore, significant differences in n3 and n6-family metabolites were observed between bleached and unbleached corals. Notably, bleaching induced a reduction in metabolites of Symbiodiniaceae, while an increase in the multiple UFAs abundance was detected in bleached corals. These findings suggest that bleaching-induced alterations coral symbionts composition directly impact the functionality of UFASP, ultimately affecting the corals' capacity to adapt to stress.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Fei Tan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Guan Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
2
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Mashini A, Oakley CA, Peng L, Grossman AR, Weis VM, Davy SK. Proteomes of native and non-native symbionts reveal responses underpinning host-symbiont specificity in the cnidarian-dinoflagellate symbiosis. THE ISME JOURNAL 2024; 18:wrae122. [PMID: 38988135 PMCID: PMC11473927 DOI: 10.1093/ismejo/wrae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterized proteomic changes in the native symbiont Breviolum minutum during colonization of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and Breviolum minutum increased the accumulation of symbiont proteins associated with the acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding symbiont analysis to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners (i.e. native versus non-native symbionts) may impact the fitness of the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Amir Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R Grossman
- Biosphere Sciences and Engineering, The Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Jacobovitz MR, Hambleton EA, Guse A. Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach. Annu Rev Genet 2023; 57:411-434. [PMID: 37722685 DOI: 10.1146/annurev-genet-072320-125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elizabeth A Hambleton
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria;
| | - Annika Guse
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
5
|
Chan WY, Rudd D, van Oppen MJ. Spatial metabolomics for symbiotic marine invertebrates. Life Sci Alliance 2023; 6:e202301900. [PMID: 37202120 PMCID: PMC10200813 DOI: 10.26508/lsa.202301900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a soft- and hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
- Melbourne Centre for Nanofabrication, Clayton, Australia
| | - Madeleine Jh van Oppen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
6
|
Wuerz M, Lawson CA, Oakley CA, Possell M, Wilkinson SP, Grossman AR, Weis VM, Suggett DJ, Davy SK. Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis. BIOLOGY 2023; 12:1014. [PMID: 37508443 PMCID: PMC10376011 DOI: 10.3390/biology12071014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.
Collapse
Affiliation(s)
- Maggie Wuerz
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Arthur R. Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
7
|
Sun F, Yang H, Zhang X, Shi Q. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160019. [PMID: 36356778 DOI: 10.1016/j.scitotenv.2022.160019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
8
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
9
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
10
|
Mayfield AB. Multi-macromolecular Extraction from Endosymbiotic Anthozoans. Methods Mol Biol 2023; 2625:17-56. [PMID: 36653630 DOI: 10.1007/978-1-0716-2966-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Obligately symbiotic associations between reef-building corals (anthozoan cnidarians) and photosynthetically active dinoflagellates of the family Symbiodiniaceae comprise the functional basis of all coral reef ecosystems. Given the existential threats of global climate change toward these thermo-sensitive entities, there is an urgent need to better understand the physiological implications of changes in the abiotic milieu of scleractinian corals and their mutualistic algal endosymbionts. Although initially slow to leverage the immense breakthroughs in molecular biotechnology that have benefited humankind, coral biologists are making up for lost time in exploiting an array of ever-advancing molecular tools for answering key questions pertaining to the survival of corals in an ever-changing world. In order to comprehensively characterize the multi-omic landscape of the coral holobiont-the cnidarian host, its intracellular dinoflagellates, and a plethora of other microbial constituents-I introduce a series of protocols herein that yield large quantities of high-quality RNA, DNA, protein, lipids, and polar metabolites from a diverse array of reef corals and endosymbiotic sea anemones. Although numerous published articles in the invertebrate zoology field feature protocols that lead to sufficiently high yield of intact host coral macromolecules, through using the approach outlined herein one may simultaneously acquire a rich, multi-compartmental biochemical pool that truly reflects the complex and dynamic nature of these animal-plant chimeras.
Collapse
|
11
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
15
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates R, Toonen RJ. Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne'ohe Bay. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212042. [PMID: 36117869 PMCID: PMC9459668 DOI: 10.1098/rsos.212042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/12/2022] [Indexed: 06/04/2023]
Abstract
The survival of most reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef-building coral species in Hawai'i, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāne'ohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution and the potential responses of corals to future environmental change.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI 96816, USA
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Ruth Gates
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| |
Collapse
|
16
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
17
|
Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis. Appl Environ Microbiol 2022; 88:e0041222. [PMID: 35678605 DOI: 10.1128/aem.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.
Collapse
|
18
|
Tsang Min Ching SJ, Chan WY, Perez-Gonzalez A, Hillyer KE, Buerger P, van Oppen MJH. Colonization and metabolite profiles of homologous, heterologous and experimentally evolved algal symbionts in the sea anemone Exaiptasia diaphana. ISME COMMUNICATIONS 2022; 2:30. [PMID: 37938648 PMCID: PMC9723793 DOI: 10.1038/s43705-022-00114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 07/30/2023]
Abstract
The sea anemone, Exaiptasia diaphana, is a model of coral-dinoflagellate (Symbiodiniaceae) symbiosis. However, little is known of its potential to form symbiosis with Cladocopium-a key Indo-Pacific algal symbiont of scleractinian corals, nor the host nutritional consequences of such an association. Aposymbiotic anemones were inoculated with homologous algal symbionts, Breviolum minutum, and seven heterologous strains of Cladocopium C1acro (wild-type and heat-evolved) under ambient conditions. Despite lower initial algal cell density, Cladocopium C1acro-anemeones achieved similar cell densities as B. minutum-anemones by week 77. Wild-type and heat-evolved Cladocopium C1acro showed similar colonization patterns. Targeted LC-MS-based metabolomics revealed that almost all significantly different metabolites in the host and Symbiodiniaceae fractions were due to differences between Cladocopium C1acro and B. minutum, with little difference between heat-evolved and wild-type Cladocopium C1acro at week 9. The algal fraction of Cladocopium C1acro-anemones was enriched in metabolites related to nitrogen storage, while the host fraction of B. minutum-anemones was enriched in sugar-related metabolites. Compared to B. minutum, Cladocopium C1acro is likely slightly less nutritionally beneficial to the host under ambient conditions, but more capable of maintaining its own growth when host nitrogen supply is limited. Our findings demonstrate the value of E. diaphana to study experimentally evolved Cladocopium.
Collapse
Affiliation(s)
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Parkville, VIC, Australia
| | | | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
19
|
Sun Y, Jiang L, Gong S, Diaz-Pulido G, Yuan X, Tong H, Huang L, Zhou G, Zhang Y, Huang H. Changes in physiological performance and protein expression in the larvae of the coral Pocillopora damicornis and their symbionts in response to elevated temperature and acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151251. [PMID: 34728194 DOI: 10.1016/j.scitotenv.2021.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Climate change causes ocean warming and acidification, which threaten coral reef ecosystems. Ocean warming and acidification cause bleaching and mortality, and decrease calcification in adult corals, leading to changes in the composition of coral communities; however, their interactive effects on coral larvae are not comprehensively understood. To examine the underlying molecular mechanisms of larval responses to elevated temperature and pCO2, we examined the physiological performance and protein expression profiles of Pocillopora damicornis at two temperatures (29 and 33 °C) and pCO2 levels (500 and 1000 μatm) for 5 d. Extensive physiological and proteomic changes were observed in coral larvae. The results indicated a significant decrease in net photosynthesis (PNET) and autotrophic capability (PNET/RD) of larvae exposed to elevated temperature but a marked increase in PNET and PNET/RD of larvae exposed to high pCO2 levels. Elevated temperature significantly reduced endosymbiont densities by 70% and photochemical efficiency, indicating that warming impaired host-symbiont symbiosis. Expression of photosynthesis-related proteins, the photosystem (PS) I reaction center subunits IV and XI as well as oxygen-evolving enhancer 1, was downregulated at higher temperatures in symbionts, whereas expression of the PS I iron‑sulfur center protein was increased under high pCO2 conditions. Furthermore, expression of phosphoribulokinase (involved in the Calvin cycle) and phosphoenolpyruvate carboxylase (related to the C4 pathway) was downregulated in symbionts under thermal stress; this finding suggests reduced carbon fixation at high temperatures. The abundance of carbonic anhydrase-associated proteins, which are predicted to exert biochemical roles in dissolved inorganic carbon transport in larvae, was reduced in coral host and symbionts at high temperatures. These results elucidate potential mechanisms underlying the responses of coral larvae exposed to elevated temperature and acidification and suggest an important role of symbionts in the response to warming and acidification.
Collapse
Affiliation(s)
- Youfang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Sanqiang Gong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guillermo Diaz-Pulido
- School of Environment and Science, and Australian Rivers Institute - Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, Nathan Campus, Queensland 4111, Australia
| | - Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Haoya Tong
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya National Marine Ecosystem Research Station; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China.
| |
Collapse
|
20
|
Beepat SS, Davy SK, Oakley CA, Mashini A, Peng L, Bell JJ. Increased cellular detoxification, cytoskeletal activities and protein transport explain physiological stress in a lagoon sponge. J Exp Biol 2021; 224:273478. [PMID: 34661236 DOI: 10.1242/jeb.242820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.
Collapse
Affiliation(s)
- Sandeep S Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Amirhossein Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
21
|
Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora. Sci Rep 2021; 11:19061. [PMID: 34561509 PMCID: PMC8463592 DOI: 10.1038/s41598-021-98548-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Coral reefs across the globe are threatened by warming oceans. The last few years have seen the worst mass coral bleaching events recorded, with more than one quarter of all reefs irreversibly impacted. Considering the widespread devastation, we need to increase our efforts to understanding the physiological and metabolic shifts underlying the breakdown of this important symbiotic ecosystem. Here, we investigated the proteome (PRIDE accession # PXD011668) of both host and symbionts of the reef-building coral Acropora millepora exposed to ambient (~ 28 °C) and elevated temperature (~ 32 °C for 2 days, following a five-day incremental increase) and explored associated biomolecular changes in the symbiont, with the aim of gaining new insights into the mechanisms underpinning the collapse of the coral symbiosis. We identified 1,230 unique proteins (774 host and 456 symbiont) in the control and thermally stressed corals, of which 107 significantly increased and 125 decreased in abundance under elevated temperature relative to the control. Proteins involved in oxidative stress and proteolysis constituted 29% of the host proteins that increased in abundance, with evidence of impairment to endoplasmic reticulum and cytoskeletal regulation proteins. In the symbiont, we detected a decrease in proteins responsible for photosynthesis and energy production (33% of proteins decreased in abundance), yet minimal signs of oxidative stress or proteolysis. Lipid stores increased > twofold despite reduction in photosynthesis, suggesting reduced translocation of carbon to the host. There were significant changes in proteins related to symbiotic state, including proteins linked to nitrogen metabolism in the host and the V-ATPase (-0.6 fold change) known to control symbiosome acidity. These results highlight key differences in host and symbiont proteomic adjustments under elevated temperature and identify two key proteins directly involved in bilateral nutrient exchange as potential indicators of symbiosis breakdown.
Collapse
|
22
|
Tortorelli G, Oakley CA, Davy SK, van Oppen MJH, McFadden GI. Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui. J Eukaryot Microbiol 2021; 69:e12870. [PMID: 34448326 PMCID: PMC9293036 DOI: 10.1111/jeu.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The algal cell wall is an important cellular component that functions in defense, nutrient utilization, signaling, adhesion, and cell–cell recognition—processes important in the cnidarian–dinoflagellate symbiosis. The cell wall of symbiodiniacean dinoflagellates is not well characterized. Here, we present a method to isolate cell walls of Symbiodiniaceae and prepare cell‐wall‐enriched samples for proteomic analysis. Label‐free liquid chromatography–electrospray ionization tandem mass spectrometry was used to explore the surface proteome of two Symbiodiniaceae species from the Great Barrier Reef: Breviolum minutum and Cladocopium goreaui. Transporters, hydrolases, translocases, and proteins involved in cell‐adhesion and protein–protein interactions were identified, but the majority of cell wall proteins had no homologues in public databases. We propose roles for some of these proteins in the cnidarian–dinoflagellate symbiosis. This work provides the first proteomics investigation of cell wall proteins in the Symbiodiniaceae and represents a basis for future explorations of the roles of cell wall proteins in Symbiodiniaceae and other dinoflagellates.
Collapse
Affiliation(s)
- Giada Tortorelli
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
23
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
24
|
Rosset SL, Oakley CA, Ferrier-Pagès C, Suggett DJ, Weis VM, Davy SK. The Molecular Language of the Cnidarian-Dinoflagellate Symbiosis. Trends Microbiol 2020; 29:320-333. [PMID: 33041180 DOI: 10.1016/j.tim.2020.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The cnidarian-dinoflagellate symbiosis is of huge importance as it underpins the success of coral reefs, yet we know very little about how the host cnidarian and its dinoflagellate endosymbionts communicate with each other to form a functionally integrated unit. Here, we review the current knowledge of interpartner molecular signaling in this symbiosis, with an emphasis on lipids, glycans, reactive species, biogenic volatiles, and noncoding RNA. We draw upon evidence of these compounds from recent omics-based studies of cnidarian-dinoflagellate symbiosis and discuss the signaling roles that they play in other, better-studied symbioses. We then consider how improved knowledge of interpartner signaling might be used to develop solutions to the coral reef crisis by, for example, engineering more thermally resistant corals.
Collapse
Affiliation(s)
- Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, PO Box 123, Broadway NSW 2007, Australia
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
25
|
Herrera M, Klein SG, Schmidt‐Roach S, Campana S, Cziesielski MJ, Chen JE, Duarte CM, Aranda M. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. GLOBAL CHANGE BIOLOGY 2020; 26:5539-5553. [PMID: 32627905 PMCID: PMC7539969 DOI: 10.1111/gcb.15263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short- and long-term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.
Collapse
Affiliation(s)
- Marcela Herrera
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Shannon G. Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sebastian Schmidt‐Roach
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sara Campana
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
Faculty of ScienceInstitute for Biodiversity and Ecosystem DynamicsUniversity of Amsterdam1090 GEAmsterdamThe Netherlands
| | - Maha J. Cziesielski
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jit Ern Chen
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
School of Science and TechnologyDepartment of Biological SciencesSunway UniversitySubang JayaSelangorMalaysia
| | - Carlos M. Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
26
|
Mohamed AR, Andrade N, Moya A, Chan CX, Negri AP, Bourne DG, Ying H, Ball EE, Miller DJ. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol Ecol 2020; 29:3921-3937. [PMID: 32853430 DOI: 10.1111/mec.15612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Despite the ecological significance of the mutualistic relationship between Symbiodiniaceae and reef-building corals, the molecular interactions during establishment of this relationship are not well understood. This is particularly true of the transcriptional changes that occur in the symbiont. In the current study, a dual RNA-sequencing approach was used to better understand transcriptional changes on both sides of the coral-symbiont interaction during the colonization of Acropora tenuis by a compatible Symbiodiniaceae strain (Cladocopium goreaui; ITS2 type C1). Comparison of transcript levels of the in hospite symbiont 3, 12, 48 and 72 hr after exposure to those of the same strain in culture revealed that extensive and generalized down-regulation of symbiont gene expression occurred during the infection process. Included in this "symbiosis-derived transcriptional repression" were a range of stress response and immune-related genes. In contrast, a suite of symbiont genes implicated in metabolism was upregulated in the symbiotic state. The coral data support the hypothesis that immune-suppression and arrest of phagosome maturation play important roles during the establishment of compatible symbioses, and additionally imply the involvement of some SCRiP family members in the colonization process. Consistent with previous ecological studies, the transcriptomic data suggest that active translocation of metabolites to the host may begin early in the colonization process, and thus that the mutualistic relationship can be established at the larval stage. This dual RNA-sequencing study provides insights into the transcriptomic remodelling that occurs in C. goreaui during transition to a symbiotic lifestyle and the novel coral genes implicated in symbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, Australia.,Zoology Department, Faculty of Science, Benha University, Benha, Egypt.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, AIMS@JCU, Australian Institute of Marine Science, James Cook University, Townsville, Qld, Australia
| | - Natalia Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Qld, Australia.,Department of Marine Ecosystems and Impacts, James Cook University, Townsville, Qld, Australia
| | - Hua Ying
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Eldon E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
27
|
Cunning R, Baker AC. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol Ecol 2020; 29:2940-2950. [DOI: 10.1111/mec.15526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ross Cunning
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
- Daniel P. Haerther Center for Conservation and Research John G. Shedd Aquarium Chicago IL USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| |
Collapse
|
28
|
Sproles AE, Oakley CA, Krueger T, Grossman AR, Weis VM, Meibom A, Davy SK. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ Microbiol 2020; 22:3741-3753. [PMID: 32592285 DOI: 10.1111/1462-2920.15142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
Hosting different symbiont species can affect inter-partner nutritional fluxes within the cnidarian-dinoflagellate symbiosis. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we measured the spatial incorporation of photosynthetically fixed 13 C and heterotrophically derived 15 N into host and symbiont cells of the model symbiotic cnidarian Aiptasia (Exaiptasia pallida) when colonized with its native symbiont Breviolum minutum or the non-native Durusdinium trenchii. Breviolum minutum exhibited high photosynthetic carbon assimilation per cell and translocation to host tissue throughout symbiosis establishment, whereas D. trenchii assimilated significantly less carbon, but obtained more host nitrogen. These findings suggest that D. trenchii has less potential to provide photosynthetically fixed carbon to the host despite obtaining considerable amounts of heterotrophically derived nitrogen. These sub-cellular events help explain previous observations that demonstrate differential effects of D. trenchii compared to B. minutum on the host transcriptome, proteome, metabolome and host growth and asexual reproduction. Together, these differential effects suggest that the non-native host-symbiont pairing is sub-optimal with respect to the host's nutritional benefits under normal environmental conditions. This contributes to our understanding of the ways in which metabolic integration impacts the benefits of a symbiotic association, and the potential evolution of novel host-symbiont pairings.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,The California Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| |
Collapse
|
29
|
Wall CB, Kaluhiokalani M, Popp BN, Donahue MJ, Gates RD. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME JOURNAL 2020; 14:945-958. [PMID: 31900444 PMCID: PMC7082336 DOI: 10.1038/s41396-019-0570-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022]
Abstract
Reef corals are mixotrophic organisms relying on symbiont-derived photoautotrophy and water column heterotrophy. Coral endosymbionts (Family: Symbiodiniaceae), while typically considered mutualists, display a range of species-specific and environmentally mediated opportunism in their interactions with coral hosts, potentially requiring corals to rely more on heterotrophy to avoid declines in performance. To test the influence of symbiont communities on coral physiology (tissue biomass, symbiont density, photopigmentation) and nutrition (δ13C, δ15N), we sampled Montipora capitata colonies dominated by a specialist symbiont Cladocopium spp. or a putative opportunist Durusdinium glynnii (hereafter, C- or D-colonies) from Kāne‘ohe Bay, Hawai‘i, across gradients in photosynthetically active radiation (PAR) during summer and winter. We report for the first time that isotope values of reef corals are influenced by Symbiodiniaceae communities, indicative of different autotrophic capacities among symbiont species. D-colonies had on average 56% higher symbiont densities, but lower photopigments per symbiont cell and consistently lower δ13C values in host and symbiont tissues; this pattern in isotope values is consistent with lower symbiont carbon assimilation and translocation to the host. Neither C- nor D-colonies showed signs of greater heterotrophy or nutritional plasticity; instead changes in δ13C values were driven by PAR availability and photoacclimation attributes that differed between symbiont communities. Together, these results reveal Symbiodiniaceae functional diversity produces distinct holobionts with different capacities for autotrophic nutrition, and energy tradeoffs from associating with opportunist symbionts are not met with increased heterotrophy.
Collapse
Affiliation(s)
- Christopher B Wall
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI, 96744, USA. .,Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Mario Kaluhiokalani
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI, 96744, USA
| | - Brian N Popp
- Department of Earth Sciences, University of Hawai'i at Mānoa, 1680 East-West Rd, POST 701, Honolulu, HI, 96822, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI, 96744, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
30
|
Maruyama S, Kim E. Evolution of Photosynthetic Eukaryotes; Current Opinion, Perplexity, and a New Perspective. Results Probl Cell Differ 2020; 69:337-351. [PMID: 33263878 DOI: 10.1007/978-3-030-51849-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The evolution of eukaryotic photosynthesis marked a major transition for life on Earth, profoundly impacting the atmosphere of the Earth and evolutionary trajectory of an array of life forms. There are about ten lineages of photosynthetic eukaryotes, including Chloroplastida, Rhodophyta, and Cryptophyta. Mechanistically, eukaryotic photosynthesis arose via a symbiotic merger between a host eukaryote and either a cyanobacterial or eukaryotic photosymbiont. There are, however, many aspects of this major evolutionary transition that remain unsettled. The field, so far, has been dominated by proposals formulated following the principle of parsimony, such as the Archaeplastida hypothesis, in which a taxonomic lineage is often conceptually recognized as an individual cell (or a distinct entity). Such an assumption could lead to confusion or unrealistic interpretation of discordant genomic and phenotypic data. Here, we propose that the free-living ancestors to the plastids may have originated from a diversified lineage of cyanobacteria that were prone to symbioses, akin to some modern-day algae such as the Symbiodiniaceae dinoflagellates and Chlorella-related algae that associate with a number of unrelated host eukaryotes. This scenario, which assumes the plurality of ancestral form, better explains relatively minor but important differences that are observed in the genomes of modern-day eukaryotic algal species. Such a non-typological (or population-aware) way of thinking seems to better-model empirical data, such as discordant phylogenies between plastid and host eukaryote genes.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Eunsoo Kim
- Division of Invertebrate Zoology & Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
31
|
Simona F, Zhang H, Voolstra CR. Evidence for a role of protein phosphorylation in the maintenance of the cnidarian-algal symbiosis. Mol Ecol 2019; 28:5373-5386. [PMID: 31693769 PMCID: PMC6972648 DOI: 10.1111/mec.15298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian–algal association. Here we investigated phosphorylation‐mediated protein signalling as a mechanism of regulation of the cnidarian–algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry‐based phosphoproteomics using data‐independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont‐free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of “protein digestion and absorption,” “carbohydrate metabolism,” and “protein folding, sorting and degradation,” and highlighted differential phosphorylation of the “phospholipase D signalling pathway” and “protein processing in the endoplasmic reticulum.” Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome‐associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian–algal symbiosis. This is the first phosphoproteomic study of a cnidarian–algal symbiotic association as well as the first application of quantification by data‐independent acquisition in the coral field.
Collapse
Affiliation(s)
- Fabia Simona
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
32
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|