1
|
Ayadi S, Merhaben S, Hadj Kacem L, Rammeh S, Mensi A, Belhadj Mabrouk E, Zaimi Y, Mouelhi L. Infliximab-induced autoimmune-like hepatitis in a patient with Crohn's disease: a case report. Future Sci OA 2025; 11:2482496. [PMID: 40166860 DOI: 10.1080/20565623.2025.2482496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
As medical treatments advance, drug-induced liver injury (DILI) becomes more prevalent, occurring at a rate of 14 to 19 cases per 100,000 individuals. We present a unique case of a female patient with Crohn's disease developing autoimmune-like hepatitis during infliximab treatment. Autoimmune-like hepatitis can pose diagnostic challenges when distinguishing it from idiopathic autoimmune hepatitis. The diagnostic journey, including the absence of distinct pathognomonic criteria, is discussed. The only discriminative factor observed was the absence of relapse in autoimmune-like hepatitis patients after discontinuation of immuno-suppressive therapy. The case highlights the importance of recognizing this adverse event in clinical practice and underscores the challenges in balancing the benefits and risks of powerful immunomodulatory agents.
Collapse
Affiliation(s)
- Shema Ayadi
- Gastroenterology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Salma Merhaben
- Gastroenterology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Linda Hadj Kacem
- Histopathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Histopathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Asma Mensi
- Gastroenterology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Yosra Zaimi
- Gastroenterology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Leila Mouelhi
- Gastroenterology Department, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
2
|
Yao S, Prates K, Freydenzon A, Assante G, McRae AF, Morris MJ, Youngson NA. Liver-specific deletion of de novo DNA methyltransferases protects against glucose intolerance in high-fat diet-fed male mice. FASEB J 2024; 38:e23690. [PMID: 38795327 DOI: 10.1096/fj.202301546rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.
Collapse
Affiliation(s)
- S Yao
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K Prates
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - A Freydenzon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - G Assante
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M J Morris
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - N A Youngson
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
4
|
Singh S, Kumar PVSNK, Kumar JP, Tomo S, Yadav D, Sharma P, Rao M, Banerjee M. Genetic and Epigenetic Basis of Drug-Induced Liver Injury. Semin Liver Dis 2023; 43:163-175. [PMID: 37225145 DOI: 10.1055/a-2097-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug-induced liver injury (DILI) is a rare but severe adverse drug reaction seen in pharmacotherapy and a major cause of postmarketing drug withdrawals. Advances in genome-wide studies indicate that genetic and epigenetic diversity can lead to inter-individual differences in drug response and toxicity. It is necessary to identify how the genetic variations, in the presence of environmental factors, can contribute to development and progression of DILI. Studies on microRNA, histone modification, DNA methylation, and single nucleotide polymorphisms related to DILI were retrieved from databases and were analyzed for the current research and updated to develop this narrative review. We have compiled some of the major genetic, epigenetic, and pharmacogenetic factors leading to DILI. Many validated genetic risk factors of DILI, such as variants of drug-metabolizing enzymes, HLA alleles, and some transporters were identified. In conclusion, these studies provide useful information in risk alleles identification and on implementation of personalized medicine.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - J Pradeep Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges. Mol Biol Rep 2022; 49:11403-11408. [PMID: 35960410 DOI: 10.1007/s11033-022-07713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/15/2022]
Abstract
Hepatic fibrosis is a pathological reaction of tissue damage and repair caused by various pathogenic factors acting on liver. At present, there is no effective anti-fibrotic specific therapy. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (dCas9) system is a new generation of gene editing technology. The CRISPR/dCas9 system provides a platform for studying site-specific transcriptional regulation, which has high efficiency in gene transcriptional activation for achieving robust. This system holds promise for hepatic fibrosis therapy via acting on liver fibrosis effector cells. However, there are some challenges associated with this novel technology, such as large structural variants at on-target, off-target sites, and targeted delivery efficiency. In this review, we present the potential implications and describe the challenges of CRISPR/dCas9 system that might be encountered in hepatic fibrosis therapy.
Collapse
|
6
|
Hao X, Li Y, Bian J, Zhang Y, He S, Yu F, Feng Y, Huang L. Impact of DNA methylation on ADME gene expression, drug disposition and efficacy. Drug Metab Rev 2022; 54:194-206. [PMID: 35412942 DOI: 10.1080/03602532.2022.2064488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interindividual differences in drug response have always existed in clinical treatment. Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) play an important role in the process of pharmacokinetics. The effects of genetic polymorphism and nuclear receptors on the expression of drug metabolism enzymes and transporters can only explain some individual differences in clinical treatment. Several key ADME genes have been demonstrated to be regulated by epigenetic mechanisms that can potentially affect interindividual variability in medical treatment. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug response. Among them, the most studied is anti-tumor drugs, and followed by anti-tuberculous and anti-platelet drugs. Therefore, we provide an epigenetics perspective on variability in drug response. The review summarizes the correlation between ADME gene expression and DNA methylation, including the exact methylation locations, and focuses on the corresponding drug disposition and effects to illuminate interindividual differences in clinical medication.
Collapse
Affiliation(s)
- Xu Hao
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jialu Bian
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Shiyu He
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Feng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| |
Collapse
|
7
|
Shao Q, Mao X, Zhou Z, Huai C, Li Z. Research Progress of Pharmacogenomics in Drug-Induced Liver Injury. Front Pharmacol 2021; 12:735260. [PMID: 34552491 PMCID: PMC8450320 DOI: 10.3389/fphar.2021.735260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Drug-induced liver injury (DILI) is a common and serious adverse drug reaction with insufficient clinical diagnostic strategies and treatment methods. The only clinically well-received method is the Roussel UCLAF Causality Assessment Method scale, which can be applied to both individuals and prospective or retrospective studies. However, in severe cases, patients with DILI still would develop acute liver failure or even death. Pharmacogenomics, a powerful tool to achieve precision medicine, has been used to study the polymorphism of DILI related genes. Summary: We summarized the pathogenesis of DILI and findings on associated genes and variations with DILI, including but not limited to HLA genes, drug metabolizing enzymes, and transporters genes, and pointed out further fields for DILI related pharmacogenomics study to provide references for DILI clinical diagnosis and treatment. Key Messages: At present, most of the studies are mainly limited to CGS and GWAS, and there is still a long way to achieve clinical transformation. DNA methylation could be a new consideration, and ethnic differences and special populations also deserve attention.
Collapse
Affiliation(s)
- Qihui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Mao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Zhou
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Heintze T, Klein K, Hofmann U, Zanger UM. Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells. Sci Rep 2021; 11:1000. [PMID: 33441761 PMCID: PMC7806635 DOI: 10.1038/s41598-020-79952-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
HepaRG cells are increasingly accepted as model for human drug metabolism and other hepatic functions. We used lentiviral transduction of undifferentiated HepaRG cells to deliver Cas9 and two alternative sgRNAs targeted at NADPH:cytochrome P450 oxidoreductase (POR), the obligate electron donor for microsomal cytochromes P450 (CYP). Cas9-expressing HepaRGVC (vector control) cells were phenotypically similar to wild type HepaRG cells and could be differentiated into hepatocyte-like cells by DMSO. Genetic POR-knockout resulted in phenotypic POR knockdown of up to 90% at mRNA, protein, and activity levels. LC–MS/MS measurement of seven CYP-activities showed differential effects of POR-knockdown with CYP2C8 being least and CYP2C9 being most affected. Further studies on cytochrome b5 (CYB5), an alternative NADH-dependent electron donor indicated particularly strong support of CYP2C8-dependent amodiaquine N-deethylation by CYB5 and this was confirmed by genetic CYB5 single- and POR/CYB5 double-knockout. POR-knockdown also affected CYP expression on mRNA and protein level, with CYP1A2 being induced severalfold, while CYP2C9 was strongly downregulated. In summary our results show that POR/NADPH- and CYB5/NADH-electron transport systems influence human drug metabolizing CYPs differentially and differently than mouse Cyps. Our Cas9-expressing HepaRGVC cells should be suitable to study the influence of diverse genes on drug metabolism and other hepatic functions.
Collapse
Affiliation(s)
- Tamara Heintze
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany. .,Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|