1
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Schmitz DA, Wechsler T, Li HB, Menze BH, Kümmerli R. A new protocol for multispecies bacterial infections in zebrafish and their monitoring through automated image analysis. PLoS One 2024; 19:e0304827. [PMID: 39116043 PMCID: PMC11309447 DOI: 10.1371/journal.pone.0304827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
The zebrafish Danio rerio has become a popular model host to explore disease pathology caused by infectious agents. A main advantage is its transparency at an early age, which enables live imaging of infection dynamics. While multispecies infections are common in patients, the zebrafish model is rarely used to study them, although the model would be ideal for investigating pathogen-pathogen and pathogen-host interactions. This may be due to the absence of an established multispecies infection protocol for a defined organ and the lack of suitable image analysis pipelines for automated image processing. To address these issues, we developed a protocol for establishing and tracking single and multispecies bacterial infections in the inner ear structure (otic vesicle) of the zebrafish by imaging. Subsequently, we generated an image analysis pipeline that involved deep learning for the automated segmentation of the otic vesicle, and scripts for quantifying pathogen frequencies through fluorescence intensity measures. We used Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, three of the difficult-to-treat ESKAPE pathogens, to show that our infection protocol and image analysis pipeline work both for single pathogens and pairwise pathogen combinations. Thus, our protocols provide a comprehensive toolbox for studying single and multispecies infections in real-time in zebrafish.
Collapse
Affiliation(s)
- Désirée A. Schmitz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Hongwei Bran Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bjoern H. Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mridha S, Wechsler T, Kümmerli R. Space and genealogy determine inter-individual differences in siderophore gene expression in bacterial colonies. Cell Rep 2024; 43:114106. [PMID: 38625795 DOI: 10.1016/j.celrep.2024.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.
Collapse
Affiliation(s)
- Subham Mridha
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
4
|
Poirier KM, Luallen RJ, Rivera DE. RNA fluorescence in situ hybridization (FISH) as a method to visualize bacterial colonization in the C. elegans gut. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001044. [PMID: 38481555 PMCID: PMC10935869 DOI: 10.17912/micropub.biology.001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Caenorhabditis elegans is an excellent model to study host-microbe interactions as it is easy to visualize bacterial presence in their intestine. However, previous studies have shown that utilizing transgenic, fluorescent protein-expressing bacteria is not a reliable method to distinguish living bacteria from dead bacteria in the lumen of C. elegans . In this study, we compared methods for visualizing bacterial presence within the C. elegans intestine and found that RNA f luorescent i n s itu h ybridization (RNA FISH) could distinguish the difference between intact and dead bacteria. Thus, we propose RNA FISH as the preferred method to visualize live bacterial presence in the intestines of C. elegans prior to fixation.
Collapse
Affiliation(s)
- Kayla M Poirier
- Department of Biology, San Diego State University, San Diego, California, United States
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States
| | - Dalaena E Rivera
- Department of Biology, San Diego State University, San Diego, California, United States
| |
Collapse
|
5
|
Pike VL, Stevens EJ, Griffin AS, King KC. Within- and between-host dynamics of producer and non-producer pathogens. Parasitology 2023; 150:805-812. [PMID: 37394480 PMCID: PMC10478067 DOI: 10.1017/s0031182023000586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023]
Abstract
For infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.
Collapse
Affiliation(s)
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 2023; 107:1019-1038. [PMID: 36633626 DOI: 10.1007/s00253-022-12347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sonu Mehta
- Anthem Biosciences Private Limited, Bommasandra, Bangalore, Karnataka, 56009, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
7
|
Satishkumar N, Lai LY, Mukkayyan N, Vogel BE, Chatterjee SS. A Nonclassical Mechanism of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus and Its Effect on Virulence. Microbiol Spectr 2022; 10:e0228422. [PMID: 36314912 PMCID: PMC9769611 DOI: 10.1128/spectrum.02284-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a group of pathogenic bacteria that are infamously resistant to β-lactam antibiotics, a property attributed to the mecA gene. Recent studies have reported that mutations associated with the promoter region of pbp4 demonstrated high levels of β-lactam resistance, suggesting the role of PBP4 as an important non-mecA mediator of β-lactam resistance. The pbp4-promoter-associated mutations have been detected in strains with or without mecA. Our previous studies that were carried out in strains devoid of mecA described that pbp4-promoter-associated mutations lead to PBP4 overexpression and β-lactam resistance. In this study, by introducing various pbp4-promoter-associated mutations in the genome of a MRSA strain, we demonstrate that PBP4 overexpression can supplement mecA-associated resistance in S. aureus and can lead to increased β-lactam resistance. The promoter and regulatory region of pbp4 is shared with a divergently transcribed gene, abcA, which encodes a multidrug exporter. We demonstrate that the promoter mutations caused an upregulation of pbp4 and downregulation of abcA, confirming that the resistant phenotype is associated with PBP4 overexpression. PBP4 has also been associated with staphylococcal pathogenesis, however, its exact role remains unclear. Using a Caenorhabditis elegans model, we demonstrate that strains having increased PBP4 expression are less virulent than wild-type strains, suggesting that β-lactam resistance mediated via PBP4 likely comes at the cost of virulence. IMPORTANCE Our study demonstrates the ability of PBP4 to be an important mediator of β-lactam resistance in not only methicillin-susceptible Staphylococcus aureus (MSSA) background strains as previously demonstrated but also in MRSA strains. When present together, PBP2a and PBP4 overexpression can produce increased levels of β-lactam resistance, causing complications in treatment. Thus, this study suggests the importance of monitoring PBP4-associated resistance in clinical settings, as well as understanding the mechanistic basis of associated resistance, so that treatments targeting PBP4 may be developed. This study also demonstrates that S. aureus strains with increased PBP4 expression are less pathogenic, providing important hints about the role of PBP4 in S. aureus resistance and pathogenesis.
Collapse
Affiliation(s)
- Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Li-Yin Lai
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Nagaraja Mukkayyan
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Bruce E. Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Som S. Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| |
Collapse
|
8
|
Collective decision-making in Pseudomonas aeruginosa involves transient segregation of quorum-sensing activities across cells. Curr Biol 2022; 32:5250-5261.e6. [PMID: 36417904 DOI: 10.1016/j.cub.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
A hallmark of bacterial sociality is that groups can coordinate cooperative actions through a cell-to-cell communication process called quorum sensing (QS). QS regulates key bacterial phenotypes such as virulence in infections and digestion of extracellular compounds in the environment. Although QS responses are typically studied as group-level phenotypes, it is unclear whether individuals coordinate their actions at the single-cell level or whether group phenotypes simply reflect the sum of their noisy members. Here, we studied the behavior of Pseudomonas aeruginosa individuals by tracking their temporal commitments to the two intertwined Las and Rhl-QS systems, from low to high population density. Using chromosomally integrated fluorescent gene reporters, we found that QS gene expression (signal, receptor, and cooperative exoproduct) was noisy with heterogeneity peaking during the build-up phase of QS. Moreover, we observed the formation of discrete subgroups of cells that transiently segregate into two gene expression states: low Las-receptor expressers that instantly activate exoproduct production and high Las-receptor expressers with delayed exoproduct production. Later, gene expression activities converged with all cells fully committing to QS. We developed general mathematical models to show that gene expression segregation can mechanistically be spurred by molecular resource limitations during the initiation phase of regulatory cascades such as QS. Moreover, our models indicate that gene expression segregation across cells can operate as a built-in brake enabling a temporary bet-hedging strategy in unpredictable environments. Altogether, our work reveals that studying the behavior of bacterial individuals is key to understanding emergent collective actions at the group level.
Collapse
|
9
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
10
|
Mridha S, Kümmerli R. Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol 2022; 5:545. [PMID: 35668142 PMCID: PMC9170778 DOI: 10.1038/s42003-022-03493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThere has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individual cells of the bacterium Pseudomonas aeruginosa into two public goods, the siderophores pyochelin and pyoverdine. Using gene expression as a proxy for investment, we initially observe no coordination but high heterogeneity and bimodality in siderophore investment across cells. With increasing cell density, gene expression becomes more homogenized across cells, accompanied by a moderate shift from pyochelin to pyoverdine expression. We find positive associations in the expression of pyochelin and pyoverdine genes across cells, with cell-to-cell variation correlating with cellular metabolic states. Our work suggests that siderophore-mediated signalling aligns behaviour of individuals over time and spurs a coordinated three-phase siderophore investment cycle.
Collapse
|
11
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
12
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
13
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
14
|
Figueiredo ART, Özkaya Ö, Kümmerli R, Kramer J. Siderophores drive invasion dynamics in bacterial communities through their dual role as public good versus public bad. Ecol Lett 2021; 25:138-150. [PMID: 34753204 PMCID: PMC9299690 DOI: 10.1111/ele.13912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron‐scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores can be ‘public goods’ by delivering iron to individuals possessing matching receptors; but they can also be ‘public bads’ by withholding iron from competitors lacking these receptors. Accordingly, siderophores should either promote or impede invasion, depending on their effects on invader and resident growth. Using supernatant feeding and invasion assays, we show that invasion success indeed increased when the invader could use its siderophores to inhibit (public bad) rather than stimulate (public good) resident growth. Conversely, invasion success decreased the more the invader was inhibited by the residents’ siderophores. Our findings identify siderophores as a major driver of invasion dynamics in bacterial communities under iron‐limited conditions.
Collapse
Affiliation(s)
- Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Özhan Özkaya
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Xiao Y, Wang P, Zhu X, Xie Z. Pseudomonas donghuensis HYS gtrA/ B/ II Gene Cluster Contributes to Its Pathogenicity toward Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms221910741. [PMID: 34639082 PMCID: PMC8509367 DOI: 10.3390/ijms221910741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.
Collapse
|
16
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
17
|
González J, Salvador M, Özkaya Ö, Spick M, Reid K, Costa C, Bailey MJ, Avignone Rossa C, Kümmerli R, Jiménez JI. Loss of a pyoverdine secondary receptor in Pseudomonas aeruginosa results in a fitter strain suitable for population invasion. ISME JOURNAL 2020; 15:1330-1343. [PMID: 33323977 DOI: 10.1038/s41396-020-00853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited by cheaters that do not produce these goods. Cheater invasion has been proposed as a 'Trojan horse' approach to infiltrate pathogen populations with strains deploying built-in weaknesses (e.g., sensitiveness to antibiotics). However, previous attempts have been often unsuccessful because population invasion by cheaters was prevented by various mechanisms including the presence of spatial structure (e.g., growth in biofilms), which limits the diffusion and exploitation of public goods. Here we followed an alternative approach and examined whether the manipulation of public good uptake and not its production could result in potential 'Trojan horses' suitable for population invasion. We focused on the siderophore pyoverdine produced by the human pathogen Pseudomonas aeruginosa MPAO1 and manipulated its uptake by deleting and/or overexpressing the pyoverdine primary (FpvA) and secondary (FpvB) receptors. We found that receptor synthesis feeds back on pyoverdine production and uptake rates, which led to strains with altered pyoverdine-associated costs and benefits. Moreover, we found that the receptor FpvB was advantageous under iron-limited conditions but revealed hidden costs in the presence of an antibiotic stressor (gentamicin). As a consequence, FpvB mutants became the fittest strain under gentamicin exposure, displacing the wildtype in liquid cultures, and in biofilms and during infections of the wax moth larvae Galleria mellonella, which both represent structured environments. Our findings reveal that an evolutionary trade-off associated with the costs and benefits of a versatile pyoverdine uptake strategy can be harnessed for devising a Trojan-horse candidate for medical interventions.
Collapse
Affiliation(s)
- Jaime González
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Özhan Özkaya
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matt Spick
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kate Reid
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Catia Costa
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Melanie J Bailey
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Rolf Kümmerli
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK. .,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Sathe S, Kümmerli R. Antagonistic interactions subdue inter-species green-beard cooperation in bacteria. J Evol Biol 2020; 33:1245-1255. [PMID: 32946129 DOI: 10.1111/jeb.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cooperation can be favoured through the green-beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green-beard mechanism should favour cooperation even when interacting partners are totally unrelated at the genome level. Here, we explore such an extreme green-beard scenario between two unrelated bacterial species-Pseudomonas aeruginosa and Burkholderia cenocepacia, which share a cooperative locus encoding the public good pyochelin (an iron-scavenging siderophore) and its cognate receptor (green beard) required for iron-pyochelin uptake. We show that pyochelin, when provided in cell-free supernatants, can be mutually exchanged between species and provide fitness benefits under iron limitation. However, in co-culture we observed that these cooperative benefits vanished and communities were dominated by P. aeruginosa, regardless of strain background and species starting frequencies. Our results further suggest that P. aeruginosa engages in interference competition to suppress B. cenocepacia, indicating that inter-species conflict arising from dissimilarities at the genome level overrule the aligned cooperative interests at the pyochelin locus. Thus, green-beard cooperation is subdued by competition, indicating that interspecific siderophore cooperation is difficult to evolve and to be maintained.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Strain Background, Species Frequency, and Environmental Conditions Are Important in Determining Pseudomonas aeruginosa and Staphylococcus aureus Population Dynamics and Species Coexistence. Appl Environ Microbiol 2020; 86:AEM.00962-20. [PMID: 32651205 DOI: 10.1128/aem.00962-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial communities in the environment and in infections are typically diverse, yet we know little about the factors that determine interspecies interactions. Here, we apply concepts from ecological theory to understand how biotic and abiotic factors affect interaction patterns between the two opportunistic human pathogens Pseudomonas aeruginosa and Staphylococcus aureus, which often cooccur in polymicrobial infections. Specifically, we conducted a series of short- and long-term competition experiments between P. aeruginosa PAO1 (as our reference strain) and three different S. aureus strains (Cowan I, 6850, and JE2) at three starting frequencies and under three environmental (culturing) conditions. We found that the competitive ability of P. aeruginosa strongly depended on the strain background of S. aureus, whereby P. aeruginosa dominated against Cowan I and 6850 but not against JE2. In the latter case, both species could end up as winners depending on conditions. Specifically, we observed strong frequency-dependent fitness patterns, including positive frequency dependence, where P. aeruginosa could dominate JE2 only when common (not when rare). Finally, changes in environmental (culturing) conditions fundamentally altered the competitive balance between the two species in a way that P. aeruginosa dominance increased when moving from shaken to static environments. Altogether, our results highlight that ecological details can have profound effects on the competitive dynamics between coinfecting pathogens and determine whether two species can coexist or invade each others' populations from a state of rare frequency. Moreover, our findings might parallel certain dynamics observed in chronic polymicrobial infections.IMPORTANCE Bacterial infections are frequently caused by more than one species, and such polymicrobial infections are often considered more virulent and more difficult to treat than the respective monospecies infections. Pseudomonas aeruginosa and Staphylococcus aureus are among the most important pathogens in polymicrobial infections, and their cooccurrence is linked to worse disease outcome. There is great interest in understanding how these two species interact and what the consequences for the host are. While previous studies have mainly looked at molecular mechanisms implicated in interactions between P. aeruginosa and S. aureus, here we show that ecological factors, such as strain background, species frequency, and environmental conditions, are important elements determining population dynamics and species coexistence patterns. We propose that the uncovered principles also play major roles in infections and, therefore, proclaim that an integrative approach combining molecular and ecological aspects is required to fully understand polymicrobial infections.
Collapse
|
20
|
Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol 2020; 18:e3000805. [PMID: 32810152 PMCID: PMC7433856 DOI: 10.1371/journal.pbio.3000805] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Antibiotics are losing efficacy due to the rapid evolution and spread of resistance. Treatments targeting bacterial virulence factors have been considered as alternatives because they target virulence instead of pathogen viability, and should therefore exert weaker selection for resistance than conventional antibiotics. However, antivirulence treatments rarely clear infections, which compromises their clinical applications. Here, we explore the potential of combining antivirulence drugs with antibiotics against the opportunistic human pathogen Pseudomonas aeruginosa. We combined two antivirulence compounds (gallium, a siderophore quencher, and furanone C-30, a quorum sensing [QS] inhibitor) together with four clinically relevant antibiotics (ciprofloxacin, colistin, meropenem, tobramycin) in 9×9 drug concentration matrices. We found that drug-interaction patterns were concentration dependent, with promising levels of synergies occurring at intermediate drug concentrations for certain drug pairs. We then tested whether antivirulence compounds are potent adjuvants, especially when treating antibiotic resistant (AtbR) clones. We found that the addition of antivirulence compounds to antibiotics could restore growth inhibition for most AtbR clones, and even abrogate or reverse selection for resistance in five drug combination cases. Molecular analyses suggest that selection against resistant clones occurs when resistance mechanisms involve restoration of protein synthesis, but not when efflux pumps are up-regulated. Altogether, our work provides a first systematic analysis of antivirulence-antibiotic combinatorial treatments and suggests that such combinations have the potential to be both effective in treating infections and in limiting the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Martina Archetti
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ingrid Mignot
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Michael Baumgartner
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol Life Sci 2020; 77:1229-1249. [PMID: 31584128 PMCID: PMC11104810 DOI: 10.1007/s00018-019-03319-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India.
| |
Collapse
|
22
|
Rezzoagli C, Granato ET, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. J Med Microbiol 2020; 69:147-161. [PMID: 31961787 PMCID: PMC7116537 DOI: 10.1099/jmm.0.001134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During infections, bacterial pathogens can engage in a variety of interactions with each other, ranging from the cooperative sharing of resources to deadly warfare. This is especially relevant in opportunistic infections, where different strains and species often co-infect the same patient and interact in the host. Here, we review the relevance of these social interactions during opportunistic infections using the human pathogen Pseudomonas aeruginosa as a case example. In particular, we discuss different types of pathogen-pathogen interactions, involving both cooperation and competition, and elaborate on how they impact virulence in multi-strain and multi-species infections. We then review evolutionary dynamics within pathogen populations during chronic infections. We particuarly discuss how local adaptation through niche separation, evolutionary successions and antagonistic co-evolution between pathogens can alter virulence and the damage inflicted on the host. Finally, we outline how studying bacterial social dynamics could be used to manage infections. We show that a deeper appreciation of bacterial evolution and ecology in the clinical context is important for understanding microbial infections and can inspire novel treatment strategies.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elisa T. Granato
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|