1
|
Zhang Y, Xue B, Mao Y, Chen X, Yan W, Wang Y, Wang Y, Liu L, Yu J, Zhang X, Chao S, Topp E, Zheng W, Zhang T. High-throughput single-cell sequencing of activated sludge microbiome. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100493. [PMID: 39430728 PMCID: PMC11490935 DOI: 10.1016/j.ese.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Wastewater treatment plants (WWTPs) represent one of biotechnology's largest and most critical applications, playing a pivotal role in environmental protection and public health. In WWTPs, activated sludge (AS) plays a major role in removing contaminants and pathogens from wastewater. While metagenomics has advanced our understanding of microbial communities, it still faces challenges in revealing the genomic heterogeneity of cells, uncovering the microbial dark matter, and establishing precise links between genetic elements and their host cells as a bulk method. These issues could be largely resolved by single-cell sequencing, which can offer unprecedented resolution to show the unique genetic information. Here we show the high-throughput single-cell sequencing to the AS microbiome. The single-amplified genomes (SAGs) of 15,110 individual cells were clustered into 2,454 SAG bins. We find that 27.5% of the genomes in the AS microbial community represent potential novel species, highlighting the presence of microbial dark matter. Furthermore, we identified 1,137 antibiotic resistance genes (ARGs), 10,450 plasmid fragments, and 1,343 phage contigs, with shared plasmid and phage groups broadly distributed among hosts, indicating a high frequency of horizontal gene transfer (HGT) within the AS microbiome. Complementary analysis using 1,529 metagenome-assembled genomes from the AS samples allowed for the taxonomic classification of 98 SAG bins, which were previously unclassified. Our study establishes the feasibility of single-cell sequencing in characterizing the AS microbiome, providing novel insights into its ecological dynamics, and deepening our understanding of HGT processes, particularly those involving ARGs. Additionally, this valuable tool could monitor the distribution, spread, and pathogenic hosts of ARGs both within AS environments and between AS and other environments, which will ultimately contribute to developing a health risk evaluation system for diverse environments within a One Health framework.
Collapse
Affiliation(s)
- Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Xi Chen
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yanren Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiale Yu
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Xiaojin Zhang
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Shan Chao
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Edward Topp
- Agroecology Research unit, Bourgogne Franche-Comté Research Centre, National Research Institute for Agriculture, Food and the Environment, 35000, France
| | - Wenshan Zheng
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
2
|
Jiang HW, Gisriel CJ, Cardona T, Flesher DA, Brudvig GW, Ho MY. Structure and evolution of Photosystem I in the early-branching cyanobacterium Anthocerotibacter panamensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621444. [PMID: 39553964 PMCID: PMC11565984 DOI: 10.1101/2024.10.31.621444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain Gloeobacter violaceus. Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I from a newly-discovered thylakoid-free cyanobacterium, Anthocerotibacter panamensis, a distant relative of the genus Gloeobacter. We find that A. panamensis photosystem I exhibits a distinct carotenoid composition and has one conserved low-energy chlorophyll site, which was lost in G. violaceus. These features explain the capacity of A. panamensis to grow under high light intensity, unlike other Gloeobacteria. Furthermore, we find that, while at the sequence level photosystem I in thylakoid-free cyanobacteria has changed to a degree comparable to that of other strains, its subunit composition and oligomeric form might be identical to that of the most recent common ancestor of cyanobacteria.
Collapse
|
3
|
Grettenberger CL, Sumner DY. Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis. GEOBIOLOGY 2024; 22:e12622. [PMID: 39324846 DOI: 10.1111/gbi.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
The evolution of oxygenic photosynthesis in Cyanobacteria was a transformative event in Earth's history. However, the scientific community disagrees over the duration of the delay between the origin of oxygenic photosynthesis and oxygenation of Earth's atmosphere, with estimates ranging from less than a hundred thousand to more than a billion years, depending on assumptions about rates of oxygen production and fluxes of reductants. Here, we propose a novel ecological hypothesis that a geologically significant delay could have been caused by biomolecular inefficiencies within proto-Cyanobacteria-ancestors of modern Cyanobacteria-that limited their maximum rates of oxygen production. Consideration of evolutionary processes and genomic data suggest to us that proto-cyanobacterial primary productivity was initially limited by photosystem instability, oxidative damage, and photoinhibition rather than nutrients or ecological competition. We propose that during the Archean era, cyanobacterial photosystems experienced protracted evolution, with biomolecular inefficiencies initially limiting primary productivity and oxygen production. Natural selection led to increases in efficiency and thus primary productivity through time. Eventually, evolutionary advances produced sufficient biomolecular efficiency that environmental factors, such as nutrient availability, limited primary productivity and shifted controls on oxygen production from physiological to environmental limitations. If correct, our novel hypothesis predicts a geologically significant interval of time between the first local oxygen production and sufficient production for oxygenation of environments. It also predicts that evolutionary rates were likely highly variable due to strong environmental selection pressures and potentially high mutation rates but low competitive interactions.
Collapse
Affiliation(s)
- Christen L Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Tan S, Liu L, Jiao JY, Li MM, Hu CJ, Lv AP, Qi YL, Li YX, Rao YZ, Qu YN, Jiang HC, Soo RM, Evans PN, Hua ZS, Li WJ. Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota. Mol Biol Evol 2024; 41:msae151. [PMID: 39041196 PMCID: PMC11304991 DOI: 10.1093/molbev/msae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Paul N Evans
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
5
|
Powell T, Sumner DY, Jungblut AD, Hawes I, Mackey T, Grettenberger C. Metagenome-assembled bacterial genomes from benthic microbial mats in ice-covered Lake Vanda, Antarctica. Microbiol Resour Announc 2024; 13:e0125023. [PMID: 38587419 PMCID: PMC11080526 DOI: 10.1128/mra.01250-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria.
Collapse
Affiliation(s)
- Tyler Powell
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Microbiology Graduate Group, University of California, Davis, USA
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, USA
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Tyler Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Department of Environmental Toxicology, University of California, Davis, USA
| |
Collapse
|
6
|
Ma J, Sun H, Li B, Wu B, Zhang X, Ye L. Horizontal transfer potential of antibiotic resistance genes in wastewater treatment plants unraveled by microfluidic-based mini-metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133493. [PMID: 38228000 DOI: 10.1016/j.jhazmat.2024.133493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs), which can potentially spread to the environment and human populations. However, the extent and mechanisms of ARG transfer in WWTPs are not well understood due to the high microbial diversity and limitations of molecular techniques. In this study, we used a microfluidic-based mini-metagenomics approach to investigate the transfer potential and mechanisms of ARGs in activated sludge from WWTPs. Our results show that while diverse ARGs are present in activated sludge, only a few highly similar ARGs are observed across different taxa, indicating limited transfer potential. We identified two ARGs, ermF and tla-1, which occur in a variety of bacterial taxa and may have high transfer potential facilitated by mobile genetic elements. Interestingly, genes that are highly similar to the sequences of these two ARGs, as identified in this study, display varying patterns of abundance across geographic regions. Genes similar to ermF found are widely found in Asia and the Americas, while genes resembling tla-1 are primarily detected in Asia. Genes similar to both genes are barely detected in European WWTPs. These findings shed light on the limited horizontal transfer potential of ARGs in WWTPs and highlight the importance of monitoring specific ARGs in different regions to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jiachen Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Lumian J, Sumner DY, Grettenberger CL, Jungblut AD, Irber L, Pierce-Ward NT, Brown CT. Biogeographic distribution of five Antarctic cyanobacteria using large-scale k-mer searching with sourmash branchwater. Front Microbiol 2024; 15:1328083. [PMID: 38440141 PMCID: PMC10909832 DOI: 10.3389/fmicb.2024.1328083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Cyanobacteria form diverse communities and are important primary producers in Antarctic freshwater environments, but their geographic distribution patterns in Antarctica and globally are still unresolved. There are however few genomes of cultured cyanobacteria from Antarctica available and therefore metagenome-assembled genomes (MAGs) from Antarctic cyanobacteria microbial mats provide an opportunity to explore distribution of uncultured taxa. These MAGs also allow comparison with metagenomes of cyanobacteria enriched communities from a range of habitats, geographic locations, and climates. However, most MAGs do not contain 16S rRNA gene sequences, making a 16S rRNA gene-based biogeography comparison difficult. An alternative technique is to use large-scale k-mer searching to find genomes of interest in public metagenomes. This paper presents the results of k-mer based searches for 5 Antarctic cyanobacteria MAGs from Lake Fryxell and Lake Vanda, assigned the names Phormidium pseudopriestleyi FRX01, Microcoleus sp. MP8IB2.171, Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, and Leptolyngbyaceae cyanobacterium MP9P1.79 in 498,942 unassembled metagenomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). The Microcoleus sp. MP8IB2.171 MAG was found in a wide variety of environments, the P. pseudopriestleyi MAG was found in environments with challenging conditions, the Leptolyngbyaceae cyanobacterium MP9P1.79 MAG was only found in Antarctica, and the Leptolyngbya sp. BulkMat.35 and Pseudanabaenaceae cyanobacterium MP8IB2.15 MAGs were found in Antarctic and other cold environments. The findings based on metagenome matches and global comparisons suggest that these Antarctic cyanobacteria have distinct distribution patterns ranging from locally restricted to global distribution across the cold biosphere and other climatic zones.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Christen L. Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Science, The Natural History Museum, London, United Kingdom
| | - Luiz Irber
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| | - N. Tessa Pierce-Ward
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| | - C. Titus Brown
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| |
Collapse
|
9
|
Lumian J, Grettenberger C, Jungblut AD, Mackey TJ, Hawes I, Alatorre-Acevedo E, Sumner DY. Genomic profiles of four novel cyanobacteria MAGs from Lake Vanda, Antarctica: insights into photosynthesis, cold tolerance, and the circadian clock. Front Microbiol 2024; 14:1330602. [PMID: 38282730 PMCID: PMC10812107 DOI: 10.3389/fmicb.2023.1330602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
Cyanobacteria in polar environments face environmental challenges, including cold temperatures and extreme light seasonality with small diurnal variation, which has implications for polar circadian clocks. However, polar cyanobacteria remain underrepresented in available genomic data, and there are limited opportunities to study their genetic adaptations to these challenges. This paper presents four new Antarctic cyanobacteria metagenome-assembled genomes (MAGs) from microbial mats in Lake Vanda in the McMurdo Dry Valleys in Antarctica. The four MAGs were classified as Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, Microcoleus sp. MP8IB2.171, and Leptolyngbyaceae cyanobacterium MP9P1.79. The MAGs contain 2.76 Mbp - 6.07 Mbp, and the bin completion ranges from 74.2-92.57%. Furthermore, the four cyanobacteria MAGs have average nucleotide identities (ANIs) under 90% with each other and under 77% with six existing polar cyanobacteria MAGs and genomes. This suggests that they are novel cyanobacteria and demonstrates that polar cyanobacteria genomes are underrepresented in reference databases and there is continued need for genome sequencing of polar cyanobacteria. Analyses of the four novel and six existing polar cyanobacteria MAGs and genomes demonstrate they have genes coding for various cold tolerance mechanisms and most standard circadian rhythm genes with the Leptolyngbya sp. BulkMat.35 and Leptolyngbyaceae cyanobacterium MP9P1.79 contained kaiB3, a divergent homolog of kaiB.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Eduardo Alatorre-Acevedo
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
10
|
Strullu-Derrien C, Fercoq F, Gèze M, Kenrick P, Martos F, Selosse MA, Benzerara K, Knoll AH. Hapalosiphonacean cyanobacteria (Nostocales) thrived amid emerging embryophytes in an early Devonian (407-million-year-old) landscape. iScience 2023; 26:107338. [PMID: 37520734 PMCID: PMC10382934 DOI: 10.1016/j.isci.2023.107338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Cyanobacteria have a long evolutionary history, well documented in marine rocks. They are also abundant and diverse in terrestrial environments; however, although phylogenies suggest that the group colonized land early in its history, paleontological documentation of this remains limited. The Rhynie chert (407 Ma), our best preserved record of early terrestrial ecosystems, provides an opportunity to illuminate aspects of cyanobacterial diversity and ecology as plants began to radiate across the land surface. We used light microscopy and super-resolution confocal laser scanning microscopy to study a new population of Rhynie cyanobacteria; we also reinvestigated previously described specimens that resemble the new fossils. Our study demonstrates that all are part of a single fossil species belonging to the Hapalosiphonaceae (Nostocales). Along with other Rhynie microfossils, these remains show that the accommodation of morphologically complex cyanobacteria to terrestrial ecosystems transformed by embryophytes was well underway more than 400 million years ago.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Institut Systématique Évolution Biodiversité (UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, 75005 Paris, France
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM, UMR7245), Muséum national d’Histoire naturelle, CNRS, 75005 Paris, France
| | - Marc Gèze
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM, UMR7245), Muséum national d’Histoire naturelle, CNRS, 75005 Paris, France
| | - Paul Kenrick
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Florent Martos
- Institut Systématique Évolution Biodiversité (UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, 75005 Paris, France
| | - Marc-André Selosse
- Institut Systématique Évolution Biodiversité (UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, 75005 Paris, France
- Institut Universitaire de France, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (UMR 7590), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, 75005 Paris, France
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Pessi IS, Popin RV, Durieu B, Lara Y, Tytgat B, Savaglia V, Roncero-Ramos B, Hultman J, Verleyen E, Vyverman W, Wilmotte A. Novel diversity of polar Cyanobacteria revealed by genome-resolved metagenomics. Microb Genom 2023; 9:mgen001056. [PMID: 37417735 PMCID: PMC10438808 DOI: 10.1099/mgen.0.001056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Rafael V. Popin
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Benoit Durieu
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- Early Life Traces & Evolution-Astrobiology, UR-Astrobiology, University of Liège, Liège, Belgium
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Valentina Savaglia
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Beatriz Roncero-Ramos
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Annick Wilmotte
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Rockwell NC, Lagarias JC. GUN4 appeared early in cyanobacterial evolution. PNAS NEXUS 2023; 2:pgad131. [PMID: 37152672 PMCID: PMC10156173 DOI: 10.1093/pnasnexus/pgad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
13
|
Olmsted CN, Ort R, Tran PQ, McDaniel EA, Roden EE, Bond DR, He S, McMahon KD. Environmental predictors of electroactive bacterioplankton in small boreal lakes. Environ Microbiol 2023; 25:705-720. [PMID: 36529539 DOI: 10.1111/1462-2920.16314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein-encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET-capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost.
Collapse
Affiliation(s)
- Charles N Olmsted
- Department of Molecular and Environmental Toxicology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Roger Ort
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Shaomei He
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Priyadarshini N, Steube N, Wiens D, Narikawa R, Wilde A, Hochberg GKA, Enomoto G. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00387-4. [PMID: 36781703 DOI: 10.1007/s43630-023-00387-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.
Collapse
Affiliation(s)
- Nibedita Priyadarshini
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albertstr. 19, 79104, Freiburg, Germany
| | - Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Dennis Wiens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Faculty of Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Gen Enomoto
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany. .,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
15
|
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. JOURNAL OF PHYCOLOGY 2023; 59:12-51. [PMID: 36443823 DOI: 10.1111/jpy.13304] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relationships inherited from the classical morphological taxonomy. Similarly, the obviously polyphyletic orders such as Synechococcales and Oscillatoriales were left unchanged. In this study, the rising number of genomic sequences of cyanobacteria and well-described reference strains allowed us to reconstruct a robust phylogenomic tree for taxonomic purposes. A less robust but better sampled 16S rRNA gene phylogeny was mapped to the phylogenomic backbone. Based on both these phylogenies, a polyphasic classification throughout the whole phylum of Cyanobacteria was created, with ten new orders and fifteen new families. The proposed system of cyanobacterial orders and families relied on a phylogenomic tree but still employed phenotypic apomorphies where possible to make it useful for professionals in the field. It was, however, confirmed that morphological convergence of phylogenetically distant taxa was a frequent phenomenon in cyanobacteria. Moreover, the limited phylogenetic informativeness of the 16S rRNA gene, resulting in ambiguous phylogenies above the genus level, emphasized the integration of genomic data as a prerequisite for the conclusive taxonomic placement of a vast number of cyanobacterial genera in the future.
Collapse
Affiliation(s)
- Otakar Strunecký
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Department of Botany, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
17
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
18
|
Saw JH, Cardona T, Montejano G. Complete Genome Sequencing of a Novel Gloeobacter Species from a Waterfall Cave in Mexico. Genome Biol Evol 2021; 13:6446517. [PMID: 34850891 PMCID: PMC8691054 DOI: 10.1093/gbe/evab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.7% similar to Gloeobacter violaceus and therefore we determined it to be a new species. We propose to name this new species Gloeobacter morelensis after the location in Mexico where it was isolated. The complete genome consists of one circular chromosome (4,921,229 bp), one linear plasmid (172,328 bp), and one circular plasmid (8,839 bp). Its genome is the largest of all completely sequenced genomes of Gloeobacter species. Pangenomic comparisons revealed that G. morelensis encodes 759 genes not shared with other Gloeobacter species. Despite being more closely related to G. violaceus, it features an extremely divergent psbA gene encoding an atypical D1 core subunit of Photosystem II previously only found within the genome of Gloeobacter kilaueensis. In addition, we detected evidence of concerted evolution of psbA genes encoding identical D1 in all three Gloeobacter genomes, a characteristic that seems widespread in cyanobacteria and may therefore be traced back to their last common ancestor.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Gustavo Montejano
- Facultad de Ciencias, Laboratorio de Ficología, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
19
|
Characterizing the Uncultivated Microbial Minority: towards Understanding the Roles of the Rare Biosphere in Microbial Communities. mSystems 2021; 6:e0077321. [PMID: 34427533 PMCID: PMC8407377 DOI: 10.1128/msystems.00773-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Microbial communities are frequently numerically dominated by just a few species. Often, the long “tail” of the rank-abundance plots of microbial communities constitutes the so-called “rare biosphere,” microorganisms that are highly diverse but are typically found in low abundance in these communities. Their presence in microbial communities has only recently become apparent with advances in high-throughput sequencing technologies. Despite their low numbers, they are thought to play important roles in their communities and may function as potential members to keep the communities intact and resilient. Their phylogenetic diversity also means that they are important subjects for better understanding the interplay between microbial diversity and evolution. I propose that more efforts should be put into characterizing these poorly understood and mostly unknown microbial lineages that hold vast potentials for our understanding of microbial diversity, ecology, and evolution of life on this planet.
Collapse
|
20
|
Abstract
Photosynthetic Cyanobacteria and their descendants are the only known organisms capable of oxygenic photosynthesis. Their metabolism permanently changed the Earth’s surface and the evolutionary trajectory of life, but little is known about their evolutionary history. Genomes of the Gloeobacterales, an order of deeply divergent photosynthetic Cyanobacteria, may hold clues about the evolutionary process. However, there are only three published genomes within this order, and it is difficult to make broad inferences based on such little data. Here, I describe five species within the Gloeobacterales retrieved from publicly available databases and examine their photosynthetic gene content and the environments in which Gloeobacterales genomes and 16S rRNA gene sequences are found. The Gloeobacterales contain reduced photosystems and inhabit cold, wet-rock, and low-light environments. They are likely present in low abundances due to their low growth rate. Future searches for Gloeobacterales should target these environments, and samples should be deeply sequenced to capture the low-abundance taxa. Publicly available databases contain undescribed taxa within the Gloeobacterales. However, searching through all available data with current methods is computationally expensive. Therefore, new methods must be developed to search for these and other evolutionarily important taxa. Once identified, these novel photosynthetic Cyanobacteria will help illuminate the origin and evolution of oxygenic photosynthesis. IMPORTANCE Early branching photosynthetic Cyanobacteria such as the Gloeobacterales may provide clues into the evolutionary history of oxygenic photosynthesis, but there are few genomes or cultured taxa from this order. Five new metagenome-assembled genomes suggest that members of the Gloeobacterales all contain reduced photosystems and lack genes associated with thylakoids and circadian rhythms. Their distribution suggests that they may thrive in environments that are marginal for other species, including wet-rock and cold environments. These traits may aid in the discovery and cultivation of novel species in this clade.
Collapse
|
21
|
Jung P, Azua-Bustos A, Gonzalez-Silva C, Mikhailyuk T, Zabicki D, Holzinger A, Lakatos M, Büdel B. Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile). Front Microbiol 2021; 12:671742. [PMID: 34305839 PMCID: PMC8295473 DOI: 10.3389/fmicb.2021.671742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S–23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S–23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Tatiana Mikhailyuk
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daniel Zabicki
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | | | - Michael Lakatos
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Burkhard Büdel
- Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
22
|
Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 2021; 30:143-157. [PMID: 34229911 DOI: 10.1016/j.tim.2021.05.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.
Collapse
|
23
|
Delwiche CF. Microbial biodiversity: A newly isolated cyanobacterium sheds light on the evolution of photosynthesis. Curr Biol 2021; 31:R843-R845. [PMID: 34256915 DOI: 10.1016/j.cub.2021.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A newly isolated cyanobacterium found growing in close association with a tropical, non-vascular plant has been cultured and its genome sequenced. Its lineage is well over a billion years old and gives insights into the evolutionary origin of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Rahmatpour N, Hauser DA, Nelson JM, Chen PY, Villarreal A JC, Ho MY, Li FW. A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Curr Biol 2021; 31:2857-2867.e4. [PMID: 33989529 DOI: 10.1016/j.cub.2021.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Cyanobacteria have played pivotal roles in Earth's geological history, especially during the rise of atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has been limited by their extremely lopsided tree of life-the vast majority of extant diversity belongs to Phycobacteria (or "crown Cyanobacteria"), while its sister lineage, Gloeobacteria, is depauperate and contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here, we describe a new cultured member of Gloeobacteria, Anthocerotibacter panamensis, isolated from a tropical hornwort. Anthocerotibacter diverged from Gloeobacter over 1.4 Ga ago and has low 16S rDNA identities with environmental samples. Our ultrastructural, physiological, and genomic analyses revealed that this species possesses a unique combination of traits that are exclusively shared with either Gloeobacteria or Phycobacteria. For example, similar to Gloeobacter, it lacks thylakoids and circadian clock genes, but the carotenoid biosynthesis pathway is typical of Phycobacteria. Furthermore, Anthocerotibacter has one of the most reduced gene sets for photosystems and phycobilisomes among Cyanobacteria. Despite this, Anthocerotibacter is capable of oxygenic photosynthesis under a wide range of light intensities, albeit with much less efficiency. Given its key phylogenetic position, distinct trait combination, and availability as a culture, Anthocerotibacter opens a new window to further illuminate the dawn of oxygenic photosynthesis.
Collapse
Affiliation(s)
| | | | | | - Pa Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Juan Carlos Villarreal A
- Department of Biology, Laval University, Quebec City, QC, Canada; Smithsonian Tropical Research Institute, Panama City, Panama
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA; Plant Biology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
26
|
Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT, Mackey TJ, Dick GJ, Grettenberger CL, Sumner DY. Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide. Genes (Basel) 2021; 12:genes12030426. [PMID: 33809699 PMCID: PMC8002359 DOI: 10.3390/genes12030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic environments throughout Earth history. In Lake Fryxell, Antarctica, the benthic, filamentous cyanobacterium Phormidium pseudopriestleyi creates a 1–2 mm thick layer of 50 µmol L−1 O2 in otherwise sulfidic water, demonstrating that it sustains oxygenic photosynthesis in the presence of sulfide. A metagenome-assembled genome of P. pseudopriestleyi indicates a genetic capacity for oxygenic photosynthesis, including multiple copies of psbA (encoding the D1 protein of Photosystem II), and anoxygenic photosynthesis with a copy of sqr (encoding the sulfide quinone reductase protein that oxidizes sulfide). The genomic content of P. pseudopriestleyi is consistent with sulfide tolerance mechanisms including increasing psbA expression or directly oxidizing sulfide with sulfide quinone reductase. However, the ability of the organism to reduce Photosystem I via sulfide quinone reductase while Photosystem II is sulfide-inhibited, thereby performing anoxygenic photosynthesis in the presence of sulfide, has yet to be demonstrated.
Collapse
Affiliation(s)
- Jessica E. Lumian
- Microbiology Graduate Group, University of California, Davis, CA 95616, USA;
| | - Anne D. Jungblut
- Life Sciences Department, The Natural History Museum, London SW7 5BD, UK;
| | - Megan L. Dillion
- Genomics and Bioinformatics, Novozymes, Inc., Davis, CA 95616, USA;
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga 3110, New Zealand;
| | - Peter T. Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-5353
| |
Collapse
|