1
|
Ferreira EM, Cunha MV, Duarte EL, Mira A, Pinto D, Mendes I, Pereira AC, Pinto T, Acevedo P, Santos SM. Mapping high-risk areas for Mycobacterium tuberculosis complex bacteria transmission: Linking host space use and environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176053. [PMID: 39244050 DOI: 10.1016/j.scitotenv.2024.176053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In many Mediterranean ecosystems, animal tuberculosis (TB), caused by Mycobacterium bovis, an ecovar of Mycobacterium tuberculosis complex (MTBC), is maintained by multi-host communities. It is hypothesised that interspecies transmission is mainly indirect via shared contaminated environments. Therefore, identifying spatial areas where MTBC bacteria occur and quantifying space use by susceptible hosts might help predict the spatial likelihood of transmission across the landscape. Here, we aimed to evaluate the transmission risk of MTBC in a multi-host system involving wildlife (ungulates and carnivores) and cattle (Bos taurus). We collected eighty-nine samples from natural substrates (water, soil, and mud) at 38 sampling sites in a TB endemic area within a Mediterranean agroforestry system in Portugal. These samples were analysed by real-time PCR to detect MTBC DNA. Additionally, host-specific space use intensity maps were obtained through camera-trapping covering the same sampling sites. Results evidenced that a significant proportion of samples were positive for MTBC DNA (49 %), suggesting that the contamination is widespread in the area. Moreover, they showed that the probability of MTBC occurrence in the environment was significantly influenced by topographic features (i.e., slope), although other non-significant predictor related with soil conditions (SMI: soil moisture index) incorporated the MTBC contamination model. The integration of host space use intensity maps with the spatial detection of MTBC showed that the red deer (Cervus elaphus) and wild boar (Sus scrofa) exhibited the highest percentages of high-risk areas for MTBC transmission. Furthermore, when considering the co-occurrence of multiple hosts, transmission risk analyses revealed that 26.5 % of the study area represented high-risk conditions for MTBC transmission, mainly in forest areas.
Collapse
Affiliation(s)
- Eduardo M Ferreira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa L Duarte
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Departamento de Medicina Veterinária, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal.
| | - António Mira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Inês Mendes
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Pinto
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Sara M Santos
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| |
Collapse
|
2
|
Lin L, Li G, Yu H, Ma K. pH Nonlinearly Dominates Soil Bacterial Community Assembly along an Altitudinal Gradient in Oak-Dominant Forests. Microorganisms 2024; 12:1877. [PMID: 39338551 PMCID: PMC11434175 DOI: 10.3390/microorganisms12091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Soil bacteria, the predominant microbiota in soil, are subject to the law of minimum and the law of tolerance, but the assembly patterns of soil bacteria in response to environmental factors remain far from clear. Here, we took advantage of an altitudinal gradient (1020-1770 asl) in oak-dominant forests and assessed whether soil bacteria linearly or nonlinearly respond to environmental properties through the changes in the community diversity and composition. We found that soil bacteria decreased with increasing altitude in terms of the species richness and phylogenetic structure, while they were unchanged with increasing altitude in terms of community composition. The species richness was nonlinearly affected by the soil pH (19.9%), C:N ratio (14.3%), SOC (11.4%), and silt + clay content (9.9%). Specifically, the species richness peaked at a pH of 5.5-6.5, and an SOC of 25-50 g kg-1, and it showed abrupt decreases and increases at a C:N ratio of 14.5 and a silt + clay content of 70%. The community composition was significantly affected by the soil pH (28.2%), then by the SOC (3.6%), available phosphorus (1.0%), and silt + clay content (0.5%), and it showed less turnovers at a pH of 6.0, SOC of 50 g kg-1, and available phosphorus > 3.0 g kg-1. These findings imply that environmental filtering processes nonlinearly shape bacterial communities.
Collapse
Affiliation(s)
- Litao Lin
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Guixiang Li
- Weifang Academy of Agricultural Sciences, Weifang 261071, China;
| | - Huiyi Yu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Abbara A, Pagani L, García-Pareja C, Bitbol AF. Mutant fate in spatially structured populations on graphs: Connecting models to experiments. PLoS Comput Biol 2024; 20:e1012424. [PMID: 39241045 PMCID: PMC11410244 DOI: 10.1371/journal.pcbi.1012424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
In nature, most microbial populations have complex spatial structures that can affect their evolution. Evolutionary graph theory predicts that some spatial structures modelled by placing individuals on the nodes of a graph affect the probability that a mutant will fix. Evolution experiments are beginning to explicitly address the impact of graph structures on mutant fixation. However, the assumptions of evolutionary graph theory differ from the conditions of modern evolution experiments, making the comparison between theory and experiment challenging. Here, we aim to bridge this gap by using our new model of spatially structured populations. This model considers connected subpopulations that lie on the nodes of a graph, and allows asymmetric migrations. It can handle large populations, and explicitly models serial passage events with migrations, thus closely mimicking experimental conditions. We analyze recent experiments in light of this model. We suggest useful parameter regimes for future experiments, and we make quantitative predictions for these experiments. In particular, we propose experiments to directly test our recent prediction that the star graph with asymmetric migrations suppresses natural selection and can accelerate mutant fixation or extinction, compared to a well-mixed population.
Collapse
Affiliation(s)
- Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Pagani
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Celia García-Pareja
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Yao L, Wu J, Liu S, Xing H, Wang P, Gao W, Wu Z, Zhou Q. Distinct drivers of bacterial community assembly processes in riverine islands in the middle and lower reaches of the Yangtze River. Microbiol Spectr 2024; 12:e0081824. [PMID: 38869307 PMCID: PMC11302259 DOI: 10.1128/spectrum.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Riverine islands are widespread alluvium wetlands developed in large rivers, and bacterial communities are crucial to their ecological function, yet their assembly processes are rarely addressed. The ecosystem services provided by the middle and the lower Yangtze are primarily threatened by pollution discharge from agricultural land use, and resource overutilization (e.g., embankments), respectively. Here, we assessed bacterial community assembly processes and their drivers within riverine islands in the middle Yangtze River (MR islands) and those in the lower reach (LR islands). A significant distance-decay relationship was observed, although the turnover rate was lower than that of the terrestrial ecosystem with less connectivity. Deterministic and stochastic processes jointly shaped community patterns, and the influence of stochastic increased from 26% in MR islands to 59% for those in LR islands. Meanwhile, the bacterial community in MR islands was controlled more by inorganic nitrogen availability, whereas those in LR islands were governed by pH and EC, although those factors explained a limited fraction of variation in the bacterial community. Potential indicator taxa (affiliated with Nocardioides and Lysobacter) characterized the waterway transport pollution. Overall, our study demonstrated that bacterial community dissimilarity and the importance of dispersal limitation increased concurrently along the flow direction, while distinct local factors further determined bacterial community compositions by selecting habitat-specificity taxa and particularly metabolism function. These findings enhanced our understanding of the mechanisms driving changes in bacterial communities of riverine islands subject to increased anthropogenic impacts.IMPORTANCERivers are among the most threatened ecosystems globally and face multiple stressors related to human activity. However, linkages between microbial diversity patterns and assembly processes in rivers remain unclear, especially in riverine islands developed in large rivers. Our findings reveal that distinct factors result in divergent bacterial community compositions and functional profiles in the riverine islands in the middle Yangtze and those in the lower Yangtze, with substantial differentiation in deterministic and stochastic processes that jointly contribute to bacterial community assemblages. Additionally, keystone species may play important metabolic roles in coping with human-related disturbances. This study provides an improved understanding of relationships between microbial diversity patterns and ecosystem functions under environmental changes in large river ecosystems.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Junmei Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouzhuang Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hao Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pei Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjuan Gao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Xia Y, Feng J, Zhang H, Xiong D, Kong L, Seviour R, Kong Y. Effects of soil pH on the growth, soil nutrient composition, and rhizosphere microbiome of Ageratina adenophora. PeerJ 2024; 12:e17231. [PMID: 38646477 PMCID: PMC11027909 DOI: 10.7717/peerj.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Ageratina adenophora is an invasive weed species found in many countries. Methods to control the spread of this weed have been largely unsuccessful. Soil pH is the most important soil factor affecting the availability of nutrients for plant and impacting its growth. Understanding the mechanisms of the influence of soil pH on the growth of A. adenophora may help to develop effective control measures. In this study, we artificially changed the soil pH in pot experiments for A. adenophora. We studied the effects of acidic (pH 5.5), weakly acidic (pH 6.5), neutral (pH 7.2), and alkaline (pH 9.0) soils on the growth, availability of soil nutrients, activity of antioxidant enzymes, levels of redox markers in the leaves, and the structure and diversity of the rhizosphere microbiome. Soil with a pH 7.2 had a higher (47.8%) below-ground height versus soils of pH 5.5 at day 10; plant had a higher (11.3%) above-ground height in pH 7.2 soils than pH 9.0 soils at day 90; no differences in the fresh and dry weights of its above- and belowground parts, plant heights, and root lengths were observed in plants growing in acid, alkaline, or neutral pH soil were observed at day 180. Correspondingly, the antioxidant enzymes SOD (superoxide dismutase), POD (peroxidase), CAT (catalase) and redox markers GSH (glutathione) and MDA (malondialdehyde) were measured in the leaves. Significant differences existed in the activities of CAT and the levels of GSH between those growing in acidic and alkaline soils and those in neutral pH soil at day 90; however, only lower (36.8%) CAT activities in those grown at pH 5.5 than those grown at pH 7.2 were found at day 180. Similarly, significant differences in available P (16.89 vs 3.04 mg Kg-1) and total K (3.67 vs 0.96 mg Kg-1), total P (0.37 vs 0.25 g Kg-1) and total N (0.45 vs 1.09 g Kg-1) concentrations were found between the rhizosphere soils of A. adenophora grown at pH 9.0 and 7.2 at day 90; no such differences were seen at day 180. High throughput analyses of the 16S rRNA and ITS fragments showed that the rhizosphere microbiome diversity and composition under different soil pH conditions changed over 180 days. The rhizosphere microbiomes differed in diversity, phylum, and generic composition and population interactions under acid and alkaline conditions versus those grown in neutral soils. Soil pH had a greater impact on the diversity and composition of the prokaryotic rhizosphere communities than those of the fungal communities. A. adenophora responded successfully to pH stress by changing the diversity and composition of the rhizosphere microbiome to maintain a balanced nutrient supply to support its normal growth. The unusual pH tolerance of A. adenophora may be one crucial reason for its successful invasion. Our results suggest that attempts use soil pH to control its invasion by changing the soil pH (for example, using lime) will fail.
Collapse
Affiliation(s)
- Yun Xia
- Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming, Yunnan Province, China
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Junna Feng
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Hongbo Zhang
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Deyu Xiong
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Lingdong Kong
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Robert Seviour
- Microbiology Department, La Trobe University, Melbourne, Vic, Australia
| | - Yunhong Kong
- Kunming Key Laboratory of Hydro-ecology Restoration of Dianchi Lake, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Labouyrie M, Ballabio C, Romero F, Panagos P, Jones A, Tedersoo L, van der Heijden MGA, Orgiazzi A. Interaction effects of pH and land cover on soil microbial diversity are climate-dependent. Environ Microbiol 2024; 26:e16572. [PMID: 38195068 DOI: 10.1111/1462-2920.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Factors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi. We found that differences in microbial diversity and community composition between land cover types depended on the climatic region. In Atlantic, Boreal and Continental regions, microbial richness was higher in croplands and grasslands than woodlands while richness in Mediterranean areas did not vary significantly among land cover types. These differences were further related to soil pH, as a driver of bacterial and fungal richness in most climatic regions, but the interaction of pH with land cover depended on the region. Microbial community composition differed the most between croplands and woodlands in all regions, mainly due to differences in pH. In the Mediterranean region, bacterial communities in woodlands and grasslands were the most similar, whereas in other regions, grassland and cropland-associated bacteria showed more similarity. Overall, we showed that key factors interact in shaping soil microbial communities in a climate-dependent way at large scale.
Collapse
Affiliation(s)
- Maëva Labouyrie
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | | | - Ferran Romero
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Marcel G A van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- European Dynamics, Brussels, Belgium
| |
Collapse
|
7
|
Ramoneda J, Hoffert M, Stallard-Olivera E, Casamayor EO, Fierer N. Leveraging genomic information to predict environmental preferences of bacteria. THE ISME JOURNAL 2024; 18:wrae195. [PMID: 39361898 PMCID: PMC11488383 DOI: 10.1093/ismejo/wrae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e. bacterial growth responses across gradients in oxygen, pH, temperature, salinity, and other environmental conditions) for a relatively narrow swath of bacterial diversity. These limits to our understanding of bacterial ecologies constrain our ability to predict how assemblages will shift in response to global change factors, design effective probiotics, or guide cultivation efforts. We need innovative approaches that take advantage of expanding genome databases to accurately infer the environmental preferences of bacteria and validate the accuracy of these inferences. By doing so, we can broaden our quantitative understanding of the environmental preferences of the majority of bacterial taxa that remain uncharacterized. With this perspective, we highlight why it is important to infer environmental preferences from genomic information and discuss the range of potential strategies for doing so. In particular, we highlight concrete examples of how both cultivation-independent and cultivation-dependent approaches can be integrated with genomic data to develop predictive models. We also emphasize the limitations and pitfalls of these approaches and the specific knowledge gaps that need to be addressed to successfully expand our understanding of the environmental preferences of bacteria.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
| | - Michael Hoffert
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Elias Stallard-Olivera
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Emilio O Casamayor
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
8
|
Wen L, Peng Y, Zhou Y, Cai G, Lin Y, Li B. Effects of conservation tillage on soil enzyme activities of global cultivated land: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118904. [PMID: 37659371 DOI: 10.1016/j.jenvman.2023.118904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The negative impacts of conventional agriculture and the imperative to adopt conservation tillage garnered significant attention. However, the effects of conservation tillage on soil enzyme activities still lack comprehensive cognition. Here, we collected 14,308 pairwise observations from 369 publications worldwide to systematically evaluate the effects of different conservation tillage practices (reduced tillage (T), reduced tillage with straw return (TS), reduced tillage with straw mulch return (TSO), no-tillage (NT), no-tillage with straw return (NTS), and no-tillage with straw mulch return (NTSO)) on the activities of 35 enzymes in soil. The results showed that: (1) the effect of conservation tillage on soil enzyme activity varied by enzyme type, except for peroxidase (-12.34%), which showed an overall significant positive effect (10.28-89.76%); (2) the NTS and TS demonstrated strong potential to improve soil enzyme activities by increasing a wide variety of soil enzyme activities (12-15) and efficacy (9.76-75.56%) than other conservation tillage (8.60-68.68%); (3) in addition, the effect of conservation tillage on soil enzyme activity was regulated by soil depth, crop type, years of conservation tillage, climate (mean annual precipitation and temperature), and soil physicochemical properties (e.g., pH, bulk density, electrical conductivity, organic matter, ammonium nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, etc.). Overall, our quantitative analysis clearly suggests that conservation tillage is an effective measure for improving soil enzyme activity on global croplands, where combination of reduced tillage or no-till with straw return are considered to have great potential and promise. The results contribute to better comprehend the effects of conservation tillage on soil activity and provide a valuable insight for agricultural management.
Collapse
Affiliation(s)
- Linsheng Wen
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yun Peng
- Yuanzhou District Forestry Bureau, Yichun City, Jiangxi Province, 336000, China
| | - Yunrui Zhou
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Guo Cai
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yuying Lin
- School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China; Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou, 350117, China; School of Culture, Tourism and Public Administration, Fujian Normal University, Fuzhou, 350117, China; The Higher Educational Key Laboratory for Smart Tourism of Fujian Province, Fuzhou, 350007, China.
| | - Baoyin Li
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
9
|
Tarnowski MJ, Varliero G, Scown J, Phelps E, Gorochowski TE. Soil as a transdisciplinary research catalyst: from bioprospecting to biorespecting. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230963. [PMID: 38026022 PMCID: PMC10646459 DOI: 10.1098/rsos.230963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The vast microbial biodiversity of soils is beginning to be observed and understood by applying modern DNA sequencing techniques. However, ensuring this potentially valuable information is used in a fair and equitable way remains a challenge. Here, we present a public engagement project that explores this topic through collaborative research of soil microbiomes at six urban locations using nanopore-based DNA sequencing. The project brought together researchers from the disciplines of synthetic biology, environmental humanities and microbial ecology, as well as school students aged 14-16 years old, to gain a broader understanding of views on the use of data from the environment. Discussions led to the transformation of 'bioprospecting', a metaphor with extractive connotations which is often used to frame environmental DNA sequencing studies, towards a more collaborative approach-'biorespecting'. This shift in terminology acknowledges that genetic information contained in soil arises as a result of entire ecosystems, including the people involved in its creation. Therefore, any use of sequence information should be accountable to the ecosystems from which it arose. As knowledge can arise from ecosystems and communities, science and technology should acknowledge this link and reciprocate with care and benefit-sharing to help improve the wellbeing of future generations.
Collapse
Affiliation(s)
- Matthew J. Tarnowski
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Biosciences, Geography and Physics, Swansea University, Swansea SA2 8PP, UK
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Jim Scown
- Humanities and Social Sciences, University of Exeter, Cornwall TR10 9FE, UK
| | - Emily Phelps
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas E. Gorochowski
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
10
|
Malard LA, Guisan A. Into the microbial niche. Trends Ecol Evol 2023; 38:936-945. [PMID: 37236880 DOI: 10.1016/j.tree.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
The environmental niche concept describes the distribution of a taxon in the environment and can be used to understand community dynamics, biological invasions, and the impact of environmental changes. The uses and applications are still restricted in microbial ecology, largely due to the complexity of microbial systems and associated methodological limitations. The development of shotgun metagenomics and metatranscriptomics opens new ways to investigate the microbial niche by focusing on the metabolic niche within the environmental space. Here, we propose the metabolic niche framework, which, by defining the fundamental and realised metabolic niche of microorganisms, has the potential to not only provide novel insights into habitat preferences and the metabolism associated, but also to inform on metabolic plasticity, niche shifts, and microbial invasions.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Chi Y, Song S, Xiong K. Effects of different grassland use patterns on soil bacterial communities in the karst desertification areas. Front Microbiol 2023; 14:1208971. [PMID: 37720153 PMCID: PMC10500843 DOI: 10.3389/fmicb.2023.1208971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Soil bacteria are closely related to soil environmental factors, and their community structure is an important indicator of ecosystem health and sustainability. A large number of artificial grasslands have been established to control rocky desertification in the karst areas of southern China, but the influence of different use patterns on the soil bacterial community in artificial grasslands is not clear. In this study, three grassland use patterns [i.e., grazing (GG), mowing (MG), and enclosure (EG)] were used to investigate the effects of different use patterns on the soil bacterial community in artificial grassland by using 16S rDNA Illumina sequencing and 12 soil environmental indicators. It was found that, compared with EG, GG significantly changed soil pH, increased alkaline hydrolyzable nitrogen (AN) content (P < 0.05), and decreased soil total phosphorus (TP) content (P < 0.05). However, MG significantly decreased the contents of soil organic carbon (SOC), total phosphorus (TP), available nitrogen (AN), ammonium nitrogen (NH4+-N), β-1,4-glucosidase (BG), and N-acetyl-β-D-glucamosonidase (NAG) (P < 0.05). The relative abundance of chemoheterotrophy was significantly decreased by GG and MG (P < 0.05). GG significantly increased the relative abundance of Acidobacteria and Gemmatimonadota (P < 0.05) and significantly decreased the relative abundance of Proteobacteria (P < 0.05), but the richness index (Chao 1) and diversity index (Shannon) of the bacterial community in GG, MG, and EG were not significantly different (P > 0.05). The pH (R2 = 0.79, P = 0.029) was the main factor affecting the bacterial community structure. This finding can provide a scientific reference for ecological restoration and sustainable utilization of grasslands in the karst desertification areas.
Collapse
Affiliation(s)
- Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Karst Desertification Control and Eco-Industry, Guiyang, China
| | - Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Karst Desertification Control and Eco-Industry, Guiyang, China
| |
Collapse
|
12
|
Li Y, Shi C, Wei D, Ding J, Xu N, Jin L, Wang L. Associations of soil bacterial diversity and function with plant diversity in Carex tussock wetland. Front Microbiol 2023; 14:1142052. [PMID: 37089570 PMCID: PMC10115198 DOI: 10.3389/fmicb.2023.1142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Some species of Carex can form tussocks, which are usually distributed in valleys and flood plains. The soil microbial community diversity and function of micro–habitats formed by tussocks are associated with plant diversity, and research on these associations can guide Carex tussock wetland restoration. In this study, we selected tussock wetlands dominated by Carex appendiculata, including natural wetlands (NW), artificially restored wetlands (ARW), and naturally restored wetlands (NRW), and investigated plant diversity. Soil samples were collected from the quadrats of each sample plot with the maximum (ma), median (me), and minimum (mi) plant Shannon index values, and high-throughput sequencing was used to analyze the bacterial community composition, diversity, and functions. The plant diversity indexes of neither ARW nor NRW significantly differed from that of NW, but the companion species in NRW were hygrophytes and mesophytes, in contrast to only hygrophytes serving as companion species in NW and ARW. The soil bacterial communities at the operational taxonomic unit level of the nine quadrats with different plant Shannon index values significantly (p < 0.01) differed. The relative abundances of the dominant phyla (Proteobacteria, Chloroflexi, and Bacteroidetes) and the dominant genera (Geobacter, Sideroxydans, and Clostridium except for unassigned genera) significantly (p < 0.05) differed under the different levels of plant diversity. The plant Shannon index, soil moisture content, total organic carbon, N, and P were significantly (p < 0.05 or p < 0.01) correlated with the bacterial Shannon index. The phylogenetic diversity of the bacterial community in NW was significantly (p < 0.0001) different from those in ARW and NRW, and that in ARW was also significantly (p < 0.05) different from that in NRW. The functional groups of bacterial communities associated with plant diversity. In the NWme, ARWme, and NRWme bacterial communities, the relative proportions of functional groups related to soil N cycle were higher, but those related to soil S and C cycles were lower. Considering the rehabilitation of both plant and microbial communities, the methods used for establishing the ARW are recommended for Carex tussock wetland restoration.
Collapse
Affiliation(s)
- Yan Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanqi Shi
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Dan Wei,
| | - Junnan Ding
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Nan Xu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Liang Jin
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Lei Wang,
| |
Collapse
|
13
|
An Y, Sun H, Zhang W, Sun Y, Li S, Yu Z, Yang R, Hu T, Yang P. Distinct rhizosphere soil responses to nitrogen in relation to microbial biomass and community composition at initial flowering stages of alfalfa cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:938865. [PMID: 36092415 PMCID: PMC9449485 DOI: 10.3389/fpls.2022.938865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In the long-term growth process, alfalfa rhizosphere forms specific microbiome to provide nutrition for its growth and development. However, the effects of different perennial alfalfa cultivars on changes in the rhizosphere soil characteristics and microbiome are not well understood. In this study, 12 perennial alfalfa cultivars were grown continuously for eight years. Rhizosphere samples were tested using Illumina sequencing of the 16S rRNA gene coupled with co-occurrence network analysis to explore the relationship between alfalfa (biomass and crude protein content), soil properties, and the microbial composition and diversity. Redundancy analysis showed SOC and pH had the greatest impact on the composition of the rhizosphere microbial community. Moreover, microbial diversity also contributes to microbial composition. Soil properties (AP, EC, SOC and pH) exhibited a significant positive correlation with soil bacterial communities, which was attributed to the differences between plant cultivars. Partial least squares path modeling (PLS-PM) revealed that microbial biomass and community composition rather than diversity, are the dominant determinants in the rhizosphere soil nitrogen content of perennial alfalfa. Our findings demonstrate that the soil microbial biomass and composition of rhizosphere bacterial communities are strongly affected by cultivar, driving the changes in soil nitrogen content, and variances in the selective capacities of plants.
Collapse
Affiliation(s)
- Yunru An
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Wei Zhang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Yunfu Sun
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Shuxia Li
- College of Agricultural, Ningxia University, Yinchuan, China
| | - Zhouchang Yu
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
Viitamäki S, Pessi IS, Virkkala AM, Niittynen P, Kemppinen J, Eronen-Rasimus E, Luoto M, Hultman J. The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiol Ecol 2022; 98:fiac079. [PMID: 35776963 PMCID: PMC9341781 DOI: 10.1093/femsec/fiac079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Due to climate change, increased microbial activity in high-latitude soils may lead to higher greenhouse gas (GHG) emissions. However, microbial GHG production and consumption mechanisms in tundra soils are not thoroughly understood. To investigate how the diversity and functional potential of bacterial and archaeal communities vary across vegetation types and soil layers, we analyzed 116 soil metatranscriptomes from 73 sites in the Finnish sub-Arctic. Meadow soils were characterized by higher pH and lower soil organic matter (SOM) and carbon/nitrogen ratio. By contrast, dwarf shrub-dominated ecosystems had higher SOM and lower pH. Although Actinobacteria, Acidobacteria, Alphaproteobacteria and Planctomycetes were dominant in all communities, there were significant differences at the genus level between vegetation types; plant polymer-degrading groups were more active in shrub-dominated soils than in meadows. Given that climate-change scenarios predict the expansion of shrubs at high latitudes, our results indicate that tundra soil microbial communities harbor potential decomposers of increased plant litter, which may affect the rate of carbon turnover in tundra soils. Additionally, transcripts of methanotrophs were detected in the mineral layer of all soils, which may moderate methane fluxes. This study provides new insights into possible shifts in tundra microbial diversity and activity due to climate change.
Collapse
Affiliation(s)
- Sirja Viitamäki
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
| | - Igor S Pessi
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
| | - Anna-Maria Virkkala
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
- Woodwell Climate Research Center, MA, 02540-1644, USA
| | - Pekka Niittynen
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
| | - Julia Kemppinen
- Geography Research Unit, 90014 University of Oulu, Oulu, Finland
| | - Eeva Eronen-Rasimus
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790, Helsinki, Finland
| | - Miska Luoto
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
- Soil Ecosystems Group, Natural Resources Institute Finland, 00790 Helsinki, Finland
| |
Collapse
|
15
|
Wang J, Hu A, Meng F, Zhao W, Yang Y, Soininen J, Shen J, Zhou J. Embracing mountain microbiome and ecosystem functions under global change. THE NEW PHYTOLOGIST 2022; 234:1987-2002. [PMID: 35211983 DOI: 10.1111/nph.18051] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Mountains are pivotal to maintaining habitat heterogeneity, global biodiversity, ecosystem functions and services to humans. They have provided classic model natural systems for plant and animal diversity gradient studies for over 250 years. In the recent decade, the exploration of microorganisms on mountainsides has also achieved substantial progress. Here, we review the literature on microbial diversity across taxonomic groups and ecosystem types on global mountains. Microbial community shows climatic zonation with orderly successions along elevational gradients, which are largely consistent with traditional climatic hypotheses. However, elevational patterns are complicated for species richness without general rules in terrestrial and aquatic environments and are driven mainly by deterministic processes caused by abiotic and biotic factors. We see a major shift from documenting patterns of biodiversity towards identifying the mechanisms that shape microbial biogeographical patterns and how these patterns vary under global change by the inclusion of novel ecological theories, frameworks and approaches. We thus propose key questions and cutting-edge perspectives to advance future research in mountain microbial biogeography by focusing on biodiversity hypotheses, incorporating meta-ecosystem framework and novel key drivers, adapting recently developed approaches in trait-based ecology and manipulative field experiments, disentangling biodiversity-ecosystem functioning relationships and finally modelling and predicting their global change responses.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Fanfan Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqian Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|