1
|
Cordero M, Jauffred L. Following plasmid propagation in complex bacterial communities. Cell Rep 2024; 43:114675. [PMID: 39213152 DOI: 10.1016/j.celrep.2024.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In this issue of Cell Reports, Ma et al.1 identify causative regulatory links between self-organization in surface-attached bacterial colonies and the rate of horizontal gene transfers (conjugations) and subsequent selection of the newly arising population of recipient bacteria (transconjugants).
Collapse
Affiliation(s)
- Mireia Cordero
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen O, Denmark
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen O, Denmark.
| |
Collapse
|
2
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2024:S0966-842X(24)00214-2. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
4
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Xu F, Jiang M, Li D, Yu P, Ma H, Lu H. Protective effects of antibiotic resistant bacteria on susceptibles in biofilm: Influential factors, mechanism, and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172668. [PMID: 38663625 DOI: 10.1016/j.scitotenv.2024.172668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
In environmental biofilms, antibiotic-resistant bacteria facilitate the persistence of susceptible counterparts under antibiotic stresses, contributing to increased community-level resistance. However, there is a lack of quantitative understanding of this protective effect and its influential factors, hindering accurate risk assessment of biofilm resistance in diverse environment. This study isolated an opportunistic Escherichia coli pathogen from soil, and engineered it with plasmids conferring antibiotic resistance. Protective effects of the ampicillin resistant strain (AmpR) on their susceptible counterparts (AmpS) were observed in ampicillin-stress colony biofilms. The concentration of ampicillin delineated protective effects into 3 zones: continuous protection (<1 MIC of AmpS), initial AmpS/R dependent (1-8 MIC of AmpS), and ineffective (>8 MIC of AmpS). Intriguingly, Zone 2 exhibited a surprising "less is more" phenomenon tuned by the initial AmpS/R ratio, where biofilm with an initially lower AmpR (1:50 vs 50:1) harbored 30-90 % more AmpR after 24 h growth under antibiotic stress. Compared to AmpS, AmpR displayed superiority in adhesion, antibiotic degradation, motility, and quorum sensing, allowing them to preferentially colonize biofilm edge and areas with higher ampicillin. An agent-based model incorporating protective effects successfully simulated tempo-spatial dynamics of AmpR and AmpS influenced by antibiotic stress and initial AmpS/R. This study provides a holistic view on the pervasive but poorly understood protective effects in biofilm, enabling development of better risk assessment and precisely targeted control strategies of biofilm resistance in diverse environment.
Collapse
Affiliation(s)
- Fengqian Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Minxi Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - He Ma
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Khandoori R, Mondal K, Ghosh P. Resource limitation and population fluctuation drive spatiotemporal order in microbial communities. SOFT MATTER 2024; 20:3823-3835. [PMID: 38647378 DOI: 10.1039/d4sm00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Microbial communities display complex spatiotemporal behaviors leading to spatially-structured and ordered organization driven by species interactions and environmental factors. Resource availability plays a pivotal role in shaping the dynamics of bacterial colonies. In this study, we delve into the intricate interplay between resource limitation and the emergent properties of a growing colony of two visually distinct bacterial strains having similar growth and mechanical properties. Employing an agent-based modeling and computer simulations, we analyze the resource-driven effect on segregation and sectoring, cell length regulation and nematic ordering within a growing colony. We introduce a dimensionless parameter referred to as the active layer thickness, derived from nutrient diffusion equations, indicating effective population participation due to local resource availability. Our results reveal that lower values of active layer thickness arising from decreased resource abundance lead to rougher colony fronts, fostering heightened population fluctuations within the colony and faster spatial genetic diversity loss. Our temporal analyses unveil the dynamics of mean cell length and fluctuations, showcasing how initial disturbances evolve as colonies are exposed to nutrients and subsequently settle. Furthermore, examining microscopic details, we find that lower resource levels yield diverse cell lengths and enhanced nematic ordering, driven by the increased prevalence of longer rod-shaped cells. Our investigation sheds light on the multifaceted relationship between resource constraints and bacterial colony dynamics, revealing insights into their spatiotemporal organization.
Collapse
Affiliation(s)
- Rohit Khandoori
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
| | - Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
7
|
Ma Y, Ramoneda J, Johnson DR. Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion. Nat Commun 2023; 14:3530. [PMID: 37316482 DOI: 10.1038/s41467-023-39354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Plasmids are the main vector by which antibiotic resistance is transferred between bacterial cells within surface-associated communities. In this study, we ask whether there is an optimal time to administer antibiotics to minimize plasmid spread in new bacterial genotypes during community expansion across surfaces. We address this question using consortia of Pseudomonas stutzeri strains, where one is an antibiotic resistance-encoding plasmid donor and the other a potential recipient. We allowed the strains to co-expand across a surface and administered antibiotics at different times. We find that plasmid transfer and transconjugant proliferation have unimodal relationships with the timing of antibiotic administration, where they reach maxima at intermediate times. These unimodal relationships result from the interplay between the probabilities of plasmid transfer and loss. Our study provides mechanistic insights into the transfer and proliferation of antibiotic resistance-encoding plasmids within microbial communities and identifies the timing of antibiotic administration as an important determinant.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zürich, Switzerland.
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, 80309, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
8
|
Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, Lam SS, Naushad M, Li C, Sonne C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. ENVIRONMENTAL RESEARCH 2023; 224:115543. [PMID: 36822540 DOI: 10.1016/j.envres.2023.115543] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Collapse
Affiliation(s)
- Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Yan
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xuewei Yu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Feng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanyi Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| |
Collapse
|
9
|
Wilbert SA, Newman DK. The contrasting roles of nitric oxide drive microbial community organization as a function of oxygen presence. Curr Biol 2022; 32:5221-5234.e4. [PMID: 36306787 PMCID: PMC9772256 DOI: 10.1016/j.cub.2022.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022]
Abstract
Microbial assemblages are omnipresent in the biosphere, forming communities on the surfaces of roots and rocks and within living tissues. These communities can exhibit strikingly beautiful compositional structures, with certain members reproducibly occupying particular spatiotemporal microniches. Despite this reproducibility, we lack the ability to explain these spatial patterns. We hypothesize that certain spatial patterns in microbial communities may be explained by the exchange of redox-active metabolites whose biological function is sensitive to microenvironmental gradients. To test this, we developed a simple community consisting of synthetic Pseudomonas aeruginosa strains with a partitioned denitrification pathway: a strict consumer and strict producer of nitric oxide (NO), a key pathway intermediate. Because NO can be both toxic or beneficial depending on the amount of oxygen present, this system provided an opportunity to investigate whether dynamic oxygen gradients can tune metabolic cross-feeding and fitness outcomes in a predictable fashion. Using a combination of genetic analysis, controlled growth environments, and imaging, we show that oxygen availability dictates whether NO cross-feeding is deleterious or mutually beneficial and that this organizing principle maps to the microscale. More generally, this work underscores the importance of considering the double-edged and microenvironmentally tuned roles redox-active metabolites can play in shaping microbial communities.
Collapse
Affiliation(s)
- Steven A Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Ruan C, Ramoneda J, Gogia G, Wang G, Johnson DR. Fungal hyphae regulate bacterial diversity and plasmid-mediated functional novelty during range expansion. Curr Biol 2022; 32:5285-5294.e4. [PMID: 36455559 DOI: 10.1016/j.cub.2022.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
The amount of bacterial diversity present on many surfaces is enormous; however, how these levels of diversity persist in the face of the purifying processes that occur as bacterial communities expand across space (referred to here as range expansion) remains enigmatic. We shed light on this apparent paradox by providing mechanistic evidence for a strong role of fungal hyphae-mediated dispersal on regulating bacterial diversity during range expansion. Using pairs of fluorescently labeled bacterial strains and a hyphae-forming fungal strain that expand together across a nutrient-amended surface, we show that a hyphal network increases the spatial intermixing and extent of range expansion of the bacterial strains. This is true regardless of the type of interaction (competition or resource cross-feeding) imposed between the bacterial strains. We further show that the underlying cause is that flagellar motility drives bacterial dispersal along the hyphal network, which counteracts the purifying effects of ecological drift at the expansion frontier. We finally demonstrate that hyphae-mediated spatial intermixing increases the conjugation-mediated spread of plasmid-encoded antibiotic resistance. In conclusion, fungal hyphae are important regulators of bacterial diversity and promote plasmid-mediated functional novelty during range expansion in an interaction-independent manner.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Guram Gogia
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology, 8092 Zürich, Switzerland
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; National Black Soil & Agriculture Research, China Agricultural University, 100193 Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
11
|
Eigentler L, Davidson FA, Stanley-Wall NR. Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective. Open Biol 2022; 12:220194. [PMID: 36514980 PMCID: PMC9748781 DOI: 10.1098/rsob.220194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Fordyce A. Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
12
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
13
|
Eigentler L, Kalamara M, Ball G, MacPhee CE, Stanley-Wall NR, Davidson FA. Founder cell configuration drives competitive outcome within colony biofilms. THE ISME JOURNAL 2022; 16:1512-1522. [PMID: 35121821 PMCID: PMC9122948 DOI: 10.1038/s41396-022-01198-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells' potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Margarita Kalamara
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5HN, UK
| | - Cait E MacPhee
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
14
|
Eigentler L, Stanley‐Wall NR, Davidson FA. A theoretical framework for multi‐species range expansion in spatially heterogeneous landscapes. OIKOS 2022. [DOI: 10.1111/oik.09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, Univ. of Dundee Dundee UK
- Mathematics, School of Science and Engineering, Univ. of Dundee Dundee UK
| | | | | |
Collapse
|
15
|
Saunoriene L, Jablonskaite K, Ragulskiene J, Ragulskis M. Information Hiding Based on Statistical Features of Self-Organizing Patterns. ENTROPY 2022; 24:e24050684. [PMID: 35626568 PMCID: PMC9141792 DOI: 10.3390/e24050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022]
Abstract
A computational technique for the determination of optimal hiding conditions of a digital image in a self-organizing pattern is presented in this paper. Three statistical features of the developing pattern (the Wada index based on the weighted and truncated Shannon entropy, the mean of the brightness of the pattern, and the p-value of the Kolmogorov-Smirnov criterion for the normality testing of the distribution function) are used for that purpose. The transition from the small-scale chaos of the initial conditions to the large-scale chaos of the developed pattern is observed during the evolution of the self-organizing system. Computational experiments are performed with the stripe-type patterns, spot-type patterns, and unstable patterns. It appears that optimal image hiding conditions are secured when the Wada index stabilizes after the initial decline, the mean of the brightness of the pattern remains stable before dropping down significantly below the average, and the p-value indicates that the distribution becomes Gaussian.
Collapse
Affiliation(s)
- Loreta Saunoriene
- Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; (J.R.); (M.R.)
- Correspondence:
| | - Kamilija Jablonskaite
- Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania;
| | - Jurate Ragulskiene
- Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; (J.R.); (M.R.)
| | - Minvydas Ragulskis
- Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; (J.R.); (M.R.)
| |
Collapse
|
16
|
Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. THE ISME JOURNAL 2022; 16:1453-1463. [PMID: 35079136 PMCID: PMC9038690 DOI: 10.1038/s41396-022-01189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.
Collapse
|
17
|
Type IV Pilus Shapes a 'Bubble-Burst' Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations. Microbiol Spectr 2022; 10:e0194421. [PMID: 35171019 PMCID: PMC8849093 DOI: 10.1128/spectrum.01944-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbes are social organisms that commonly live in sessile biofilms. Spatial patterns of populations within biofilms can be important determinants of community-level properties. Spatial intermixing emerging from microbial interaction is one of the best-studied characteristics of spatial patterns. The specific levels of spatial intermixing critically contribute to how the dynamics and functioning of such communities are governed. However, the precise factors that determine spatial patterns and intermixing remain unclear. Here, we investigated the spatial patterning and intermixing of an engineered synthetic consortium composed of two mutualistic Pseudomonas stutzeri strains that degrade salicylate via metabolic cross-feeding. We found that the consortium self-organizes across space to form a previously unreported spatial pattern (here referred to as a ‘bubble-burst’ pattern) that exhibits a low level of intermixing. Interestingly, when the genes encoding type IV pili were deleted from both strains, a highly intermixed spatial pattern developed and increased the productivity of the entire community. The intermixed pattern was maintained in a robust manner across a wide range of initial ratios between the two strains. Our findings show that the type IV pilus plays a role in mitigating spatial intermixing of different populations in surface-attached microbial communities, with consequences for governing community-level properties. These insights provide tangible clues for the engineering of synthetic microbial systems that perform highly in spatially structured environments. IMPORTANCE When growing on surfaces, multispecies microbial communities form biofilms that exhibit intriguing spatial patterns. These patterns can significantly affect the overall properties of the community, enabling otherwise impermissible metabolic functions to occur as well as driving the evolutionary and ecological processes acting on communities. The development of these patterns is affected by several drivers, including cell-cell interactions, nutrient levels, density of founding cells, and surface properties. The type IV pilus is commonly found to mediate surface-associated behaviors of microorganisms, but its role on pattern formation within microbial communities is unclear. Here, we report that in a cross-feeding consortium, the type IV pilus affects the spatial intermixing of interacting populations involved in pattern formation and ultimately influences overall community productivity and robustness. This novel insight assists our understanding of the ecological processes of surface-attached microbial communities and suggests a potential strategy for engineering high-performance synthetic microbial communities.
Collapse
|
18
|
Zheng L, Wang X, Ding A, Yuan D, Tan Q, Xing Y, Xie E. Ecological Insights Into Community Interactions, Assembly Processes and Function in the Denitrifying Phosphorus Removal Activated Sludge Driven by Phosphorus Sources. Front Microbiol 2021; 12:779369. [PMID: 34899660 PMCID: PMC8660105 DOI: 10.3389/fmicb.2021.779369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The microbial characteristics in the wastewater treatment plants (WWTPs) strongly affect their optimal performance and functional stability. However, a cognitive gap remains regarding the characteristics of the microbial community driven by phosphorus sources, especially co-occurrence patterns and community assembly based on phylogenetic group. In this study, 59 denitrifying phosphorus removal (DPR) activated sludge samples were cultivated with phosphorus sources. The results suggested that homogeneous selection accounted for the largest proportion that ranged from 35.82 to 64.48%. Deterministic processes dominated in 12 microbial groups (bins): Candidatus_Accumulibacter and Pseudomonas in these bins belonged to phosphate-accumulating organisms (PAOs). Network analysis revealed that species interactions were intensive in cyclic nucleoside phosphate-influenced microbiota. Function prediction indicated that cyclic nucleoside phosphates increased the activity of enzymes related to denitrification and phosphorus metabolism and increased the α-diversity of microorganism but decreased the diversity of metabolic function. Based on these results, it was assumed that cyclic nucleoside phosphates, rather than inorganic phosphates, are the most available phosphorus source for majority microorganisms in DPR activated sludge. The study revealed the important role of phosphorus source in the construction and assembly of microbial communities and provided new insights about pollutant removal from WWTPs.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Gupta G, Ndiaye A, Filteau M. Leveraging Experimental Strategies to Capture Different Dimensions of Microbial Interactions. Front Microbiol 2021; 12:700752. [PMID: 34646243 PMCID: PMC8503676 DOI: 10.3389/fmicb.2021.700752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Microorganisms are a fundamental part of virtually every ecosystem on earth. Understanding how collectively they interact, assemble, and function as communities has become a prevalent topic both in fundamental and applied research. Owing to multiple advances in technology, answering questions at the microbial system or network level is now within our grasp. To map and characterize microbial interaction networks, numerous computational approaches have been developed; however, experimentally validating microbial interactions is no trivial task. Microbial interactions are context-dependent, and their complex nature can result in an array of outcomes, not only in terms of fitness or growth, but also in other relevant functions and phenotypes. Thus, approaches to experimentally capture microbial interactions involve a combination of culture methods and phenotypic or functional characterization methods. Here, through our perspective of food microbiologists, we highlight the breadth of innovative and promising experimental strategies for their potential to capture the different dimensions of microbial interactions and their high-throughput application to answer the question; are microbial interaction patterns or network architecture similar along different contextual scales? We further discuss the experimental approaches used to build various types of networks and study their architecture in the context of cell biology and how they translate at the level of microbial ecosystem.
Collapse
Affiliation(s)
- Gunjan Gupta
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Amadou Ndiaye
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|