1
|
Dedman CJ, Chauhan N, González-Lanchas A, Baldreki C, Dowle AA, Larson TR, Lee RBY, Rickaby REM. Exploring proteins within the coccolith matrix. Sci Rep 2024; 14:31821. [PMID: 39738514 DOI: 10.1038/s41598-024-83052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown. In this study, we report on the presence and functional features of proteins within the coccoliths produced by a range of model coccolithophore species including: the globally abundant and well-studied Gephyrocapsa huxleyi (formerly Emiliania huxleyi) and related Gephyrocapsa oceanica, as well as the larger and more heavily calcified Coccolithus braarudii. Protein features were compared between species and against biomineralisation proteins previously identified in other marine calcifying organisms. Notably, several protein features were consistently seen across the examined coccolithophore species, including the cell signalling 14-3-3 domain, chromosome segregation SMC ATPase domain, as well as proteins involved in protein processing and protease inhibition. The copper-binding cupredoxin domain was observed in both Gephyrocapsa species, as well as other marine calcifiers, suggestive of a requirement of Cu in biomineralisation. Building consensus with existing work, we highlight the pentapeptide repeat as a feature which is associated with the coccolith matrix, being identified in all three examined species, and propose that this structural motif may play a role in controlling coccolith growth. This preliminary study provides insight towards the functional diversity of calcification machinery in coccolithophores and presents a number of candidates for future research towards understanding the biochemical controls which direct coccolithogenesis.
Collapse
Affiliation(s)
- Craig J Dedman
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
- School of Geography, Earth and Environmental Sciences, Portland Square, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Nishant Chauhan
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Alba González-Lanchas
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Chloë Baldreki
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Adam A Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Tony R Larson
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Renee B Y Lee
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6UB, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| |
Collapse
|
2
|
Perrin AJ, Dorrell RG. Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis. BMC Biol 2024; 22:279. [PMID: 39617895 PMCID: PMC11610311 DOI: 10.1186/s12915-024-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Eukaryotic microorganisms, or "protists," while often inconspicuous, play fundamental roles in the Earth ecosystem, ranging from primary production and nutrient cycling to interactions with human health and society. In the backdrop of accelerating climate dysregulation, alongside anthropogenic disruption of natural ecosystems, understanding changes to protist functional and ecological diversity is of critical importance. In this review, we outline why protists matter to our understanding of the global ecosystem and challenges of predicting protist species resilience and fragility to climate change. Finally, we reflect on how protistology may adapt and evolve in a present and future characterized by rapid ecological change.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Université, Paris, Sorbonne, 75005, France.
| |
Collapse
|
3
|
Duchin Rapp Y, Lipsman V, Yuda L, Kublanov IV, Matsliyah D, Segev E. Algal exudates promote conjugation in marine Roseobacters. mBio 2024; 15:e0106224. [PMID: 39189747 PMCID: PMC11481893 DOI: 10.1128/mbio.01062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Horizontal gene transfer (HGT) is a pivotal mechanism driving bacterial evolution, conferring adaptability within dynamic marine ecosystems. Among HGT mechanisms, conjugation mediated by type IV secretion systems (T4SSs) plays a central role in the ecological success of marine bacteria. However, the conditions promoting conjugation events in the marine environment are not well-understood. Roseobacters, abundant marine bacteria commonly associated with algae, possess a multitude of T4SSs. Many Roseobacters are heterotrophic bacteria that rely on algal secreted compounds to support their growth. These compounds attract bacteria, facilitating colonization and attachment to algal cells. Algae and their metabolites bring bacteria into close proximity, potentially promoting bacterial HGT. Investigation across various Roseobacters revealed that algal exudates indeed enhance plasmid transfer through conjugation. While algal exudates do not influence the transcription of bacterial conjugative machinery genes, they promote bacterial attachment, potentially stabilizing proximity and facilitating HGT. Notably, under conditions where attachment is less advantageous, the impact of algal exudates on conjugation is reduced. These findings suggest that algae enhance bacterial conjugation primarily by fostering attachment and highlight the importance of studying bacterial HGT within the context of algal-bacterial interactions. IMPORTANCE This study explores how algal-bacterial interactions influence horizontal gene transfer (HGT) among marine bacteria. HGT, a key driver of bacterial evolution, is facilitated by conjugation mediated by type IV secretion systems (T4SSs). Through investigating Roseobacters, abundant marine bacteria often found to be associated with algae, the study reveals that algal exudates enhance plasmid transfer via conjugation. This enhancement is attributed to the promotion of bacterial attachment by algal compounds, emphasizing the role of algal-bacterial interactions in shaping genetic exchange within dynamic marine ecosystems. Understanding these mechanisms is crucial for elucidating bacterial adaptability and evolution in the marine environment.
Collapse
Affiliation(s)
- Yemima Duchin Rapp
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya V. Kublanov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Matsliyah
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Sheward RM, Poulton AJ, Young JR, de Vries J, Monteiro FM, Herrle JO. Cellular morphological trait dataset for extant coccolithophores from the Atlantic Ocean. Sci Data 2024; 11:720. [PMID: 38956105 PMCID: PMC11220069 DOI: 10.1038/s41597-024-03544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Calcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250-300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.
Collapse
Affiliation(s)
- Rosie M Sheward
- Institute for Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Alex J Poulton
- The Lyell Centre for Earth and Marine Science, Heriot-Watt University, Edinburgh, UK
| | - Jeremy R Young
- Department of Earth Sciences, University College London, London, UK
| | - Joost de Vries
- BRIDGE, School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Fanny M Monteiro
- BRIDGE, School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jens O Herrle
- Institute for Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BIK-F), Frankfurt am Main, Germany
| |
Collapse
|
5
|
Graff van Creveld S, Coesel SN, Schatz MJ, Armbrust EV. New eukaryotic phytoplankton isolates from the oligotrophic tropical Pacific Ocean. JOURNAL OF PHYCOLOGY 2024; 60:598-603. [PMID: 38625734 DOI: 10.1111/jpy.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Affiliation(s)
| | - Sacha N Coesel
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Megan J Schatz
- School of Oceanography, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Ye J, Wang Y, Li Q, Hussain S, Chen S, Zhou X, Hou S, Feng Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. BIOLOGY 2024; 13:310. [PMID: 38785792 PMCID: PMC11117637 DOI: 10.3390/biology13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear. In this study, we conducted a series of phagocytosis experiments of calcified diploid and non-calcified haploid strains of coccolithophore Gephyrocapsa huxleyi under light and dark conditions. The phagocytosis capability of each strain was examined based on characteristic fluorescent signals from ingested beads using flow cytometry and fluorescence microscopy. The results show a significantly higher phagocytosis percentage on fluorescent beads in the bacterial prey surrogates of the non-calcified haploid Gephyrocapsa huxleyi strain, than the calcified diploid strain with or without light. In addition, the non-calcified diploid cells seemingly to presented a much higher phagocytosis percentage in darkness than under light. The differential phagocytosis capacities between the calcified diploid and non-calcified haploid Gephyrocapsa huxleyi strains indicate potential distinct nutritional strategies at different coccolithophore life and calcifying stages, which may further shed light on the potential strategies that coccolithophore possesses in unfavorable environments such as twilight zones and the expanding coccolithophore niches in the natural marine environment under the climate change scenario.
Collapse
Affiliation(s)
- Jiayang Ye
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| | - Ying Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Qian Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Sarfraz Hussain
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
| | - Xunying Zhou
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengwei Hou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
7
|
Lipsman V, Shlakhter O, Rocha J, Segev E. Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix. NPJ Biofilms Microbiomes 2024; 10:36. [PMID: 38561371 PMCID: PMC10984933 DOI: 10.1038/s41522-024-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.
Collapse
Affiliation(s)
- Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Olesia Shlakhter
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jorge Rocha
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096, México
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
8
|
Lang-Yona N, Flores JM, Nir-Zadock TS, Nussbaum I, Koren I, Vardi A. Impact of airborne algicidal bacteria on marine phytoplankton blooms. THE ISME JOURNAL 2024; 18:wrae016. [PMID: 38442732 PMCID: PMC10944695 DOI: 10.1093/ismejo/wrae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Ocean microbes are involved in global processes such as nutrient and carbon cycling. Recent studies indicated diverse modes of algal-bacterial interactions, including mutualism and pathogenicity, which have a substantial impact on ecology and oceanic carbon sequestration, and hence, on climate. However, the airborne dispersal and pathogenicity of bacteria in the marine ecosystem remained elusive. Here, we isolated an airborne algicidal bacterium, Roseovarius nubinhibens, emitted to the atmosphere as primary marine aerosol (referred also as sea spray aerosols) and collected above a coccolithophore bloom in the North Atlantic Ocean. The aerosolized bacteria retained infective properties and induced lysis of Gephyrocapsa huxleyi cultures.This suggests that the transport of marine bacteria through the atmosphere can effectively spread infection agents over vast oceanic regions, highlighting its significance in regulating the cell fate in algal blooms.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Technion - Israel Institute of Technology, Environmental, Water and Agricultural Engineering, Haifa 3200003, Israel
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Sharon Nir-Zadock
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Nussbaum
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Koren
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Xu Y, Leung SKK, Li TMW, Yung CCM. Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton. THE ISME JOURNAL 2024; 18:wrae163. [PMID: 39141834 PMCID: PMC11409870 DOI: 10.1093/ismejo/wrae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Marine eukaryotic phytoplankton are fundamental to the marine food web, yet the lack of reference genomes or just a single genome representing a taxon has led to an underestimation of their taxonomic, adaptive, and functional diversity. Here, we integrated strain isolation with metagenomic binning to recover genomes from the cosmopolitan picophytoplankton genus Bathycoccus, traditionally considered monospecific. Our recovery and analysis of 37 Bathycoccus genomes delineated their global genomic diversity and established four evolutionary clades (BI, BII, BIII, BIV). Our metagenomic abundance survey revealed well-differentiated ecological niches and distinct biogeographic distributions for each clade, predominantly shaped by temperature, salinity, and nutrient availability. Comparative genomics analyses further revealed clade-specific genomic traits that underpin niche adaptation and contribute to the global prevalence of Bathycoccus. Our findings underscore temperature as a major driver of genome diversification in this genus, with clade divergences coinciding with major paleoclimatic events that influenced their contemporary thermal niches. Moreover, the unique enrichment of C2H2 zinc finger and ankyrin repeat gene families in polar-adapted clades suggests previously unrecognized cold-adaptation mechanisms in marine eukaryotic phytoplankton. Our study offers a comprehensive genomic landscape of this crucial eukaryotic picophytoplankton, providing insights into their microdiversity and adaptive evolution in response to changing environments.
Collapse
Affiliation(s)
- Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Shara K K Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Taylor M W Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
10
|
Avrahami EM, Eyal Z, Varsano N, Zagoriy I, Mahamid J, Gal A. Transport-Limited Growth of Coccolith Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309547. [PMID: 38088507 DOI: 10.1002/adma.202309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Indexed: 12/22/2023]
Abstract
Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures. Here, a suite of state-of-the-art electron microscopies is used to follow both the growth trajectories of the crystals ex situ, and the cellular environment in situ, in the species Emiliania huxleyi. It is shown that crystal growth alternates between a space filling and a skeletonized growth mode, where the crystals elongate via their stable crystallographic facets, but the final morphology is a manifestation of growth arrest. This process is reminiscent of the balance between reaction-limited and transport-limited growth regimes underlying snowflake formation. It is suggested that localized ion transport regulates the kinetic instabilities that are required for transport-limited growth, leading to reproducible morphologies.
Collapse
Affiliation(s)
- Emanuel M Avrahami
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Zohar Eyal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
11
|
Wheeler GL, Sturm D, Langer G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. JOURNAL OF PHYCOLOGY 2023; 59:1123-1129. [PMID: 37983837 DOI: 10.1111/jpy.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Coccolithophores are the most abundant calcifying organisms in modern oceans and are important primary producers in many marine ecosystems. Their ability to generate a cellular covering of calcium carbonate plates (coccoliths) plays a major role in marine biogeochemistry and the global carbon cycle. Coccolithophores also play an important role in sulfur cycling through the production of the climate-active gas dimethyl sulfide. The primary model organism for coccolithophore research is Emiliania huxleyi, now named Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying coastal and oceanic environments across the globe, and is the most abundant coccolithophore in modern oceans. Research in G. huxleyi has identified many aspects of coccolithophore biology, from cell biology to ecological interactions. In this perspective, we summarize the key advances made using G. huxleyi and examine the emerging tools for research in this model organism. We discuss the key steps that need to be taken by the research community to advance G. huxleyi as a model organism and the suitability of other species as models for specific aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Glen L Wheeler
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Daniela Sturm
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Archontikis OA, Millán JG, Andruleit H, Cros L, Kleijne A, Heldal M, Doan-Nhu H, Winter A, Blanco-Bercial L, Young JR. Taxonomy and morphology of Calciopappus curvus sp. nov. (Syracosphaeraceae, Prymnesiophyceae), a novel appendage-bearing coccolithophore. Protist 2023; 174:125983. [PMID: 37573812 DOI: 10.1016/j.protis.2023.125983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
Based on scanning electron microscopy observations, a new species of the coccolithophore genus Calciopappus (Syracosphaeraceae, Prymnesiophyceae) is described from the surface waters off Bergen and from the lower photic zone of sub-tropical and tropical waters. Morphological, coccolith rim structure and biometric analyses strongly support separation of this morphotype from the two described Calciopappus species, but inclusion of it within the genus. The new form differs from the other species in being noticeably smaller and in morpho-structural details of each of the three coccolith types that form the coccosphere: (1) the body coccoliths have an open central area; (2) the whorl coccoliths have a wide central opening and two thumb-like protrusions; and (3) the appendage coccoliths are curved. On this basis, the species is formally described as Calciopappus curvus sp. nov., its systematic affinity is discussed and compared with other extant coccolithophores.
Collapse
Affiliation(s)
- Odysseas A Archontikis
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Josué G Millán
- Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA
| | - Harald Andruleit
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Lluïsa Cros
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Annelies Kleijne
- Plankton Diversity and Evolution Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Mikal Heldal
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5020 Bergen, Norway
| | - Hai Doan-Nhu
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Nha Trang, Viet Nam
| | - Amos Winter
- Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA
| | - Leocadio Blanco-Bercial
- Bermuda Institute of Ocean Sciences - Arizona State University, 17 Biological Station, St. George's GE01, Bermuda
| | - Jeremy R Young
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
13
|
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, Yuda L, Cohen B, Carmieli R, Ben-Dor S, Rocha J, Huang Zhang I, Babbin AR, Segev E. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. THE ISME JOURNAL 2023:10.1038/s41396-023-01427-8. [PMID: 37173383 DOI: 10.1038/s41396-023-01427-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions between Phaeobacter inhibens bacteria and Gephyrocapsa huxleyi algae are mediated through inorganic nitrogen exchange. Under oxygen-rich conditions, aerobic bacteria reduce algal-secreted nitrite to nitric oxide (NO) through denitrification, a well-studied anaerobic respiratory mechanism. The bacterial NO is involved in triggering a cascade in algae akin to programmed cell death. During death, algae further generate NO, thereby propagating the signal in the algal population. Eventually, the algal population collapses, similar to the sudden demise of oceanic algal blooms. Our study suggests that the exchange of inorganic nitrogen species in oxygenated environments is a potentially significant route of microbial communication within and across kingdoms.
Collapse
Affiliation(s)
- Adi Abada
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Beiralas
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Delia Narvaez
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yemima Duchin-Rapp
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bar Cohen
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raanan Carmieli
- Depertment of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Rocha
- CIDEA Consortium Conacyt-Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Irene Huang Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Einat Segev
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|