1
|
Golan J, Wang YW, Adams CA, Cross H, Elmore H, Gardes M, Gonçalves SC, Hess J, Richard F, Wolfe B, Pringle A. Death caps (Amanita phalloides) frequently establish from sexual spores, but individuals can grow large and live for more than a decade in invaded forests. THE NEW PHYTOLOGIST 2024; 242:1753-1770. [PMID: 38146206 DOI: 10.1111/nph.19483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Global change is reshaping Earth's biodiversity, but the changing distributions of nonpathogenic fungi remain largely undocumented, as do mechanisms enabling invasions. The ectomycorrhizal Amanita phalloides is native to Europe and invasive in North America. Using population genetics and genomics, we sought to describe the life history traits of this successfully invading symbiotic fungus. To test whether death caps spread underground using hyphae, or aboveground using sexual spores, we mapped and genotyped mushrooms from European and US sites. Larger genetic individuals (genets) would suggest spread mediated by vegetative growth, while many small genets would suggest dispersal mediated by spores. To test whether genets are ephemeral or persistent, we also sampled from populations over time. At nearly every site and across all time points, mushrooms resolve into small genets. Individuals frequently establish from sexual spores. But at one Californian site, a single individual measuring nearly 10 m across dominated. At two Californian sites, the same genetic individuals were discovered in 2004, 2014, and 2015, suggesting single individuals (both large and small) can reproduce repeatedly over relatively long timescales. A flexible life history strategy combining both mycelial growth and spore dispersal appears to underpin the invasion of this deadly perennial ectomycorrhizal fungus.
Collapse
Affiliation(s)
- Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yen-Wen Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Catharine A Adams
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Hugh Cross
- National Ecological Observatory Network-Battelle, 1685 38th, Suite 100, Boulder, CO, 80301, USA
| | - Holly Elmore
- Rethink Priorities, 530 Divisadero St. PMB #796, San Francisco, CA, 94117, USA
| | - Monique Gardes
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174 UPS-CNRS-IRD, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex, F-31062, France
| | - Susana C Gonçalves
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, 3000-456, Portugal
| | | | - Franck Richard
- CEFE, Université de Montpellier - CNRS - EPHE - IRD, 1919 route de Mende, F-34293, Montpellier Cedex 5, France
| | - Benjamin Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Nickles GR, Oestereicher B, Keller NP, Drott M. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res 2023; 51:7220-7235. [PMID: 37427794 PMCID: PMC10415135 DOI: 10.1093/nar/gkad573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We amalgamated a pipeline of tools to predict BGCs based on shared promoter motifs and located 3800 ICS BGCs in 3300 genomes, making ICS BGCs the fifth largest class of specialized metabolites compared to canonical classes found by antiSMASH. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1/2 gene cluster family (GCF), which was prior only studied in yeast, is present in ∼30% of all Ascomycetes. The dit variety ICS exhibits greater similarity to bacterial ICS than other fungal ICS, suggesting a potential convergence of the ICS backbone domain. The evolutionary origins of the dit GCF in Ascomycota are ancient and these genes are diversifying in some lineages. Our results create a roadmap for future research into ICS BGCs. We developed a website (https://isocyanides.fungi.wisc.edu/) that facilitates the exploration and downloading of all identified fungal ICS BGCs and GCFs.
Collapse
Affiliation(s)
- Grant R Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Milton T Drott
- USDA-ARS Cereal Disease Lab (CDL), St. Paul, MN 55108, USA
| |
Collapse
|